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1. Introduction

We consider general elliptic equations of the form

−div a(x, u,∇u) = f in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is an open bounded connected subset of Rd, for d ∈ N∗ with a bound-

ary denoted by ∂Ω = Ω \ Ω. The solution u is sought in the space W 1,p
0 (Ω) for

some p ∈ (1,+∞). Particular choices of a include general anisotropic heteroge-

neous linear operators a(x, u, ξ) = Λ(x)ξ, Leray-Lions operators such as the p-

Laplacian a(x, u, ξ) = |ξ|p−2ξ, and some nonlinear and nonlocal diffusion operators

a(x, u, ξ) = Λ(u,x)ξ for u in a given functional space.

We shall also consider the evolution problem associated to problem (1.1), which

is the following nonlinear parabolic problem (where T ∈ (0,+∞)):

∂tu− div a(x, u,∇u) = f in Ω× (0, T ),

u(x, 0) = uini(x) in Ω,

u = 0 on ∂Ω× (0, T ).

(1.2)

Such evolution equations, involving non local operators, arise in particular in

image processing, in the spirit of Ref. 10, 14, 30 and references therein. The linear

anisotropic heterogeneous case is involved in most models used in underground engi-

neering (oil recovery, nuclear waste disposals, etc.). In these models, computations

have to be performed on meshes adapted to the geological layers, and including

complex geometrical features such as faults, vanishing layers, inclined wells, highly

heterogeneous permeability fields, local nonconforming refinement. Since standard

finite element methods are not well adapted to such constraints, a large number of

schemes have been developed for the numerical approximation of (1.1) and (1.2) in

this case. Although we cannot give here an exhaustive list, let us mention a few of

them:

• the Multi-Point Flux Approximation (MPFA) schemes, see Ref. 1,

• the Hybrid Mimetic Mixed family which includes the Mimetic Finite Dif-

ference schemes, the SUSHI scheme and the Mixed Finite Volume scheme,

see Ref. 18 and references therein,

• the Discrete Duality Finite Volume (DDFV) schemes, see Ref. 26, 13, 5.

A construction and proof of convergence in the case of nonlinear Leray-Lions oper-

ators is already known for some of these methods, namely the Mixed Finite Volume

method15, the DDFV scheme2, the SUSHI scheme in its cell centred version19 (see

also Ref. 6 for a Discontinuous Galerkin scheme for the p-Laplacian).

Although the analytical tools used to study these methods are often similar,

they are usually considered as different schemes whose study requires new work

each time. However, as noticed in Ref. 21, 23, 22, 24, many of these methods can be

included in the unified theoretical framework of (possibly) nonconforming gradient

schemes. In particular, the following methods are gradient schemes:
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• some MPFA and DDFV schemes in 2D or 3D,

• the Galerkin methods, including the Conforming Finite Element methods,

• the nonconforming P1 Finite Element discretisation,

• the Mixed Finite Element discretisations.

The aim of this paper is to show that gradient schemes, which can be characterised

by a small number of discrete elements, have the two following interesting properties:

(1) They provide a generic framework in which only a small number of discrete as-

sumptions is required to establish error estimates for linear stationary equations

and convergence proofs for both nonlinear stationary and transient equations.

(2) They encompass the entire Hybrid Mimetic Mixed family, and thus in particular

the Mimetic Finite Difference methods. Given the success of these methods for

linear problems, see e.g. Ref. 8, 9, 3, 4, we find quite exciting and remarkable

to extend them to fully nonlinear problems and to prove their convergence in

this setting.

This paper is organised as follows. In Section 2, we present the small number

of discrete elements which are needed to define a gradient scheme. In Section 3,

we consider the stationary cases. We provide an error estimate in the linear case,

and a convergence proof for Leray-Lions problems including a nonlocal dependency

of the operator. In Section 4, we give a convergence proof for the time–dependent

Leray-Lions problem, using a generic discrete Aubin-Lions theorem. A particularly

remarkable fact is that these proofs are made under very few and generic discreti-

sation assumptions. Finally, in Section 5, we show that all schemes derived from

the Hybrid Mimetic Mixed family are gradient schemes which satisfy the properties

under which the convergence analysis of Sections 3–4 are performed. This therefore

shows that Hybrid Mimetic Mixed methods are suitable not only for local linear

problems but also for nonlocal nonlinear problems.

