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1. Introduction
We consider general elliptic equations of the form

—div a(x,u, Vu) = f in §,

7 =0 on 99, (1.1)

where Q is an open bounded connected subset of R?, for d € N* with a bound-
ary denoted by 9Q = Q\ Q. The solution % is sought in the space Wol’p(Q) for
some p € (1,400). Particular choices of a include general anisotropic heteroge-
neous linear operators a(x,u,&) = A(x)€, Leray-Lions operators such as the p-
Laplacian a(zx, u, &) = |£|P~2¢, and some nonlinear and nonlocal diffusion operators
a(x,u, &) = A(u, z)€ for v in a given functional space.

We shall also consider the evolution problem associated to problem (1.1), which
is the following nonlinear parabolic problem (where T € (0, +00)):

ou — div a(x,uw, Vu) = f in Q x (0,7),
U(x,0) = uini(x) in Q, (1.2)
u=0on 00 x (0,7).

Such evolution equations, involving non local operators, arise in particular in
image processing, in the spirit of Ref. 10, 14, 30 and references therein. The linear
anisotropic heterogeneous case is involved in most models used in underground engi-
neering (oil recovery, nuclear waste disposals, etc.). In these models, computations
have to be performed on meshes adapted to the geological layers, and including
complex geometrical features such as faults, vanishing layers, inclined wells, highly
heterogeneous permeability fields, local nonconforming refinement. Since standard
finite element methods are not well adapted to such constraints, a large number of
schemes have been developed for the numerical approximation of (1.1) and (1.2) in
this case. Although we cannot give here an exhaustive list, let us mention a few of
them:

e the Multi-Point Flux Approximation (MPFA) schemes, see Ref. 1,

e the Hybrid Mimetic Mixed family which includes the Mimetic Finite Dif-
ference schemes, the SUSHI scheme and the Mixed Finite Volume scheme,
see Ref. 18 and references therein,

e the Discrete Duality Finite Volume (DDFV) schemes, see Ref. 26, 13, 5.

A construction and proof of convergence in the case of nonlinear Leray-Lions oper-
ators is already known for some of these methods, namely the Mixed Finite Volume
method!®, the DDFV scheme?, the SUSHI scheme in its cell centred version!? (see
also Ref. 6 for a Discontinuous Galerkin scheme for the p-Laplacian).

Although the analytical tools used to study these methods are often similar,
they are usually considered as different schemes whose study requires new work
each time. However, as noticed in Ref. 21, 23, 22, 24, many of these methods can be
included in the unified theoretical framework of (possibly) nonconforming gradient
schemes. In particular, the following methods are gradient schemes:
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some MPFA and DDFV schemes in 2D or 3D,

the Galerkin methods, including the Conforming Finite Element methods,
the nonconforming P1 Finite Element discretisation,

the Mixed Finite Element discretisations.

The aim of this paper is to show that gradient schemes, which can be characterised
by a small number of discrete elements, have the two following interesting properties:

(1) They provide a generic framework in which only a small number of discrete as-
sumptions is required to establish error estimates for linear stationary equations
and convergence proofs for both nonlinear stationary and transient equations.

(2) They encompass the entire Hybrid Mimetic Mixed family, and thus in particular
the Mimetic Finite Difference methods. Given the success of these methods for
linear problems, see e.g. Ref. 8, 9, 3, 4, we find quite exciting and remarkable
to extend them to fully nonlinear problems and to prove their convergence in
this setting.

This paper is organised as follows. In Section 2, we present the small number
of discrete elements which are needed to define a gradient scheme. In Section 3,
we consider the stationary cases. We provide an error estimate in the linear case,
and a convergence proof for Leray-Lions problems including a nonlocal dependency
of the operator. In Section 4, we give a convergence proof for the time—dependent
Leray-Lions problem, using a generic discrete Aubin-Lions theorem. A particularly
remarkable fact is that these proofs are made under very few and generic discreti-
sation assumptions. Finally, in Section 5, we show that all schemes derived from
the Hybrid Mimetic Mixed family are gradient schemes which satisfy the properties
under which the convergence analysis of Sections 3—4 are performed. This therefore
shows that Hybrid Mimetic Mixed methods are suitable not only for local linear
problems but also for nonlocal nonlinear problems.

2. Gradient discretisations and gradient schemes
2.1. Definitions

We present here properties which are shown in the next sections to be sufficient for
the convergence of gradient schemes, considering homogeneous Dirichlet boundary
conditions.

A gradient scheme can be viewed as a general formulation of several discreti-
sations of (1.1) which are based on a nonconforming approximation of the weak
formulation of the problem. The approximation of the weak formulation of (1.1) is
based on some discrete spaces and mappings, the set of which we call a gradient
discretisation. Throughout this paper, 2 is an open bounded subset of R?, d € N*,
and p € (1,+00).

Definition 2.1. (Gradient discretisation) A gradient discretisation D of Prob-
lem (1.1) is defined by D = (Xp o, 1Ip, Vp), where:
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(1) the set of discrete unknowns Xp g is a finite dimensional vector space on R,

(2) the linear mapping IIp : Xp o — LP(Q) is the reconstruction of the approxi-
mate function,

(3) the linear mapping Vp : Xpo — LP(Q)? is the discrete gradient operator. It
must be chosen such that || - [[p := ||[Vp - ||Lr(q)e is @ norm on Xp o.

Remark 2.1 (Boundary conditions.). The definition of || - ||p depends on the
considered boundary conditions. For simplicity we only consider here homogeneous
Dirichlet boundary conditions, but other conditions can easily be addressed. For
example, in the case of homogeneous Neumann boundary conditions, we would
use the notation Xp instead of Xp g for the discrete space, and define | - ||p =
(T - 1, gy + 1V 12, ) /7.

The related gradient scheme is merely the discretisation of the weak formula-
tion of (1.1) obtained by using the discrete space and mappings of the gradient
discretisation.

Definition 2.2. (Gradient scheme) If D = (Xpo,IIp,Vp) is a gradient dis-
cretisation, then we define the related gradient scheme for (1.1) by

Find u € Xp o such that, Vv € Xp o,

/ a(z, llpu, Vpu(zx)) - Vpu(z)de = / f(x)pv(x)de. (2.1)
Q Q

Since Xp o is a finite dimensional space, there exists at least one solution to (2.1)
provided that a and f satisfy the usual assumptions that ensure the existence of
a weak solution to (1.1) (see Section 3). For the solution of this finite dimensional
problem to converge to a weak solution of (1.1), some consistency and stability
properties are of course required. As in the framework of Finite Element methods,
stability is obtained thanks to some uniform coercivity of the discrete operator
which relies on a discrete Poincaré inequality.

Definition 2.3 (Coercivity). Let D be a gradient discretisation for Problem (1.1)

in the sense of Definition 2.1, and let C'p be the norm of the linear mapping Ilp,
defined by

[Ipv
Cp= max M. (2.2)
vEXp,0\{0} HU”D
A sequence (D, )men of gradient discretisations is said to be coercive if there exists
Cp € Ry such that Cp,, < Cp for all m € N.

Remark 2.2 (Discrete Poincaré inequality.). Equation (2.2) yields
ITIpv||Lr ) < ColIVDU Loy

Consistency is ensured by a proper choice of the reconstruction operator and
the discrete gradient.
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Definition 2.4 (Consistency). Let D be a gradient discretisation for Problem
(1.1) in the sense of Definition 2.1, and let Sp : Wy (Q) — [0, +00) be defined by

Vo e WP, Sp(p) = min (ITov = plis) + [Vov = Vel aaye) - (23

A sequence (D, )men of gradient discretisations is said to be consistent if, for all
© € WyP(Q), Sp,, () tends to 0 as m — oo.

Since we are dealing with nonconforming methods, we need to make sure that
the dual of the discrete gradient is “close to” a discrete divergence operator.

Definition 2.5 (Limit-conformity). Let D be a gradient discretisation for Prob-

lem (1.1) in the sense of Definition 2.1. We let p’ = £, W' (Q) = {p €

LY ()4, dive € L (Q)} and Wp: WP (Q) — [0, +00) be defined by
Ve € WP (Q)

Wp(p) =

(2.4)
= max T
u€Xp o\{0} ||U||D

/Q (Vpu(x) - p(x) + Hpu(x)dive(x)) dz| .

A sequence (D, )men of gradient discretisations is said to be limit-conforming
if, for all @ € WP (Q), Wp_ () tends to 0 as m — cc.

Dealing with generic non-linearities often requires compactness properties on
the scheme.

Definition 2.6 (Compactness). Let D be a gradient discretisation for Problem
(1.1) in the sense of Definition 2.1, and let Tp : R? — R* be defined by
d [TIpv(- + &) — Hpv| Lr(re)
V£ eER ) TD(&) - ve)gl;i}i{o} HU”D ’ (25)
where IIpv has been extended by 0 outside (2.
A sequence (Dy,)men of gradient discretisations is said to be compact if the
following uniform limit holds:

lim sup T; =0.
‘€|_)Om€113\1 DM(g)

In fact, the consistency and limit-conformity properties of a given gradient
scheme only need to be checked on dense subsets of the test functions spaces. The

following lemma, useful in Section 5, is an immediate consequence of Lemma 2.4 in
Ref. 21.

Lemma 2.1 (Sufficient conditions). Let F be a family of gradient discretisations
for Problem (1.1) in the sense of Definition 2.1. Assume that there exist C,v €
(0,00) and, for all D € F, a real value hp € (0,+00) such that:

Cp <C, (2.6a)
Sp(p) < Chol@llwe.=(q), for all ¢ € C(Q), (2.6b)
W () < Chop|l@ll(wremaya, for all p € CZ(RY)?, (2.6¢)
Tp(€) < CIEl”, for all € € RY, (2.6d)
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where Cp, Sp, Wp and Tp are defined by (2.2)-(2.5).
Then, any sequence (Dy,)men C F such that hp,, — 0 as m — oo is coercive,
consistent, limit-conforming and compact.

Remark 2.3. In several cases, hp stands for the mesh size. This is for instance the
case in the analysis of Hybrid Mimetic Mixed schemes in Section 5.

3. Elliptic problems
3.1. Error estimate in the linear case

We recall an error estimate which was obtained in Ref. 21 in the linear case. We
consider the following problem, corresponding to (1.1) with p = 2 and a(x, s,€) =

Az)€:
—div(A(x)Va) = f in Q,
7 =0 on 09, (3-1)
with
A : Q — S4(R) measurable s.t. A(zx) has eigenvalues in (A, \) C (0, +00)
for a.e. ¢ € Q, (3.2)
e L),

(Sa(R) is the set of d X d symmetric matrices). Under these hypotheses, the weak
solution of (1.1) is the unique function @ satisfying:

u e HE ),

/ A@)Vi(e) - Vo(@)da = / f@@de  WoeHV(Q). 9
Q Q

Problem (3.3) is approximated by Scheme (2.1) with a(x, s, &) = A(x)€. The fol-
lowing lemma, proved in Ref. 21, is in the spirit of the results given in Ref. 29.

Lemma 3.1 (Control of the approximation error). Under Hypothesis (3.2),
let w € HL(Q) be the solution of (3.3) (remark that since f € L*(Q), one has
AVT € Wiv:2(Q)).

Let D be a gradient discretisation in the sense of Definition 2.1 with p = 2. Then
there exists one and only one up € Xp o solution to the gradient scheme (2.1). This
solution moreover satisfies the following inequalities:

1
A

||VE — VDUDHL2(Q)d < [W'D(AVE) + (X + A)Sp(ﬂ)] s

1 —
| — Ipup| r2) < y [CDWD(AVE) + (CpA +A)SD(E)] ,
where Cp, Sp and Wp are defined by (2.2)-(2.4).

Remark 3.1. As a consequence, if (up,, )men is a sequence of solutions to (2.1)
corresponding to a coercive (Definition 2.3) consistent (Definition 2.4) and limit-
conforming (Definition 2.5) sequence of gradient discretisations (Dy,)men, then
lp, up, — @ in L?(Q) and Vp, up, — Va in L3(Q)? as m — oc.
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We notice that, in this linear case, compactness of the sequence of gradient
discretisations is not necessary to obtain these convergences (see also Remark 3.6).

Remark 3.2. Note that, under the assumptions of Lemma 2.1 and regularity as-
sumptions on the solution to (3.1), Lemma 3.1 gives an O(hp) convergence rate of
gradient schemes for linear problems.

One can in fact prove, for all gradient schemes mentioned in the introduc-
tion, that Sp(p) < Chopl|el|m2() for all ¢ € H*(Q) N Hg(Q) and Wp(p) <
Chol|e||m () for all o € H'(Q)? (where hp measures the scheme precision and,
in many cases, stands for the mesh size). Hence, Lemma 3.1 gives O(hp) error
estimates for these methods as soon as A € Wh*°(Q)?*4 and w € H?(Q2) N HL ().

3.2. Convergence in the nonlinear case

We now study the convergence of gradient schemes for the more general nonlinear
framework of Problem (1.1). The assumptions we consider are, for a given p €
(1, +00):

a : QxLP(Q) x RY —» R? is a Caratheodory function, (3.4a)

(i.e. a function such that, for a.e. ¢ € Q, (u, &) — a(x,u, ) is continuous and, for
any (u,&) € LP(Q) x R4, z + a(z, u, £) is measurable)
3a>0 : a(x,u,&)- &> alllP, for ae. € Q, Yu e LP(Q), V€ e RY,  (3.4b)

(a(x,u,€) —a(x,u,x)) (€ —x) >0, forae. z € Q, Vu € LP(Q),
V€, x € RY,

Fae L’ (Q),Iu>0 :
la(z,u, €)| <a(x) + pléP~, for ae x € Q, Yuc LP(Q), VE€RY,  (3.4d)

(3.4¢)

and

f e L” (Q) where p/ = ]%. (3.5)
Remark 3.3. Note that the dependence of @ on u is assumed to be nonlocal:
a(xz,u,-) depends on all the values of u € LP(2), not only on u(x). These as-
sumptions cover for example the case where a(x,u, Vu(x)) = Afu](x)Vu(z) with
A LP(Q) — L*°(Q;Sq(R)) as in Ref. 10, 14, 30.

These assumptions (in particular (3.4a)) do not allow to cover usual local de-
pendencies a(z, u(x), Vu(z)) as in the non-monotone operators studied in Ref. 27.
However, the adaptation of the following results to the local dependency case is
quite easy and more classical. See e.g. Ref. 15 for an adaptation of the original
Leray-Lions method to a numerical scheme (based on the Mixed Finite Volume
method) for local non-monotone operators.

If a function a satisfies (3.4), then the mapping v — —diva(-,u, Vu) is called a
generalised Leray-Lions operator. A classical example is the p-Laplacian operator,



November 21, 2012 11:23 WSPC/INSTRUCTION FILE
radient-schemes'm3as

obtained by setting a(zx,u, &) = |£|P~2¢. Note that the existence of at least one
solution to (1.1) is shown in Ref. 27 under Hypothesis (3.4) in the case where a
does not depend on u. In our framework, we say that a function @ is a weak solution

o (1.1) if:

e W, P(9),

/ a(z, @, V(@) - Vo(a)de = / f@p@)de, woewir@). G0

Q Q
Remark 3.4. Note that, even if a does not depend on u € LP(Q)), the solution to
(3.6) is not necessarily unique. Consider the case where p =2, d =1, Q =] — 1, 2],
f(x)=0for z € (—1,0) U (1,2), f(z) =2 for z € (0,1), and

a(z,u,§) = (min(|¢], 1) + max(|£] — 2,0)) é V€ € R, Yu e L*(Q).

Then (3.4b) is satisfied with a = 3, (3.4c) is satisfied since a is non-decreasing w.r.t.
& and (3.4d) is satisfied with @(x) = 0 and p = 1. Then the function u(z) = a(z+1)
for z € (—1,0), a+xz(1 —z) for z € (0,1), (2 —z) for z € (1,2) is solution to (3.6)
for any value « € [1,2].

The hypothesis that a is strictly monotone, which may be expressed as

(a(z,u, &) —al(x,u,x)) - (&—x) >0, for ae. z € Q, Yu € LP(Q),
V¢, x € R with £ # x,

will only be useful to prove the strong convergence of the approximate gradient.

(3.7)

Theorem 3.1 (Convergence of the scheme). Under Assumptions (3.4)-(3.5),
let (Dyn)men be a sequence of gradient discretisations in the sense of Definition
2.1, which is coercive, consistent, limit-conforming and compact in the sense of
Definitions 2.3, 2.4, 2.5 and 2.6.

Then, for any m € N, there exists at least one up,, € Xp,, o solution to the
gradient scheme (2.1) and, up to a subsequence, Ilp_up, converges strongly in
LP(QQ) to a solution W of (3.6) and Vop, up, converges weakly in LP(Q)¢ to Vu
as m — oo. Moreover, if we assume that the Leray-Lions operator a is strictly
monotone in the sense of (3.7), then Vp, up,, converges strongly in LP(Q)? to Vu
as m — oo.

In the case where the solution u of (3.6) is unique, then the whole sequence
converges to u as m — oo in the senses above.

Remark 3.5. As a by-product, this theorem also gives the existence of a solution
@ to (3.6). Indeed, under the assumptions of the theorem, the proof shows that the
sequence up,, has a converging subsequence and that the limit @ of this subsequence
is in fact a solution to the continuous problem. Since there exists at least one
gradient scheme which satisfies the assumptions of this theorem (for example, the
HMM method — see Section 5), this gives the existence of a solution to (3.6).
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Remark 3.6. In the case where a does not depend on u € LP(2), the proof of the
weak convergence of IIp_ up,, to asolution of (3.6) does not require the compactness
of the sequence of gradient discretisations. In this case the strong convergence of
IIp,, up,, results from (3.7) (which gives the strong convergence of the approximate
gradient) and from the coercivity and the consistency of the sequence (D, )men-

Proof.
This proof follows the same ideas as in Ref. 15, 19.

Step 1: existence of a solution to the scheme

Let D be a gradient discretisation in the sense of Definition 2.1. We endow the
finite dimensional space Xp ¢ with an inner product (, ) and we denote by |- | the
norm coming from this inner product. We define F': Xp o — Xp o as the function
such that, if u € Xp g, F(u) is the unique element in Xp o which satisfies

Yoe Xpg, (F(u),v)= / a(z,lpu, Vpu(zx)) - Vpu(z)de.
Q
Likewise, we denote by w € Xp ¢ the unique element such that

Yoe Xpo, (w,v)= /Qf(a:)HDv(a;)d:c.

The properties of a show that F' is continuous and that, for all v € Xpp,
(F(u),u) > allul|’s. By equivalence of the norms |- | and || - ||[p on Xpg, we
deduce that (F(u),u) > CylulP with C; not depending on u. This shows that
limy) oo % = +o00 and thus that F' is surjective (see Ref. 27 or Theorem 3.3

(page 19) in Ref. 12). There exists therefore up € Xp o such that F(up) = w, and
this up is a solution to (2.1).