2. Gradient discretisations and gradient schemes

2.1. Definitions

We present here properties which are shown in the next sections to be sufficient for

the convergence of gradient schemes, considering homogeneous Dirichlet boundary

conditions.

A gradient scheme can be viewed as a general formulation of several discreti-

sations of (1.1) which are based on a nonconforming approximation of the weak

formulation of the problem. The approximation of the weak formulation of (1.1) is

based on some discrete spaces and mappings, the set of which we call a gradient

discretisation. Throughout this paper, Ω is an open bounded subset of Rd, d ∈ N?,
and p ∈ (1,+∞).

Definition 2.1. (Gradient discretisation) A gradient discretisation D of Prob-

lem (1.1) is defined by D = (XD,0,ΠD,∇D), where:
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(1) the set of discrete unknowns XD,0 is a finite dimensional vector space on R,

(2) the linear mapping ΠD : XD,0 → Lp(Ω) is the reconstruction of the approxi-

mate function,

(3) the linear mapping ∇D : XD,0 → Lp(Ω)d is the discrete gradient operator. It

must be chosen such that ‖ · ‖D := ‖∇D · ‖Lp(Ω)d is a norm on XD,0.

Remark 2.1 (Boundary conditions.). The definition of ‖ · ‖D depends on the

considered boundary conditions. For simplicity we only consider here homogeneous

Dirichlet boundary conditions, but other conditions can easily be addressed. For

example, in the case of homogeneous Neumann boundary conditions, we would

use the notation XD instead of XD,0 for the discrete space, and define ‖ · ‖D :=

(‖ΠD · ‖pLp(Ω) + ‖∇D · ‖pLp(Ω)d
)1/p.

The related gradient scheme is merely the discretisation of the weak formula-

tion of (1.1) obtained by using the discrete space and mappings of the gradient

discretisation.

Definition 2.2. (Gradient scheme) If D = (XD,0,ΠD,∇D) is a gradient dis-

cretisation, then we define the related gradient scheme for (1.1) by

Find u ∈ XD,0 such that, ∀v ∈ XD,0,∫
Ω

a(x,ΠDu,∇Du(x)) · ∇Dv(x)dx =

∫
Ω

f(x)ΠDv(x)dx.
(2.1)

Since XD,0 is a finite dimensional space, there exists at least one solution to (2.1)

provided that a and f satisfy the usual assumptions that ensure the existence of

a weak solution to (1.1) (see Section 3). For the solution of this finite dimensional

problem to converge to a weak solution of (1.1), some consistency and stability

properties are of course required. As in the framework of Finite Element methods,

stability is obtained thanks to some uniform coercivity of the discrete operator

which relies on a discrete Poincaré inequality.

Definition 2.3 (Coercivity). Let D be a gradient discretisation for Problem (1.1)

in the sense of Definition 2.1, and let CD be the norm of the linear mapping ΠD,

defined by

CD = max
v∈XD,0\{0}

‖ΠDv‖Lp(Ω)

‖v‖D
. (2.2)

A sequence (Dm)m∈N of gradient discretisations is said to be coercive if there exists

CP ∈ R+ such that CDm ≤ CP for all m ∈ N.

Remark 2.2 (Discrete Poincaré inequality.). Equation (2.2) yields

‖ΠDv‖Lp(Ω) ≤ CD‖∇Dv‖Lp(Ω)d .

Consistency is ensured by a proper choice of the reconstruction operator and

the discrete gradient.
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Definition 2.4 (Consistency). Let D be a gradient discretisation for Problem

(1.1) in the sense of Definition 2.1, and let SD : W 1,p
0 (Ω)→ [0,+∞) be defined by

∀ϕ ∈W 1,p
0 (Ω) , SD(ϕ) = min

v∈XD,0

(
‖ΠDv − ϕ‖Lp(Ω) + ‖∇Dv −∇ϕ‖Lp(Ω)d

)
. (2.3)

A sequence (Dm)m∈N of gradient discretisations is said to be consistent if, for all

ϕ ∈W 1,p
0 (Ω), SDm(ϕ) tends to 0 as m→∞.

Since we are dealing with nonconforming methods, we need to make sure that

the dual of the discrete gradient is “close to” a discrete divergence operator.

Definition 2.5 (Limit-conformity). Let D be a gradient discretisation for Prob-

lem (1.1) in the sense of Definition 2.1. We let p′ = p
p−1 , W div,p′(Ω) = {ϕ ∈

Lp
′
(Ω)d,divϕ ∈ Lp′(Ω)} and WD: W div,p′(Ω)→ [0,+∞) be defined by

∀ϕ ∈W div,p′(Ω) ,

WD(ϕ) = max
u∈XD,0\{0}

1

‖u‖D

∣∣∣∣∫
Ω

(∇Du(x) ·ϕ(x) + ΠDu(x)divϕ(x)) dx

∣∣∣∣ . (2.4)

A sequence (Dm)m∈N of gradient discretisations is said to be limit-conforming

if, for all ϕ ∈W div,p′(Ω), WDm(ϕ) tends to 0 as m→∞.

Dealing with generic non-linearities often requires compactness properties on

the scheme.

Definition 2.6 (Compactness). Let D be a gradient discretisation for Problem

(1.1) in the sense of Definition 2.1, and let TD : Rd → R+ be defined by

∀ξ ∈ Rd , TD(ξ) = max
v∈XD,0\{0}

‖ΠDv(·+ ξ)−ΠDv‖Lp(Rd)

‖v‖D
, (2.5)

where ΠDv has been extended by 0 outside Ω.

A sequence (Dm)m∈N of gradient discretisations is said to be compact if the

following uniform limit holds:

lim
|ξ|→0

sup
m∈N

TDm(ξ) = 0.

In fact, the consistency and limit-conformity properties of a given gradient

scheme only need to be checked on dense subsets of the test functions spaces. The

following lemma, useful in Section 5, is an immediate consequence of Lemma 2.4 in

Ref. 21.

Lemma 2.1 (Sufficient conditions). Let F be a family of gradient discretisations

for Problem (1.1) in the sense of Definition 2.1. Assume that there exist C, ν ∈
(0,∞) and, for all D ∈ F , a real value hD ∈ (0,+∞) such that:

CD ≤ C, (2.6a)

SD(ϕ) ≤ ChD‖ϕ‖W 2,∞(Ω), for all ϕ ∈ C∞c (Ω), (2.6b)

WD(ϕ) ≤ ChD‖ϕ‖(W 1,∞(Rd))d , for all ϕ ∈ C∞c (Rd)d, (2.6c)

TD(ξ) ≤ C|ξ|ν , for all ξ ∈ Rd, (2.6d)
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where CD, SD,WD and TD are defined by (2.2)-(2.5).

Then, any sequence (Dm)m∈N ⊂ F such that hDm → 0 as m → ∞ is coercive,

consistent, limit-conforming and compact.

Remark 2.3. In several cases, hD stands for the mesh size. This is for instance the

case in the analysis of Hybrid Mimetic Mixed schemes in Section 5.

3. Elliptic problems

3.1. Error estimate in the linear case

We recall an error estimate which was obtained in Ref. 21 in the linear case. We

consider the following problem, corresponding to (1.1) with p = 2 and a(x, s, ξ) =

Λ(x)ξ:

−div(Λ(x)∇ū) = f in Ω,

u = 0 on ∂Ω,
(3.1)

with

Λ : Ω→ Sd(R) measurable s.t. Λ(x) has eigenvalues in (λ, λ) ⊂ (0,+∞)

for a.e. x ∈ Ω,

f ∈ L2(Ω),

(3.2)

(Sd(R) is the set of d × d symmetric matrices). Under these hypotheses, the weak

solution of (1.1) is the unique function u satisfying:u ∈ H1
0 (Ω),∫

Ω

Λ(x)∇u(x) · ∇v(x)dx =

∫
Ω

f(x)v(x)dx ∀v ∈ H1
0 (Ω).