Step 2: convergence to a solution of the continuous problem

Letting v = up,, in (2.1) with D = D,,, and using (2.2) and Hypothesis (3.4Db),
we get

—1
a ||V, up,, 750y < ol fllLe (o)

Thanks to the coercivity of the sequence of gradient discretisations, this provides an
. in LP(2)4 and on Ilp, up, in LP(Q). By Hypothesis (3.4d),
the sequence of functions Ap, (z) = a(x,IIp, up, ,Vp, up, (x)) remains bounded
in ¥ (Q)%. Extending Ilp, up, and Vop, up,, by 0 outside 2, we infer the existence
of w € LP(RY), G € LP(RY)? and A € LP (Q)% such that, up to a subsequence
again denoted by (D,,)men, Vop,, up,, converges weakly to G in LP(RY)4 Tp up,,
converges weakly to @ in LP(R?) and Ap,, converges weakly to A in L? (Q)%, as

estimate on Vp,  up

m — 00.
Thanks to the limit-conformity of the sequence of discretisations, passing to the
limit in (2.4) we get that

/Q (G(z) - p(x) + u(z)dive(x)) de = 0, Ve € W' ().
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10

Since G = 0 and @ = 0 outside ©, the above relation may be written for all
@ € Wiy (RY) with integration on R?, which proves that G = Vu and that
the restriction of @ to €2, again denoted by @, belongs to Wol’p(Q). Finally, the
compactness of the sequence of gradient discretisations and Kolmogorov’s theorem
give the strong convergence of Ilp,_ up, to u in LP(R?) (this strong convergence is
only necessary for coping with the dependence upon u of a).

Let us now show that  is solution to (3.6), using the well-known Minty trick?®.
For a given ¢ € T/VO1 P(Q) and for any gradient discretisation D belonging to the
sequence (D, )men, we introduce

Ppy = argmin (||HDU - %0||LP(Q) +[|Vpv — V‘P”LP(Q)d)
vEXDp,0
as a test function in (2.1). By the consistency of (D,,)men, letting m — oo we get

/A( ) Vo(z dw—/f x)dxz, Yo e WyP(Q). (3.8)
Q

On the other hand, we may let m — oo in (2.1) with up,, as a test function. Using
(3.8) with ¢ =, this leads to

lim ((L‘ HDm UD,, v Dm“Dm )) v Dm qu( )d:l:
m o0
- (3.9)

=/f(w) o)z~ [ Ale).

Hypothesis (3.4c) gives, for any G € LP(Q2)4,
/ (a(w7HDmupm,mequ(w))—a(x,HDmqu,G(:c)))
Q
(Vo up, () — G(z))dz > 0.

Developing this inequality and using (3.9) for the one term involving a product of
two weak convergences, we may let m — co and we get

/Q (A(@) — a(z,5,G(@))) - (Vi(z) — G(z))dz > 0, VG € LP(Q)".

We then set G = Vu + ag in the preceding inequality, where ¢ € C°(Q)? and
a > 0. Dividing by «a, we get

- /Q(A(ac) —a(z, 7, Vi(z) + ap(x))) - p(x)dz > 0, Ve € C(Q)?, Ya > 0.
We then let @« — 0 and use the dominated convergence theorem, which leads to
- /Q(A(:c) — a(x, T, Vi(e))) - p(@)de > 0, Vi € C(Q)°.
Changing ¢ into —¢p, we deduce that

/Q (A(z) — a1, Va(@)) - p(z)de = 0, Yo € CZ(Q)",
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11

and therefore that
A(x) = a(x,u, Vu(x)), for a.e. x € Q. (3.10)

In addition to (3.8), this shows that @ is a solution to (3.6). This concludes the
proof of the convergence of Ilp, up,, to @in LP(Q) and of Vp_up,, to Vu weakly
in LP(Q)4 as m — oco.

Step 3: Assuming now hypothesis (3.7), strong convergence of the
approximate gradient

We follow here the ideas of Ref. 27. Thanks to (3.9) and (3.10), we get

lim [ (a(z,1p,up,, Vp,up, (z))—a(@,Ip,up,,, Vi(z)))
m oo Q

«(Vp, up,, (x) — Vu(x))dx = 0.

Since (a(z,p, up,, , Vo, up, ) — a(z,p, up, ,Va)) - (Vp, up, —Vu) > 0 for
a.e. € (), we then have

(a(-,HDmqu,vaqu) — a(-7HDmqu7Vﬂ)) . (vaqu — Vﬂ) —0

A (3.11)

and therefore a.e. for a sub-sequence. Then, thanks to the strict monotony assump-
tion (3.7), we may use Lemma 3.2 given below to show that Vp, up, — Vu a.e.
as m — oo, at least for the same sub-sequence. This shows the a.e. convergence of
a(-,IIp,_up, ,Vp, up, )  Vpup to a(-,u, Vu) - Vu. We next recall that, by (3.9)
and (3.10),

lim a(x,llp_ up, ,Vp, up, () Vo, up, (x)de

mTeJa (3.12)
/Qa(a:,ﬂ, Vu(x)) - Vu(z)de.

Since a(-,p, up,, ,Vp, up, )  Vp, up, > 0, we can apply Lemma 3.3 to get
a(-,HDmqu,vaqu) . VDmqu — a(~,ﬂ, Vﬂ) - Vu in Ll(Q) as m — oQ.
This L'-convergence gives the equi-integrability of the sequence of functions
a(-,IIp, up, ,Vop, up, ) Vp, up, , which gives in turn, thanks to (3.4b), the equi-
integrability of (|Vp,, up,,

P)men. The strong convergence of Vp,_ up, to Vu in
LP(2)% is then a consequence of Vitali’s theorem. m|

Lemma 3.2. Let B be a metric space, let b be a continuous function from B x R?
to R? such that

(b(u,6) — b(u,7)) - (6 —7) >0, V6 #~ € R, Vu € B.
Let (U, B )nen be a sequence in B xR and (u, B) € BxR? such that (b(tm,, Bm)—

b(um,B)) - (Bm —B) = 0 and up, — v as m — co. Then B, — f as m — 0.

Proof. We begin the proof with a preliminary remark. Let § € R?\{0}. We define,
for all m € N, the function hs,, : R = R by hs m(s) = (b(um, 8+ s6) —b(um, 3)) 0.
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The hypothesis on b shows that hs ., is an increasing function since, for s > s, one
has :

o (5) = hm(s") = (b(tt, B+ $6) — b(tym, B+ 5'5)) -6 > 0.

We prove now, by contradiction, that lim,, .o Bm = B. If the sequence (5m)men
does not converge to 3, there exists € > 0 and a subsequence, still denoted by
(Bm)men, such that s, := |8, — 8| > ¢ for all m € N. Setting §,, = % we
can assume, up to a subsequence, that 6, — ¢ as m — oo, for some § € R? with
|0] = 1. We then have, since s, > ¢,

ﬁmfﬂ

Sm

(b(umaﬂm) - b(uma 5)) :

== h6m,m(5m) 2 h5m,m(€)

= (b(tm, B+ €6m) — b(tim, B)) - Opm.

Passing to the limit as m — oo, we obtain

0= Bm ——(B(tpm, Bon) — b(ttsms B)) - (B — B)

m—00 Sy,

> (b(u, B +¢€d) — b(u, 3)) -6 >0,

which is impossible. D

The following result is classical, see e.g. Ref. 15, 19. Its proof is given for the
sake of completeness.

Lemma 3.3. Let (Fy,)men be a sequence non-negative functions in L'(Q). Let
F e LY(Q) be such that Fn, — F a.e. in Q and [, Fp(x)de — [, F(x)dx, as
m — co. Then F,, — F in L*(Q) as m — co.

Proof. Applying the Dominated Convergence Theorem to the sequence (F — F,,,)™
leads to [,(F(x) — Fr(x))Tdx — 0 as m — oo. Then, since |F — Fy,| = 2(F —
F,)* — (F — F,,), we conclude that F,, — F in L}(Q2) as m — oo. O

4. Evolution problems

In this section, we consider the evolution problem (1.2) under Hypotheses (3.4) and

T € (0,+00),
uimi € L2(9), (4.1)
X

f € LF(Qx(0,T)) where p/ = L.
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The precise notion of solution to (1.2) that we consider is the following:
7€ LP(0,T; Wy P () N CO([0, T); L2()), da € LP (0,15 W17 (Q)),
ﬂ('a O) = Uini,
T
/ <ata('7t)vﬁ(Wt>>W—1,p’(Q),W01’P(Q)dt
0 (4.2)

T
+/0 /Qa(a:,ﬂ(-,t),Vﬂ(zc,t)) - Vo (z,t)dedt

T
_ / fla, O, dedt, Vo€ LP(0;T; WhP(9)).
0 Q

Remark 4.1. The derivative 9;u is to be understood in the usual sense of dis-
tributions on Q x (0,7). Since the set 7 = {d>L, pi(t)vi(z) : ¢ € N,gp; €
Cx(0,T),v; € C*(Q)} of tensorial functions in C*°(Q x (0,7")) is dense in
LP(0,T; W, *(£2)), one can ensure that this distribution derivative d;@ belongs to
LP'(0,T; W=7 (Q)) = (LP(0, T; Wy P (Q)) by checking that the linear form

T
T = (O, ¢)pp= —/ / (z, t)0pp(x, t)daedt
0 Q

is continuous for the norm of L?(0,T; Wy™*(Q2)).