(3.3)

Problem (3.3) is approximated by Scheme (2.1) with a(x, s, ξ) = Λ(x)ξ. The fol-

lowing lemma, proved in Ref. 21, is in the spirit of the results given in Ref. 29.

Lemma 3.1 (Control of the approximation error). Under Hypothesis (3.2),

let u ∈ H1
0 (Ω) be the solution of (3.3) (remark that since f ∈ L2(Ω), one has

Λ∇u ∈W div,2(Ω)).

Let D be a gradient discretisation in the sense of Definition 2.1 with p = 2. Then

there exists one and only one uD ∈ XD,0 solution to the gradient scheme (2.1). This

solution moreover satisfies the following inequalities:

‖∇u−∇DuD‖L2(Ω)d ≤
1

λ

[
WD(Λ∇u) + (λ+ λ)SD(u)

]
,

‖u−ΠDuD‖L2(Ω) ≤
1

λ

[
CDWD(Λ∇u) + (CDλ+ λ)SD(u)

]
,

where CD, SD and WD are defined by (2.2)-(2.4).

Remark 3.1. As a consequence, if (uDm)m∈N is a sequence of solutions to (2.1)

corresponding to a coercive (Definition 2.3) consistent (Definition 2.4) and limit-

conforming (Definition 2.5) sequence of gradient discretisations (Dm)m∈N, then

ΠDmuDm → ū in L2(Ω) and ∇DmuDm → ∇ū in L2(Ω)d as m→∞.
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We notice that, in this linear case, compactness of the sequence of gradient

discretisations is not necessary to obtain these convergences (see also Remark 3.6).

Remark 3.2. Note that, under the assumptions of Lemma 2.1 and regularity as-

sumptions on the solution to (3.1), Lemma 3.1 gives an O(hD) convergence rate of

gradient schemes for linear problems.

One can in fact prove, for all gradient schemes mentioned in the introduc-

tion, that SD(ϕ) ≤ ChD||ϕ||H2(Ω) for all ϕ ∈ H2(Ω) ∩ H1
0 (Ω) and WD(ϕ) ≤

ChD||ϕ||H1(Ω)d for all ϕ ∈ H1(Ω)d (where hD measures the scheme precision and,

in many cases, stands for the mesh size). Hence, Lemma 3.1 gives O(hD) error

estimates for these methods as soon as Λ ∈W 1,∞(Ω)d×d and ū ∈ H2(Ω) ∩H1
0 (Ω).

3.2. Convergence in the nonlinear case

We now study the convergence of gradient schemes for the more general nonlinear

framework of Problem (1.1). The assumptions we consider are, for a given p ∈
(1,+∞):

a : Ω× Lp(Ω)× Rd → Rd is a Caratheodory function, (3.4a)

(i.e. a function such that, for a.e. x ∈ Ω, (u, ξ) 7→ a(x, u, ξ) is continuous and, for

any (u, ξ) ∈ Lp(Ω)× Rd, x 7→ a(x, u, ξ) is measurable)

∃a > 0 : a(x, u, ξ) · ξ ≥ a|ξ|p, for a.e. x ∈ Ω, ∀u ∈ Lp(Ω), ∀ξ ∈ Rd, (3.4b)

(a(x, u, ξ)− a(x, u,χ)) · (ξ − χ) ≥ 0, for a.e. x ∈ Ω, ∀u ∈ Lp(Ω),

∀ξ,χ ∈ Rd, (3.4c)

∃a ∈ Lp
′
(Ω) , ∃µ > 0 :

|a(x, u, ξ)| ≤ a(x) + µ|ξ|p−1, for a.e. x ∈ Ω, ∀u ∈ Lp(Ω), ∀ξ ∈ Rd, (3.4d)

and

f ∈ Lp
′
(Ω) where p′ =

p

p− 1
. (3.5)

Remark 3.3. Note that the dependence of a on u is assumed to be nonlocal:

a(x, u, ·) depends on all the values of u ∈ Lp(Ω), not only on u(x). These as-

sumptions cover for example the case where a(x, u,∇u(x)) = Λ[u](x)∇u(x) with

Λ : Lp(Ω)→ L∞(Ω;Sd(R)) as in Ref. 10, 14, 30.

These assumptions (in particular (3.4a)) do not allow to cover usual local de-

pendencies a(x, u(x),∇u(x)) as in the non-monotone operators studied in Ref. 27.

However, the adaptation of the following results to the local dependency case is

quite easy and more classical. See e.g. Ref. 15 for an adaptation of the original

Leray-Lions method to a numerical scheme (based on the Mixed Finite Volume

method) for local non-monotone operators.

If a function a satisfies (3.4), then the mapping u 7→ −diva(·, u,∇u) is called a

generalised Leray-Lions operator. A classical example is the p-Laplacian operator,
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obtained by setting a(x, u, ξ) = |ξ|p−2ξ. Note that the existence of at least one

solution to (1.1) is shown in Ref. 27 under Hypothesis (3.4) in the case where a

does not depend on u. In our framework, we say that a function u is a weak solution

to (1.1) if:u ∈W 1,p
0 (Ω),∫

Ω

a(x, u,∇u(x)) · ∇v(x)dx =

∫
Ω

f(x)v(x)dx, ∀v ∈W 1,p
0 (Ω).

(3.6)

Remark 3.4. Note that, even if a does not depend on u ∈ Lp(Ω), the solution to

(3.6) is not necessarily unique. Consider the case where p = 2, d = 1, Ω =]− 1, 2[,

f(x) = 0 for x ∈ (−1, 0) ∪ (1, 2), f(x) = 2 for x ∈ (0, 1), and

a(x, u, ξ) = (min(|ξ|, 1) + max(|ξ| − 2, 0))
ξ

|ξ|
, ∀ξ ∈ R, ∀u ∈ L2(Ω).

Then (3.4b) is satisfied with a = 1
2 , (3.4c) is satisfied since a is non-decreasing w.r.t.

ξ and (3.4d) is satisfied with a(x) = 0 and µ = 1. Then the function u(x) = α(x+1)

for x ∈ (−1, 0), α+x(1−x) for x ∈ (0, 1), α(2−x) for x ∈ (1, 2) is solution to (3.6)

for any value α ∈ [1, 2].

The hypothesis that a is strictly monotone, which may be expressed as

(a(x, u, ξ)− a(x, u,χ)) · (ξ − χ) > 0, for a.e. x ∈ Ω, ∀u ∈ Lp(Ω),

∀ξ,χ ∈ Rd with ξ 6= χ,
(3.7)

will only be useful to prove the strong convergence of the approximate gradient.

Theorem 3.1 (Convergence of the scheme). Under Assumptions (3.4)-(3.5),

let (Dm)m∈N be a sequence of gradient discretisations in the sense of Definition

2.1, which is coercive, consistent, limit-conforming and compact in the sense of

Definitions 2.3, 2.4, 2.5 and 2.6.

Then, for any m ∈ N, there exists at least one uDm ∈ XDm,0 solution to the

gradient scheme (2.1) and, up to a subsequence, ΠDmuDm converges strongly in

Lp(Ω) to a solution u of (3.6) and ∇DmuDm converges weakly in Lp(Ω)d to ∇u
as m → ∞. Moreover, if we assume that the Leray-Lions operator a is strictly

monotone in the sense of (3.7), then ∇DmuDm converges strongly in Lp(Ω)d to ∇u
as m→∞.

In the case where the solution u of (3.6) is unique, then the whole sequence

converges to u as m→∞ in the senses above.

Remark 3.5. As a by-product, this theorem also gives the existence of a solution

ū to (3.6). Indeed, under the assumptions of the theorem, the proof shows that the

sequence uDm has a converging subsequence and that the limit ū of this subsequence

is in fact a solution to the continuous problem. Since there exists at least one

gradient scheme which satisfies the assumptions of this theorem (for example, the

HMM method – see Section 5), this gives the existence of a solution to (3.6).
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Remark 3.6. In the case where a does not depend on u ∈ Lp(Ω), the proof of the

weak convergence of ΠDmuDm to a solution of (3.6) does not require the compactness

of the sequence of gradient discretisations. In this case the strong convergence of

ΠDmuDm results from (3.7) (which gives the strong convergence of the approximate

gradient) and from the coercivity and the consistency of the sequence (Dm)m∈N.