Definition 4.1 (Space-time gradient discretisation). Let p € (1,+00) let
Q be an open subset of R? with d € N* and let 7 > 0 be given. We say that
D = (Xpyo,p,Vp, (t("))nzow,,N) is a space-time gradient discretisation if

e (Xp,o,p,Vp) is a gradient discretisation of €, in the sense of Definition 2.1,
which satisfies TIp(Xp,o) C L™2(P:2)(Q),
et =0 <t <t =T,

We then set &2 — ¢n+1) _ tt, for n = 0,...,N — 1, and &p =

=0,...,

Let D = (Xpo,1lp, Vp, (t(n))n:O,‘..,N) be a space-time gradient discretisation
in the sense of Definition 4.1. We define, for a given o € [%7 1], the following scheme
for the discretisation of Problem (1.2): we take u(®) € Xp o and consider a sequence
(u™),o...n C Xp,o such that, for all n =0,..., N — 1,

WD gy ()

PICEED

/ [H95g+%)u($)ﬂpv(w) +a (:c, Mpu(™te), Vpu("+o‘)(a:)> . va(w)] dx
Q

1
Setting u("*®) = qu(*+Y) 4+ (1 — a)u™ and 5gl+2)u = , we have:

¢(n+1)

= ﬁ /t(m /Qf(a:,t)HDv(a;)d:cdt, Yv e Xpp.
(4.3)
Note that the choice o > % is required for stability reasons and that the choice o = 1
leads to the implicit scheme. We use the notations IIp and Vp for the definition of
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space-time dependent functions and we define
for a.e. (x,t) € Q x (t() t D) yn =0,... N -1 :
H(Dy)u(a:,t) = Hpu™t)(z) (for v =a or 1),
Vou(z,t) = Vpulrt) (z),
_ s(n+3)
dpu(t) =9dp 2'u.

Lemma 4.1. (L>°(0,T;L*(Q)) estimate, discrete LP(0,T;W,"(Q)) estimate
and eristence of a discrete solution)

Under Hypotheses (3.4) and (4.1), let D be a space-time gradient discretisation
in the sense of Definition 4.1. Then there exists at least one solution to Scheme (4.3)
and there exists Cy > 0, only depending on p, Cp > Cp, Cini > ||tini —Hpu(®) L2

Uini, f, a such that, for any solution u to this scheme,

”Hg)“”Lw(O,T;LQ(Q)) < Cy, ||H(Da)u||L°°(O,T;L2(Q)) <Oy (4.4)
and [[Voul Lrx 012 < Ca.

Proof. Let us first prove the estimates. We let v = &)y nta) iy (4.3). Since

1 n+l 1
&(nJrE)HD(S(D +é)u HDu(n+a) = 5((Hpu(n+l))2 — (Hpu(n))Q)

1
+ (a B 2> (HDU(7L+1) _ HDU(7L))2’

we get, by summingonn =0,...,m—1foragivenm=1,..., N,
1 t(m)
S0 sy +a [ VU et

@ 1
< 1l @0 000 15wl o 0,06m)) + 5 0 72 -
This leads, thanks to the Young inequality, to
t(m)

1 m
5| )Ilizmﬁg/o IVDu(, Dlzs(g)adt

21/(1)—1)0%/ @ () 1 0) (|2
= W||f||1£p’(szx(o,t<m>))+@”HD uHiP(Qx(o,tW}))—'—ﬁ”HDu( )”L2(9)‘

Applying (2.2) proves the estimates on Hg)u and Vpu. The estimate on

Hg‘)u follows from the inequality ||IIpu™*®)| 120y < afHpu™V||r20) + (1 —
Oé)HHDu(n)HLZ(Q)

The existence for each n =0,..., N — 1 of at least one solution to (4.3) follows
the same proof as that of Theorem 3.1, reasoning on «("*t® rather than u("*t1) and
using the above estimates. DO

The following semi-norm on Xp ¢ will be useful to apply Theorem 5.1 in the
appendix.
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Definition 4.2 (Dual semi-norm). Under Hypotheses (3.4), let D =
(Xp,0,1p,Vp) be a gradient discretisation of € in the sense of Definition 2.1.
We define the following dual semi-norm on Xp o:

Yw e Xpy, |wls,p =sup {/ Mpw(x)Ipv(x)de : v € Xpp, ||v||p = 1} . (4.5)
Q

Lemma 4.2 (Estimate on the dual semi-norm of the discrete time deriva-
tive).

Under Hypotheses (3.4) and (4.1), let D be a space-time gradient discretisation
in the sense of Definition 4.1. Let u be a solution to Scheme (4.3). Then there
exists Cs, only depending on p, u, @, a, Cini > ||tin; — HDU(O)HLz(Q), Uini, [, T and
Cp > Cp, such that

T
/0 Spu(t) pdt < Cs. (4.6)

Proof. Let us take v € Xp o as test function in Scheme (4.3). We have, thanks to
Assumption (3.4d) on a,

/ o™ 2 u(z)Ipu(z)de < / (@(x) + 1| Vpu™ ) (z) P~ Vpu(z)|de
Q Q
t("+1)

1
—_ II
+ PrCE=Sa) /Q f(z, ) pv(x)dzdt,
which leads, thanks to (2.2), to the existence of C4 > 0 only depending on p, p such

that
/ Hpégl+%)u(x)ﬂpv(w)dm
Q

¢(n+1)

"y nta Cp
< Oy <||a||ip,(ﬂ) + HVDU( + )HZI)/”(Q)d + — /t(")

(p—1)/p
p/
&(nJr%) ||f(7t)||Lp’(Q)dt>

X|[VovllLs(9)a-
Taking the supremum on v € Xp o such that ||[Vpv|[rr)e = 1 gives an estimate

1
on \5gl+2)u|*’p. The proof is concluded by raising this estimate to the power p’,
multiplying by &"*2), summing on n and estimating VDUl (0 0,10 thanks to
Lemma 4.1. O

In order to prove the convergence of the scheme, we shall use the assumptions
of coercivity, limit-conformity and compactness already used for steady state prob-
lems. However, in order to pass to the limit on the time term, we need a modified
consistency property for the sequence of gradient discretisations.

Definition 4.3 (Space-time consistency). Let D be a space-time gradient dis-
cretisation for Problem (1.2) in the sense of Definition 4.1 and let Sp : Wy P (Q) N
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L?(Q) — [0,+00) be defined by

Vo € Wyt (Q),
Sp(p) = Uénxlg (IMpv — @l maxee2 @y + VDV = Vol Lo (2)a) -

,0

(4.7)

A sequence (D, )men of space-time gradient discretisations is said to be consistent
if:

e for all € WyP(Q) N L(Q), §Dm(cp) tends to 0 as m — o0,
e {tp,, tends to 0 as m — oo.

Theorem 4.1 (Convergence of the scheme). Under assumptions (3.4) and
(4.1), let (Di)men be a sequence of space-time gradient discretisations in the sense
of Definition 4.1, which is consistent (Definition 4.3) and such that the associated
sequence of gradient discretisations is coercive (Definition 2.3), limit-conforming
(Definition 2.5) and compact (Definition 2.6). Let o € [%,1] be given. For any

(0)
D

m € N, let up,, be a solution to Scheme (4.3) with up’ chosen such that |uin; —

H’Dmuf(DOT)nHLZ(Q) — 0 as m — oo.

Then, up to a subsequence, H(Daiqu converges strongly in L'(0,T; LP(2)) and
in L*(Q x (0,7)) to a solution u of (4.2), Hg’)"upm converges strongly in L*() x
(0,7)) tow and Vp, up,, converges weakly in LP(2 x (0,T))? to Vi as m — oo.

Moreover, if we assume that the Leray-Lions operator a is strictly monotone in
the sense of (3.7), then Vp, up,, converges strongly in LP(Q x (0,T))? to Vu and
H(Daglupm converges strongly in LP(Q2 x (0,T)) to @ as m — oo.

In the case where the solution T of (3.6) is unique, then the whole sequence
converges to W as m — 0o in the senses above.

Remark 4.2. As for the stationary problem (see Remark 3.5), the existence of a
solution to (4.2) is a by-product of the proof of this theorem.

Proof. We shall simply denote by wu,, instead of up_, a solution to Scheme (4.3)
using the space-time gradient discretisation D,,. In this proof, some indices m are
omitted in the expressions which are developed.

Step 1 Proof that hypotheses (h1)-(h2)-(h3)-(h4) of Theorem 5.1 hold with

aﬁ,?) =« and v,(ff) =1Ilp,, ug,?), and consequences.

In our setting, the space B of Theorem 5.1 is LP(Q). We take B,, =
IIp,, (Xp,, 0).- We define the norm || - || x,, by

vl x,, = inf{||w||p,,, w € Xpo such that [Ip_w = v},

(note that, for all v € B,,, there exists one and only one w € Xp_ o such that
IIp, w =v and |w||p, = ||v|x, ) and the norm || - ||y, is defined from Definition
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4.2 by
lv]ly,, = |w|«p,, for any w € Xp_ o such that IIp, w=wv

~ sup { [ v@s, @iz, =€ Xo,.0. 41, = 1} |
Q

y,, is indeed a norm (if v # 0, then v = Ilp  w with w # 0,
y,, > 0).

m

We remark that || -
and taking z = w/||w|

p,, shows that ||v

Let (vm)men be a sequence of functions of B, such that ||v,|x, < C for
some C € R;. Then, taking w, € Xp, o such that v, = Ip, (w,) and
lvmllx,, = llwmllp,,, we get that the norm ||w.,||p,, remains bounded. Thanks
to the coercivity and the compactness of the sequence of discretisations, a subse-
quence of (IIp, W, )men converges in LP(§2) to some v € LP(€2). Thus, assumption
(h1) of Theorem 5.1 is satisfied.