Proof.

This proof follows the same ideas as in Ref. 15, 19.

Step 1: existence of a solution to the scheme

Let D be a gradient discretisation in the sense of Definition 2.1. We endow the

finite dimensional space XD,0 with an inner product 〈 , 〉 and we denote by | · | the

norm coming from this inner product. We define F : XD,0 → XD,0 as the function

such that, if u ∈ XD,0, F (u) is the unique element in XD,0 which satisfies

∀v ∈ XD,0 , 〈F (u), v〉 =

∫
Ω

a(x,ΠDu,∇Du(x)) · ∇Dv(x)dx.

Likewise, we denote by w ∈ XD,0 the unique element such that

∀v ∈ XD,0 , 〈w, v〉 =

∫
Ω

f(x)ΠDv(x)dx.

The properties of a show that F is continuous and that, for all u ∈ XD,0,

〈F (u), u〉 ≥ a||u||pD. By equivalence of the norms | · | and || · ||D on XD,0, we

deduce that 〈F (u), u〉 ≥ C1|u|p with C1 not depending on u. This shows that

lim|u|→∞
〈F (u),u〉
|u| = +∞ and thus that F is surjective (see Ref. 27 or Theorem 3.3

(page 19) in Ref. 12). There exists therefore uD ∈ XD,0 such that F (uD) = w, and

this uD is a solution to (2.1).

Step 2: convergence to a solution of the continuous problem

Letting v = uDm in (2.1) with D = Dm and using (2.2) and Hypothesis (3.4b),

we get

a ‖∇DmuDm‖
p−1
Lp(Ω)d

≤ CDm‖f‖Lp′ (Ω).

Thanks to the coercivity of the sequence of gradient discretisations, this provides an

estimate on ∇DmuDm in Lp(Ω)d and on ΠDmuDm in Lp(Ω). By Hypothesis (3.4d),

the sequence of functions ADm(x) = a(x,ΠDmuDm ,∇DmuDm(x)) remains bounded

in Lp
′
(Ω)d. Extending ΠDmuDm and ∇DmuDm by 0 outside Ω, we infer the existence

of u ∈ Lp(Rd), G ∈ Lp(Rd)d and A ∈ Lp
′
(Ω)d such that, up to a subsequence

again denoted by (Dm)m∈N, ∇DmuDm converges weakly to G in Lp(Rd)d, ΠDmuDm
converges weakly to u in Lp(Rd) and ADm converges weakly to A in Lp

′
(Ω)d, as

m→∞.

Thanks to the limit-conformity of the sequence of discretisations, passing to the

limit in (2.4) we get that∫
Ω

(
G(x) ·ϕ(x) + u(x)divϕ(x)

)
dx = 0, ∀ϕ ∈W div,p′(Ω).
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Since G = 0 and u = 0 outside Ω, the above relation may be written for all

ϕ ∈ W div,p′(Rd) with integration on Rd, which proves that G = ∇u and that

the restriction of u to Ω, again denoted by u, belongs to W 1,p
0 (Ω). Finally, the

compactness of the sequence of gradient discretisations and Kolmogorov’s theorem

give the strong convergence of ΠDmuDm to u in Lp(Rd) (this strong convergence is

only necessary for coping with the dependence upon u of a).

Let us now show that u is solution to (3.6), using the well-known Minty trick28.

For a given ϕ ∈ W 1,p
0 (Ω) and for any gradient discretisation D belonging to the

sequence (Dm)m∈N, we introduce

PDϕ = argmin
v∈XD,0

(
‖ΠDv − ϕ‖Lp(Ω) + ‖∇Dv −∇ϕ‖Lp(Ω)d

)
as a test function in (2.1). By the consistency of (Dm)m∈N, letting m→∞ we get∫

Ω

A(x) · ∇ϕ(x)dx =

∫
Ω

f(x)ϕ(x)dx, ∀ϕ ∈W 1,p
0 (Ω). (3.8)

On the other hand, we may let m→∞ in (2.1) with uDm as a test function. Using

(3.8) with ϕ = u, this leads to

lim
m→∞

∫
Ω

a(x,ΠDmuDm ,∇DmuDm(x)) · ∇DmuDm(x)dx

=

∫
Ω

f(x)u(x)dx =

∫
Ω

A(x) · ∇u(x)dx.
(3.9)

Hypothesis (3.4c) gives, for any G ∈ Lp(Ω)d,∫
Ω

(
a(x,ΠDmuDm ,∇DmuDm(x))−a(x,ΠDmuDm ,G(x))

)
·(∇DmuDm(x)−G(x))dx ≥ 0.

Developing this inequality and using (3.9) for the one term involving a product of

two weak convergences, we may let m→∞ and we get∫
Ω

(A(x)− a(x, u,G(x))) · (∇u(x)−G(x))dx ≥ 0, ∀G ∈ Lp(Ω)d.

We then set G = ∇u + αϕ in the preceding inequality, where ϕ ∈ C∞c (Ω)d and

α > 0. Dividing by α, we get

−
∫

Ω

(A(x)− a(x, u,∇u(x) + αϕ(x))) ·ϕ(x)dx ≥ 0, ∀ϕ ∈ C∞c (Ω)d, ∀α > 0.

We then let α→ 0 and use the dominated convergence theorem, which leads to

−
∫

Ω

(A(x)− a(x, u,∇u(x))) ·ϕ(x)dx ≥ 0, ∀ϕ ∈ C∞c (Ω)d.

Changing ϕ into −ϕ, we deduce that∫
Ω

(A(x)− a(x, u,∇u(x))) ·ϕ(x)dx = 0, ∀ϕ ∈ C∞c (Ω)d,
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and therefore that

A(x) = a(x, u,∇u(x)), for a.e. x ∈ Ω. (3.10)

In addition to (3.8), this shows that u is a solution to (3.6). This concludes the

proof of the convergence of ΠDmuDm to u in Lp(Ω) and of ∇DmuDm to ∇u weakly

in Lp(Ω)d as m→∞.

Step 3: Assuming now hypothesis (3.7), strong convergence of the

approximate gradient

We follow here the ideas of Ref. 27. Thanks to (3.9) and (3.10), we get

lim
m→∞

∫
Ω

(
a(x,ΠDmuDm ,∇DmuDm(x))−a(x,ΠDmuDm ,∇u(x))

)
·(∇DmuDm(x)−∇u(x)) dx = 0.

Since (a(x,ΠDmuDm ,∇DmuDm) − a(x,ΠDmuDm ,∇u)) · (∇DmuDm − ∇u) ≥ 0 for

a.e. x ∈ Ω, we then have

(a(·,ΠDmuDm ,∇DmuDm)− a(·,ΠDmuDm ,∇u)) · (∇DmuDm −∇u)→ 0

in L1(Ω),
(3.11)

and therefore a.e. for a sub-sequence. Then, thanks to the strict monotony assump-

tion (3.7), we may use Lemma 3.2 given below to show that ∇DmuDm → ∇u a.e.

as m→∞, at least for the same sub-sequence. This shows the a.e. convergence of

a(·,ΠDmuDm ,∇DmuDm) · ∇DuD to a(·, u,∇u) · ∇u. We next recall that, by (3.9)

and (3.10),

lim
m→∞

∫
Ω

a(x,ΠDmuDm ,∇DmuDm(x)) · ∇DmuDm(x)dx

=

∫
Ω

a(x, u,∇u(x)) · ∇u(x)dx.
(3.12)

Since a(·,ΠDmuDm ,∇DmuDm) · ∇DmuDm ≥ 0, we can apply Lemma 3.3 to get

a(·,ΠDmuDm ,∇DmuDm) · ∇DmuDm → a(·, u,∇u) · ∇u in L1(Ω) as m → ∞.