Let us then show that assumption (h2) is also satisfied. Let (v.,)men be a se-
quence of functions of LP(§2) such that v, € By, ||[vm|x,, < C for some C € Ry,
and such that there exists v € B with v,, — v in B and ||v,,]ly,, — 0 as m — oo.

Taking wy, € Xp,, o such that v, =Ip_ (wy,) and ||vn|x,, = |wn||D,,, we have
/(vm(w))de = /(Hpmwm(w))2dm
Q Q

< [wmlypy, [wm]|D,,

< Cllvmlly,, — 0 as m — oo,

which shows that v = 0.

Estimates (4.4) and (4.6) show that hypotheses (h3) and (h4) of Theorem 5.1 are
satisfied as well. Therefore, we deduce that there exists u € L'(0,T; LP(Q)) and a
subsequence of (D, )men, again denoted by (D,,)men, such that H%ayl Uy, CONVErges
in L1(0,T; LP(Q)) to w as m — o0o.

Step 2 Convergence of H%}n U, and Vp_ U,

Thanks to Lemma 4.1, the convergence of Hg‘ium to w also holds in

L*(0,T; L?(2)) weak-+. The same lemma allows us to assume that Hg}num con-
verges for the weak-* topology of L (0,T; L?(2)). Let us take ¢ € C°(Q x (0,7)),

define
Yo e Wy (Q) N LAQ),
Ppv = arg}r{nin (ITpw — V]| maxr.2(02) + VDW= Vol £ (02)2) (4.8)
weXp,o

and let Ppp(t) = Pp(¢(-,t)). Using the fact that 0 € Xp_ | o, we get that Sp(p(t) <

()| Lmaxto.2) () + V() || L (2)a, Which leads, thanks to the triangular inequality,
to

|[Ip,, Pp,, @) pmaxe.2) ) +[|Pp,, (t)||D,, < (4.9)
2([lo () [| pmaxce.2 () + Vo) Lr(02)a)-
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We then write

/ / D um H(g‘) U (2, t))p,, Pp,, o(x, t)dedt

<(1-a)ip, / 165, u(D) ., | P, ()1,
0

and use Lemma 4.2 and Estimate (4.9) to see that the right-hand side of this
inequality tends to 0 as m — oo. Thanks to the consistency of the sequence of
approximations, for all t € R we have Ilp, Pp_¢(t) — ¢(t) in L?(Q) as m — oco.
Hence, the dominated convergence theorem and (4.9) show that IIp, Pp ¢ — ¢
in L?(0,T; L*(Q)). Since H(Doilum and Hgl@um are bounded in L?(0,T; L?(Q2)), we
deduce

0= lim / /ng> i (20,£) — T w1 (30, 6)) Iy, P, (. D)zt

m—r oo

= lim / / (1) (2, 1) =TI g (@, 1)) (e, 1) ddt.

m—r 00

(4.10)

This proves that the weak-* limits of ngnum and H%ﬁium in L>=(0,T; L*(Q)) are
identical (equal to ).

By (4.4) and the coercivity of the sequence of gradient discretisations, we
also have Hgium — u weakly in LP(0,7;LP(Q2)) and we can assume that
Vp,, Uy, converges weakly to some G in LP(0,T;LP(Q)9) as m — oo. Extend-
ing Hgﬁlum, Vp, Um, & and G by 0 outside 2, the consistency of the underly-
ing gradient discretisation gives, as in the proof of Theorem 3.1, G = Vu and
7 € LP(0,T; W, P(Q)). Finally, we notice that, by Assumption (3.4d), the functions
Ap,, (z,t) = a(w,H(Dleum(~,t),meum(w,t)) remain bounded in L¥' (Q x (0,7))?
and converges therefore, up to a subsequence, to some A weakly in L¥’ (Q2x(0,T))4
as m — 00.

Step 3 Proof that @ is solution to (4.2).

Let ¢ € C(—o0,T) and v € Wy P(Q) N L2(£2). We introduce &("Jr%)(p(t("))va
as test function in (4.3). Summing on n we get T7\™ + 4™ = T{™, with

N-1

™ =3 p(t™)alnts) / Mpdy 2 u(@)p Ppo()de,
n=0 Q@
N-1 .
T, = 3 p(tm)as) / a(@, pu™*™), Vpu"*)(x)) - Vp Ppo(w)da,
n=0 @

t(’L+1)

™ = (™) / / #(z, )Ip Ppv(x)dadt.
(n) Q
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Using discrete integrate-by-parts formula to transform the terms () (Ilpu(*+1) —
Mpu™) appearing in T\ into (@(t™) — @t +D)Ipu+D), we have

T
T — _ / o) / 1 u(e, )1 Ppo(a)dzdt
0 Q
—(0) / pu® (x)Tp Ppv(z)de.
Q

Letting op(t) = p(t™) for t € (t™) ¢+ we have

T
T = / ©p(t) / Ap(z,t) - VpPpo(x)dedt
0 Q

T
T = / ep(t) / f(z, t)Tlp Ppu(a)dedt.
0 Q

We may then let m — oo and see that u satisfies

u € LP(0,T; Wy () N L=(0,T; L*(9)),

T
—/ cp'(t)/ u(zx, t)v(x)dedt — go(O)/ wini(@)v(x)de
0 Q

—|—/T /A:ct ) - Vo(x)dzedt = / /f:vt x)dxdt,

Yo € Wol”(Q) NL2(Q), Yy € CX(—oc0

(4.11)

Linear combinations of this relation show that it also holds with ¢ (¢)v(x) replaced
by a tensorial functions in C° (€2 x (0,7)) and, by Remark 4.1, allows to prove that
9y € LY (0, T; W17 (Q)). Standard arguments then show that @ can be identified
with an element of C°([0,T7]; L*(Q)), with the property %(-,0) = wip;. Using the
density of tensorial functions in LP(0, T; W, (), we then see that T satisfies

T
(Oiu (-, 1), 00 )y -1 (), wpor (o) At

/ / A(z,t) - Vo(zx, t)dedt = / / f(z, t)o(x, t)daedt , (4.12)
vz e LP(0,T; W, P (Q )).
It remains to prove that
A(z,t) = a(z,u(-,t), Vu(x,t)), for ae. (z,t) € Qx (0,T). (4.13)
We start by writing (4.12) with 7 = ¢(t)u, for a given ¢ € C°(—o0,T) such that
¢©'(t) <0 for all t > 0 (which implies ¢(¢) > 0 for all ¢ > 0). Using

T 1 T
A <atﬂ(-,t),(p(t)ﬂ(-’t)>W_1,p/(Q)7W01,p(Q)dt: —5/0 Lpl<t)/9ﬂ($,t>2dwdt

—%<p(o) /Q a(a,0)2da,
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we get
T
_;4 SOl(t)/Qﬂ(:c,t)%l:colt— %90(0)/ uini () de

e, (4.14)

+/ ga(t)/ A(w,t)-Vﬂ(m,t)dmdt:/ go(t)/ f(z, t)u(x, t)dedt.

0 Q 0 Q

We then introduce the test function v = @(t™)u(+®) in (4.3), and we sum on
n=20,...,N — 1. Since we have

N-1

> Tp (™ — uM)pE")Tp (au™ ) + (1 - a)u™)

n=0

N-1

= —5 D (Tpul™ V)2t 1) — (1))

n=0

N-1
1 1
—i(HDu(O))QﬂO) + (a - 2) Y ([Tpul™ — Tput™)2e(t™),
n=0

we may write, setting ¢p(t) = @(t(™) for t € (t™),t(n+1),

_% /0 ¢'(t) /Q(H%>u<w,t>)2dmdt— %som) /Q<Hz>u<0>(w>>2dw

T

*/ ep(t) / a(z, 115 u(-, 1), Vpu(z, 1)) - Vou(e, t)dedt (4.15)
OT Q

< [ o) [ 015 u(a, et
0 Q

Since Hg}num converges to u weakly in L?(Q x (0,7)) and recalling that ¢'(¢) < 0,
we have

T T
lim inf — - / o(t) / MY u,, (z, 1)) 2daedt > 1 / o(t) / (u(x, t))2dadt.
2 Jo o 7 2 Jo Q

m—r o0

This shows, thanks to (4.14), that

m—r 00

T
lim sup / op, (1) / a(@, 115 1 (-, 1), Vo, (2, 1)) - Vi, e (2, t)dzdt
0 Q )
T
< [ e [ At vate.
0 Q

(4.16)

It is now possible to apply Minty’s trick. Considering, for G € LP(0,T; LP(£2)),

T
/O <pD(t)/Q (a(@, T u(-, 1), Vou(z, t) — a(@, T u(-, 1), G(z, 1))
(Vpu(zx,t) — G(x,t))dzdt > 0.
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Developing this inequality and using (4.16) for the only “weak-weak” term, we may
take the lim sup as m — oo to find

T

/ (1) / (A1) — a(@, (- t), G(,1))) - (Vi(w, t) — G(a, t))dz > 0,
0 Q

VG € L*(0,T; LP ().

By taking ¢ which approximates the characteristic function of (—oo,T), we can
remove it from this equation. Application of Minty’s method then shows that (4.13)
holds and concludes the proof that @ is a weak solution to (4.2).

Step 4 Strong L*(Q x (0,T))-convergence of the approximate solution.
In view of (3.4c) and (4.16) we have

T
lim t/ a(z, (-, 1), Vpup(z, t
Jm | ¢p(t) Q(( p ul(t), Voup(z,t)) (417)
—a(a, 15 u(-, 1), Va(z, 1)) - (Vpup (@, t) — Va(z, t)) dedt = 0,
which proves, using (4.13), that
T
lim [ ¢p, (1) / a(@, 115 u(-,t), Vo, tm(, 1)) - Vo, (@, t)dadt
mesJo Y (4.18)

T
:/ <p(t)/ a(z,u(-,t), Vu(z,t)) - Vu(e, t)dedt.
0 Q

As a result, from (4.14), (4.15) and (4.18) and letting ¢(t) — T — t, we obtain

lim sup - / / Hg Um (2, 1)) 2dedt < = / / u(x,t)) 2dadt,
m—0o0

which shows that the weak convergence of HDm“m towin L2(Q x (0,7)) is in fact
strong. We then remark that

Duma:t )2dxdt — // Dum H(g)um(w,t)dwdt
Q

Q

<(1-a)ip, / 165, 1t (8) D 11m (-1 ) [,
0
1/p’

T
< (1 - 04)&2),," (/ |6’Dmum(t)|f,Dm> ||V’DmUmHLP(Qx(O,T))d-
0

By Lemmas 4.1 and 4.2, the right-hand side tends to 0 as m — oco. Moreover, by
strong/weak convergence we have

T
lim / / D, Um (T H(g‘)um :c,t)d:cdt:/ /(ﬂ(m,t))dedt.

Therefore,
T T
lim / / (11 . (2, 1)) dedt = / / (@, £))2dadt
m—oo Jq Q m 0 Q
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a)

and the weak convergence of H(D Um to W in L2(2 x (0,7)) is in fact also strong.

m

Step 5 Assuming now hypothesis (3.7), strong convergence of the approximate
gradient.

Using (4.17), the proof is similar to that of Theorem 3.1. DO

Remark 4.3. Due to the generic form of a and the very limited number of discrete
properties we require on gradient schemes to prove their convergence, we cannot
provide an error estimate similar to the one in Lemma 3.1. One would expect such
an error estimate to be expressed in terms of the L (0, T; L2(£2)) norm and to give,
in particular, convergence in this space.

The following can however be noticed. In the continuous case, the
L°°(0,T; L?(2)) norm of a function can be estimated using its L?(Q2) norm at ¢t = 0,
its LP(0,T; WyP(€2)) norm and the L¥' (0, T; W' (Q)) norm of its time derivative.
A similar estimate can be written, using the dual semi-norm from Definition 4.2, in
the setting of gradient schemes: for all v : [0,T] — Xp o piecewise constant equal
to v(™ on (™, +("*t1) we have

vt € (0,T) :
ITpu(t)][Z20) < [Mpv(0)][72 ()

- 1/p (4.19)
+2 </0 |6pv(t) f:D dt) IV Dol Le(2x (0,7))4
(this is proved by writing (IIpv™+t))2 — (Ipv™)? = (IIpo™t) +
HDU(”))&(”JF%)HDJ(;JF%)U and summing on n). Hence, if we assume the existence
of an interpolant Qp, @ : [0,7] — Xp,, o of the exact solution, which is constant
on each (t(™ t("*+1)) and such that, as m — oo,

Qp,,u— @in L>(0,T; L*(2)), Vp,,Qp, & — Vu in LP( x (0,T))* and

T
</ |6p,, Qp,, u(t)” dt) remains bounded,
0 :
meN
applying (4.19) to v = up,, — Qp,, U proves that if a is strictly monotone (and
therefore Vp, up, — Va strongly) then the convergence of Ilp, up,, to @ also
holds in L>°(0,T; L?(Q2)).
Under some regularity assumptions on «, the existence of Qp, « is clearly true
for all gradient schemes considered in the introduction.

5. The Hybrid Mimetic Mixed family of schemes

We proved in Ref. 18 that three families of numerical methods independently de-
veloped for the linear problem (3.1), namely the SUSHI scheme?’, the Mimetic
Finite Difference methods”® and the Mixed Finite Volume methods'%!7, can all be
gathered under a same generalising framework, the Hybrid Mimetic Mixed (HMM)
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methods. Some adaptations of these methods to nonlinear equations and systems
have been proposed in Ref. 15, 11, 19, but they involve ad-hoc (and arguably cum-
bersome) stabilisations and do not fully take advantage, as in Section 3 and 4 above,
of coercive gradients coming from gradient schemes. It was however proved in Ref.
21 that one of the HMM methods, the SUSHI scheme, can be written as a gradient
scheme for linear equations.

We show in this section that, in fact, any scheme of the HMM family can be
viewed as a gradient scheme for the linear problem (3.1), for gradient discretisa-
tions which are coercive, consistent, limit-conforming and compact. The work of
Sections 3 and 4 therefore allows for a very natural generalisation of HMM meth-
ods to the nonlocal nonlinear elliptic and parabolic problems (1.1) and (1.2), using
in the formulations (2.1) and (4.3) the gradient discretisations coming from the
HMM methods for linear problems. This is probably the most natural and efficient
adaptation of HMM methods to nonlinear problems, since it involves a natural co-
ercive gradient and does not require the introduction of artificial stabilisation terms
as in previous works.

In this section, we assume €2 to be an open polygonal bounded and connected
subset of R? with Lipschitz-continuous boundary 9€.

5.1. Polygonal meshes

Let us first give the definition of the meshes which are used for the HMM family,
see Figure 1 for some notations.

Fig. 1. A control volume K of a pointed strictly star-shaped polygonal mesh

Definition 5.1 (Pointed strictly star-shaped polygonal mesh). A pointed
strictly star-shaped polygonal mesh of 2 is given by the triplet (M, &, P), where:
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(1) M is a finite family of non empty connected open disjoint subsets of Q (the
“control volumes” or “cells”) such that Q@ = UgepmK. For any K € M, let
0K = K \ K be the boundary of K, |K| > 0 be the measure of K and hx be
the diameter of K.

(2) € = Eint U Eexs is a finite family of disjoint subsets of Q (the “edges” of the

mesh) such that any o € £ is a non-empty open subset of an hyperplane of R
We denote by &t the set of edges included in 2 and by eyt the set of edges
included in 0. The (d — 1)-dimensional measure and the center of gravity of
o € & are respectively denoted by |o| and Z,-.
We assume that, for all K € M, there exists a subset £k of £ such that
0K = Uyeg, 0. We then set M, = {K € M,o € Ex} and we assume that, for
all o € &, either M, has exactly one element and then o € &,y or M, has
exactly two elements and then o € &. For all K € M and any o € £k, we
denote by nk , the unit vector normal to o outward to K.

(3) P = (x)Kem is a family of points of  indexed by M such that, for all
K € M, zg € K. We then denote by dk , the signed distance between =g
and o (see Figure 1), that is:

dg,o = (* —Tk) NKs TEO. (5.1)
(Note that (x — xx) - nk, is constant for € o.)

We further assume that all cells K € M are strictly x-star-shaped, which means
that, for all € K, the line segment [k, x] is included in K or, equivalently, that
dKJ >0 forall o € &k.

The size of the discretisation is defined by hp = max{hx, K € M}. For all
K € M and o € &k, we denote by Dk, the cone with vertex xx and basis o
Dk o ={tex + (1 —-t)y,t € (0,1), y € o}. We have

1
|Dk.o| = E|U|alK,(7 and Z lo|dk,o = d|K]. (5.2)

c€lk

The following lemma, which directly results from the Stokes formula, is classi-
cally used in the construction of consistent approximate gradients.

Lemma 5.1. Let K be a nonempty polyhedral subset of R%. For o € ., we denote
by T, the barycentre of o and by ng , the unit vector normal to o outward to K.
Let xx be any point of R®. Then:

> lolnko (@ — zx)' = |KId, (5.3)

cEEK

where (B, — )t is the transpose of T, — Tx € RY and Id is the d x d identity
matriz.
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5.2. Hybrid Mimetic Mixed methods

There are several equivalent implementations of HMM methods for linear problems.
The one presented here, which allows to interpret all HMM methods as gradient
schemes, uses “pressure” unknowns on the faces of the mesh (other implementations
use flux unknowns on the faces).

Let (M,E&,P) be a strictly star-shaped pointed polygonal mesh of €2, in the
sense of Definition 5.1. Let

Xp,o=1{v=((vk)kem, (Vo )oce) : vk € R,v, €ER,

vy =0 for all 0 € Eext )y (5:4)

and define, for v € Xp o, K € M and o € &g,
Vkv = |K\ Z lo|(v. K)nko and Ry ,(v) = vy — vk — Vv - (To — Tx).

c€lk

We also define Rk (v) = (Rk,» (V))oeey, and Ag = value of A on K (A is assumed to
be constant in each cell). With these notations, any Hybrid Mimetic Mixed method
for Problem (3.1) can be written

Find v € Xp o such that, for all v € Xp g,

Z |K|IAgViu-Vigv+ Z Ry (v)' By Rk (u Z UK/ f(x (5.5)

KeMm KeM KeMm

with Bx € REx*€K symmetric positive definite matrices with suitable properties
(see Remark 5.3).

Remark 5.1 (A generalisation with barycentric edge unknowns).

We could, as in Ref. 20, express some values v, as barycentric combinations of
the values vy, thus obtaining a cell-centred scheme. All the properties given here
can be extended to this case.

5.3. All HMM methods are gradient schemes
5.3.1. Definition of the gradient discretisation
Let IIp : Xpo — L?*(2) be defined by
Yve Xpo, VK € M, IIp(v) = vk on K. (5.6)

The right-hand side of (5.5) is therefore equal to fQ fHpwv. In order to prove that
any HMM method is a gradient scheme we now have to find, for any choice of
(Bx)kem, a discrete gradient Vp such that, for all (u,v) € X%O,

Z |K|AKVKU~VKU+ Z RK(U)TBKRK(U)
KeM KeM

:/QA(:E)VDU(:B)-VDU(SC)d‘”
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For any v € Xp , we look for a piecewise constant gradient Vpuv defined by:

VKGM,VUegK,VCBGDK’J :
Vd

dK,U

(5.8)

V() = Vi ov := Vv + (AR (VK))oNk o

where

* Vi = (Vg = VK)octx B B
o Ry : R¥x — REK is the linear mapping defined by Rx(£) = (R0 (€))ocex
with

~ 1
RK,O’(&) - ga —\ T Z ‘UI|§U’nK,U’ : (io’ - QBK),
‘K| o'e€Ex
e Ay is an isomorphism, to be defined, of the vector space Im(EK) C Réx.

We prove below that, for any symmetric positive definite matrix B € REx*€x  we
can find Ag such that for all (u,v) € X3,

Z |DK’J|AKVK,UU . VK’JU = |K‘AKVK’U, . VKU + RK(U)TBKRK(U). (59)
oefk

With such Ag’s, the gradient Vp defined by (5.8) satisfies (5.7) and the HMM
method (5.5) is exactly the gradient scheme given by the gradient discretisation
D = (Xp,0,1Ip, Vp).

To find Ak : Im(Rg) — Im(Rg) we first notice that, by Lemma 5.1, the linear
mapping

Gk :n€RS = Y~ |olponik,, € R? (5.10)

o€k

vanishes on Im(R ). Since A takes its values in this space, using (5.2) we deduce

Ve e REx
Vd o _ 1 ~ _o. (511)
UEXEZK |DK’"|dK,g (A Rk (§))onr,o = 7 U;:K lo|(Ax Rk (€))onK o = 0.

Hence, from the definition (5.8) and since >, ¢ |Dr o

Z |DK,0

cEEK

= |K|AKVK'LL . VK’U
d ~ ~
+ Y Dk dTAKTLK,a nio(Axk Rk (Uk))o (Ak Rk (Vi) o
K,o

oc€lK

= |K|AKVKU -Viv+ (AKﬁx(VK))TDK(AKEK(UK))

= | K|, we infer

AKVK,JU . VK,UU
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where Ux = (s —UK)ocs, and Dg = diag(%AKnK,g ‘N k) is diagonal definite

positive. Since Rg (u) = Ry (Ux) and R (v) = Ri (Vi ), (5.9) is satisfied provided
that, for all (£,7) € (REx)2

(AxRi (€)) D (Ax Rk (1)) = R (€)"Bx R (n). (5.12)

We now apply Lemma 5.2 below with £ = Im(é;{) C R®% and the inner products
(z,y)1 = yTBxz and (z,y)s = yTDgx. The isomorphism Ag : Im(Rg) — Im(Rx)
given by Lemma 5.2 satisfies (5.13) which, applied with z = R (n) and y = Ry (€),
is precisely (5.12).

Lemma 5.2. Let E be a finite-dimensional vector space endowed with two inner
products (, )1 and { , )o. Then there exists an isomorphism A : E — E such that

for all (z,y) € E?, (z,y)1 = (Ax, Ay)s. (5.13)

Proof. Let e be an orthonormal basis for {, )3 and M, be the (symmetric definite
positive) matrix of (, ); in this basis. If X, and Y, are the coordinates of z and y
in e then (z,y); = Y M.X.. Let then A, = /M, and define A as the isomorphism
whose matrix relative to the basis e is A.. Since e is orthonormal for { , )o, the
relation Y M X, = (A.Y.)T (A X, ) translates into (z,y)1 = (Ax, Ay),. |

Remark 5.2. Since (nx o)oce, spans R, the mapping G defined by (5.10) has
rank d, which implies dim(ker G ) = Card(Ex ) —d. It is easy to see that ker(R) =
{¢ € R®%; 37, € R%such that {, = Z¢ - (T, — xx)} and thus that Z € R? —
(Z - (s — TK))oee, € ker(Rg) is an isomorphism (the one to one property comes
from the fact that (T, —x )oee, spans RY). Hence, dim(Im(Rg)) = Card(Ex)—d =
dim(ker(Gx))). Since Im(Rx) C ker(Gg), we infer that Im(Rg) = ker(Gg).

Thus, Ax can be indifferently sought as an isomorphism of Im(EK) or as an
isomorphism of ker(G).

5.3.2. Coercivity, consistency, limit-conformity and compactness

We prove here that a gradient discretisation corresponding to an HMM method
is, under the usual assumptions on HMM methods, coercive, consistent, limit-
conforming and compact. The proof is based on the characterisation of these prop-
erties given in Lemma 2.1.

Lemma 5.3 (Coercivity). Let p € [1,+00), (M,E,P) be a strictly star-shaped
pointed polygonal mesh of Q in the sense of Definition 5.1 and let (Xp,o,p,Vp)
be given by (5.4), (5.6) and (5.8), for some (Ax)kem. We take 8 > 0 such that

di hk
max max 2 max <40 (5.14)
0€Eint,K,LEM, dL)g KeM,oce€k dKJ
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and
VK € M, V¢ € REx |

1 ﬁK 0(5)
g 2 Drol| =5
0 cEEK dK’

P

é Z |DK,G"

c€fK

p

(Ax Rk (6))o
dK,U

<0 Y |Dkol

ocefK

(5.15)

g

Rro©
d o ’

Then there exists Cs > 1 only depending on ), p and 6 such that:
1
@llulh,p <|IVoule) < Csllullip  Vu € Xp, (5.16)

where we have taken

lllfy = D, 2 loldico

KeMoelk

Uy — UK ‘p
dr .o
Consequently, there exists Cg > 0 only depending on 2, p and 0 such that:
Cp < Cs, (5.17)
where Cp 1is defined by (2.2).

Remark 5.3. To ensure the convergence of the HMM method, matrices By are
assumed to satisfy the following'®: there exist s, > 0 and S, > 0 independent of
the mesh such that, for all K € M and all £ € R®x,

o]

s Y 1 B n(©))? < R (6B Ric(6) < 5. Y - (Bro(€)

d d
c€€K Ko o€k K,o

If Ak is chosen so that (5.12) holds then, since Dy = diag(%AKnK}g “MK.o)s

there exists C7 only depending on d, s, S, A and X (see (3.2)) such that
]. o ~ o ~ o ~
> ol (Rk.o(9)* < > '—'(AKRK(E))i <Cr > d' | (Ri.- (€))%,

Cr d d
70651( Ko cefk Ko ocefk Ko

which is precisely (5.15) for p = 2. Hence, in the linear framework (the only one in
which generic HMM methods have been defined up to now), the gradient scheme
corresponding to an HMM method satisfies the assumptions in Lemma 5.3 with 6
not depending on the mesh.

Remark 5.4. An easy way to choose Ax such that (5.15) holds is to take Ax =
5KIdIm(RK) for some Bk € [4,0]. The corresponding HMM method is then the
SUSHI scheme of Ref. 20.

Proof.
In this proof, the notation A(u) ~ B(u) means that there exists C' only depend-
ing on (2, p and 6 such that, for all u € Xp o, C71A(u) < B(u) < CA(u).
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The key ingredient in the proof is to notice that Vgu is a convex combina-

tion of (Vi o)scey - Precisely, (5.11) shows that Vixu =3 ¢ lDI;‘ IVK oU. By

convexity of | - [P on R, we infer

oulP. 5.18
Viu K| IV i.oul (5.18)
c€EEK
From \fAKRKiUK))"n;Qr = Vk,cu — Vgu, we also have
~ P
A o
Jr/? Z D o (Ax Rk (Uk))s < 27 YK ||V gul?
' dKTU
€€k ? (5.19)
+2°71 N [ Dico| [V oul”.
c€lk
Together with (5.15), Estimates (5.18) and (5.19) show that
Ry (Une) [
K[[Viul’ + > |Drol % ~ N Dol Vi oul?. (5.20)
c€EK Ko c€EK

Since Fxo(UK) _ ua—ui _ Viu- 53;“”( and ‘Eg;m’d < 0 thanks to (5.14), we see

dK .o dK .o
that
Rico(Uro) ||
K| |Vrul” + Y |Drol % ~ | K|V ul?
o€l 7 . (5.21)
+ ZE: |1)KTU|
c€EK
Finally, the definition of Vxu and (5.2) show that
|1)K’a‘uo‘_
VH{U'_ 2{: 713;0
ocefk ‘K| dK’J
and thus that
|l)KfU| Us A'UK'p
ViulP <dP : 5.22
Vil S 0 T s o2

Since ||VDu\|’2p(Q)d =Y kem 2ocer | Pr.ol |V oulP, Estimate (5.16) follows from
(5.20), (5.21) and (5.22). To deduce (5.17) from (5.16), we notice that, whenever o
is a common edge between K and L,

lup —uk| _ Jup —us| | [us — uk|
dkﬂa +'dl“0 - dLua dk}a
and we conclude by Lemma 5.4 in Ref. 20. O

Lemma 5.4 (Limit-conformity). Let p € [1,+00), (M,E,P) be a strictly
star-shaped pointed polygonal mesh of Q in the sense of Definition 5.1 and let
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(Xp,0,p,Vp) be given by (5.4), (5.6) and (5.8), for some (Ax)kem. We take
0 > 0 such that (5.14) and (5.15) hold.
Then there exists Cs only depending on €, p and 6 such that

W () < Csho |||l (wr.maye, Vo € (CZ(R))%. (5.23)
Proof. Let ¢ € C°(R%)? and u € Xp . Let us define the terms TP and T by
TP = Vpup(x) - p(x)de and TP = —/ Mpup(x)dive(x)de.
R4 Rd

Since ng , = —ny , whenever o is an edge between K and L, and since u, = 0 if
0 € Eext, letting g, = ﬁ [, e(x)dy(z) we have

= > 2 lolus —uk)ns - po
KeMo€elk

By (5.8), we have TP = T3D + TP with
Z Z |U| —UK NKo* PK
KeMoelk

and

ZZ

KeM O’E(gK

Ric(Ux))omirco / o()d,

Dk o
where px = ﬁ [ (x)dz. Since

lor — @0l < hollel|(wie ey

whenever ¢ € &g, using Hélder’s inequality we get |TP — TP| <
hollellwee mayyallullip(d 1Q)»=1/P. By (5.16), we therefore find Cy only depend-
ing on €, p and 9 such that

T = T3 | < Cohp|lllwr.oe @y | Voul o) (5.24)

Invoking (5.11), we see that

ZZ

KeMoelk

(UK))onK,a . / (p(x) — oK )da.

Dk ,o

Since | fDK,o' (p(x) — pr)dx| < hpllell e raya|Dk,o|, this leads to

(Ax Rk (Ux))s

TP < Vdhp|pllwre@ay: Y. > |Dkol i

KeMoelk

< VA|Q P P ||| oo (rayya ( Z Z |Dr ol

KeMoelk

(Ax Rk (Uk))s
dK,a

1
p)p
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Recalling (5.15) and (5.20) in the proof of Lemma 5.3, we deduce the existence of
C1o only depending on €2, p and 6 such that

TP | < Croho|l@ll(w.osrayya | Voull Loy (5.25)
Equations (5.24) and (5.25) prove that there exists C1; only depending on €2, p and

0 such that |T1D—T2D| = |T3?—T2D+Tf| < OllhD”(P”(Wl,oo(]Rd))d||VDU||Lp(Q)d and
the proof is complete. O

Lemma 5.5 (Consistency). Letp € [1,+00), (M, E,P) be a strictly star-shaped
pointed polygonal mesh of ) in the sense of Definition 5.1 and let (Xp o, Ip, Vp)
be given by (5.4), (5.6) and (5.8), for some (Ax)kem. We take 0 > 0 such that
(5.14) and (5.15) hold.

Then there exists C2 only depending on Q, p and 0 such that:

Sp(p) < Chpllplwz= (), Vo € CZ(9). (5.26)
Proof. For all ¢ € C°(Q), let v € Xp such that vg = p(zk) for all K € M

and v, = ¢(T,) for all o € £. We clearly have ||TIpv — ¢||r~(q) < hpl|o|lw1.~(q)-
Regarding the gradients, we first write

Vi ~
‘VK’O—U - V(p(ZBK)l < ‘VK’U — VLP(SBK)‘ + dr (AKRK(VK))O' (527)
Let Zx,» = ¢(®Ts) — p(xx) — Ve(Tk) - (T5 — k). We have, by Lemma 5.1,
Vo(xk) |K| Z lo| [Ve(zk) - (To — k)] NK,o
o€k
|l(| jg: |01 wU - (wf(»7lkld__|}(| j{: |ULZKTUnJ(a
aEEK oc€EK
=Vgv— — Z 0| ZK oMK -
|}(|U€£K
Since hg < 0dg o, and |Zg o] < b ||l@llwz.e (), we deduce
Vo(wx) — Vico| < el o). (5.28)

We have ﬁKJ(VK) =0, —Vg — Vv (Te —r) = Zr,o — (Vkv — Vo(xk)) -
(T, — xx) and thus |M| < Cishil|ollw2.(q) with C13 only depending on
d, p and 6. Using (5.15), we infer

Z |DK,G|

c€EK

P

AKEK Vi))o
AP WVi)e | < oot hi folya e oy | K-

dkﬂa

Using this estimate and (5.28) in (5.27) we obtain [[Vpv — Vol|rr) <
Crahpl|@|lw2e0(q) with C14 only depending on €, p and #. The proof is completdl
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Remark 5.5. Since we estimated |[IIpv — ¢||z~(q) (and not only the LP norm),
the same proof shows that the space-time consistency (Definition 4.3) also holds.

Lemma 5.6 (Compactness). Letp € [1,4+00), (M, E,P) be a strictly star-shaped
pointed polygonal mesh of Q@ in the sense of Definition 5.1 and let (Xp,o,p, VD)
be given by (5.4), (5.6) and (5.8), for some (Ax)kem. We take 6 > 0 such that
(5.14) and (5.15) hold.

Then there exists v > 0 and C15 only depending on Q, p and 6 such that, for all
£ € RY, Tp(€) < Cisl€l”.

Proof.
Let v € Xpy. Noticing that, if o is an edge between K and L, we have
d‘”Kva‘ < le—vol 4 Jv=ve| T emma 5.5 in Ref. 20 and (5.16) show that there
K,otdL,o dr,o dr,o
exists C1¢ only depending on 2 and 6 such that

(- + &) — Hpol| g ray < Vdlg] > > |oldio
KeMoelk
< Cr6lél[IVDo|| Lo (e

Moreover, by Lemma 5.4 in Ref. 20 and (5.16) we can find » > p and Cy; only
depending on €2, p and 6 such that

Vo — VK
chr

)

(5.29)

[Tpv| L ey < Cr7l| VDol Le(o)a- (5.30)
We now write, thanks to Holder’s inequality, || -||prre) < ||| |21(Rd)|| . ||1LZZ’Rd) where
v > 0 is such that £ + 1=¢ = %, and (5.29) and (5.30) conclude the proof. O

Appendix
The proof of the following theorem is inspired by Ref. 25.

Theorem 5.1 (Discrete Aubin-Simon lemma). Let T > 0 and let B be a
Banach space. Let (Bp)men be a sequence of finite dimensional subspaces of B. For
any m € N, let N,,, € N*, tfg) :O<t$,11) <... <t%v"‘) =T and&;?Jr%) :tquﬂ) —
tgf), n=20,...,N,—1. Let {w(,?),n =0,...,Ny,} C By, and let v,, € L*(0,T; B,,)

be defined, for a given real family (afﬁ))n:o ,,,,, N,,—1, by

vm(t) = (1 — af)ol) + ool € By, (5.31)

for a.e,te(tg,?),tg,?ﬂ)) andn € {0,... N, — 1} '
Let §,,vp, be the “discrete time derivative”, defined by:

ntl 1
Omm(t) = 57(n+%)vm = 1 (U%Hl) - 7}7(7?))’
(n+3)

for a.e. t € (1) D) and n € {0,..., Ny — 1}
Let || - ||x,, and || - |ly,, be two norms on B,,. We denote by X,, the space By,
endowed with the norm || - ||x,, and by Y, the space By, endowed with the norm

| llv,,. We assume that
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(h1) For any sequence (Wm)men such that wy, € By, and (||wm || x,, )men is bounded,
there exists w € B such that, up to a subsequence, w,, — w in B as m — +oo.
(h2) For any sequence (Wpm)men such that wy, € B, (|lwmllx,,)men is bounded,
there exists w € B such that wy,, — w in B and ||wy||y,, = 0 as m — 400, we

have w = 0.
(h3) The family (aﬁff)),LZO,M7NM_17,,L6N and the sequence (||vim| 1 (0,1:x,,))meN are
bounded.

(h4) The sequence (||0,vmllL1(0,7;v,,))men s bounded.

Then there exists v € LY(0,T;B) such that, up to a subsequence, v,, — v in
LY(0,T; B) as m — +oc.

Proof. The first step is to apply Lemma 3.2 in Ref. 25, which states that, under
Hypothesis (h1), there exists Cx > 0 such that, for all m € N, for all v € B,,,
lvllB < Cx||v|lx,, - Following the proof of Lemma 3.1 in Ref. 25, thanks to (hl)
and (h2) we remark that the following variant of Lions’ lemma holds: for all € > 0
there exists C'(¢) > 0 such that

Ym €N, Yv € By, |[v|ls <ellvlx,, + CE)|vlly,, (5.32)

Let us now notice, using (h4), that there exists C; > 0 such that, Vm € N,
nyg&l &57?+%)||§$+%)Um||ym < C;. We therefore get from (h3) that the se-
quence (||vim | Bv(0,1;,,))men is bounded since, denoting by o) = (1- a%))vfff) +
aiP oY the value of vy, (t) on (£, ¢t(*F1)) we can write

Ny —2
> B =5y,
n=0

Ny —2
3 3 1 1
< 2 (el i 2 10 vy, + 11— 0l 05 v, )
n=0

< (1+42C,)C4,

where C,, is a bound of the family (axl))n:07,,,)N1,L,1)meN. We then extend v,, by
symmetry on (=T, 2T), setting vy, (—t) = vy, (t) and vy, (T +t) = v, (T —t) for a.e.

€ (0,T). We get vy, € BV(=T,2T;Y,,) with |[om|l sy (721, < 3(1+2C4)Cy.
We also see, using (h3), that the sequence (||vn||z1(—7,27;x,,))men is bounded, say
by Cy. Applying (5.32), we write, for any 7 € (0,T) and t € (-T,2T — ),

[om(t+7) = vm(@)]5 < ellum(t +7) = v ()l x,.. + CE)Jvm(t+7) = vm(D)y,.,
which provides

2T —1
/ v (t 4+ 7) — v (8) || At < 2002 + 3C()(1 + 2C)Cyr.
-T

This proves that ffi_T [lvm (t 4+ 7) — v ()] dt tends to 0 with 7, uniformly with
respect to m € N. Multiplying v, by a function ¢p € C°(-T,2T) equal to 1 on
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(0,T), we may then apply the compactness theorem (Theorem 2.1) of Ref. 25 to

obtain the relative compactness of the family (vy,)men in L1(0,T; B). DO
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