This L1-convergence gives the equi-integrability of the sequence of functions

a(·,ΠDmuDm ,∇DmuDm) ·∇DmuDm , which gives in turn, thanks to (3.4b), the equi-

integrability of (|∇DmuDm |p)m∈N. The strong convergence of ∇DmuDm to ∇u in

Lp(Ω)d is then a consequence of Vitali’s theorem.

Lemma 3.2. Let B be a metric space, let b be a continuous function from B ×Rd
to Rd such that

(b(u, δ)− b(u, γ)) · (δ − γ) > 0, ∀δ 6= γ ∈ Rd, ∀u ∈ B.

Let (um, βm)n∈N be a sequence in B×Rd and (u, β) ∈ B×Rd such that (b(um, βm)−
b(um, β)) · (βm − β)→ 0 and um → u as m→∞. Then βm → β as m→∞.

Proof. We begin the proof with a preliminary remark. Let δ ∈ Rd\{0}. We define,

for all m ∈ N, the function hδ,m : R→ R by hδ,m(s) = (b(um, β+sδ)−b(um, β)) ·δ.
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The hypothesis on b shows that hδ,m is an increasing function since, for s > s′, one

has :

hδ,m(s)− hδ,m(s′) = (b(um, β + sδ)− b(um, β + s′δ)) · δ > 0.

We prove now, by contradiction, that limm→∞ βm = β. If the sequence (βm)m∈N
does not converge to β, there exists ε > 0 and a subsequence, still denoted by

(βm)m∈N, such that sm := |βm − β| ≥ ε for all m ∈ N. Setting δm = βm−β
|βm−β| we

can assume, up to a subsequence, that δm → δ as m → ∞, for some δ ∈ Rd with

|δ| = 1. We then have, since sm ≥ ε,

(b(um, βm)− b(um, β)) · βm − β
sm

= hδm,m(sm) ≥ hδm,m(ε)

= (b(um, β + εδm)− b(um, β)) · δm.

Passing to the limit as m→∞, we obtain

0 = lim
m→∞

1

sm
(b(um, βm)− b(um, β)) · (βm − β)

≥ (b(u, β + εδ)− b(u, β)) · δ > 0,

which is impossible.

The following result is classical, see e.g. Ref. 15, 19. Its proof is given for the

sake of completeness.

Lemma 3.3. Let (Fm)m∈N be a sequence non-negative functions in L1(Ω). Let

F ∈ L1(Ω) be such that Fm → F a.e. in Ω and
∫

Ω
Fm(x)dx →

∫
Ω
F (x)dx, as

m→∞. Then Fm → F in L1(Ω) as m→∞.

Proof. Applying the Dominated Convergence Theorem to the sequence (F−Fm)+

leads to
∫

Ω
(F (x) − Fm(x))+dx → 0 as m → ∞. Then, since |F − Fm| = 2(F −

Fm)+ − (F − Fm), we conclude that Fm → F in L1(Ω) as m→∞.

4. Evolution problems

In this section, we consider the evolution problem (1.2) under Hypotheses (3.4) and

T ∈ (0,+∞),

uini ∈ L2(Ω),

f ∈ Lp′(Ω× (0, T )) where p′ = p
p−1 .

(4.1)
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The precise notion of solution to (1.2) that we consider is the following:

u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ C0([0, T ];L2(Ω)), ∂tu ∈ Lp

′
(0, T ;W−1,p′(Ω)),

u(·, 0) = uini,∫ T

0

〈∂tu(·, t), v(·, t)〉W−1,p′ (Ω),W 1,p
0 (Ω)dt

+

∫ T

0

∫
Ω

a(x, u(·, t),∇u(x, t)) · ∇v(x, t)dxdt

=

∫ T

0

∫
Ω

f(x, t)v(x, t)dxdt , ∀v ∈ Lp(0;T ;W 1,p
0 (Ω)).

(4.2)

Remark 4.1. The derivative ∂tu is to be understood in the usual sense of dis-

tributions on Ω × (0, T ). Since the set T = {
∑q
i=1 ϕi(t)γi(x) : q ∈ N, ϕi ∈

C∞c (0, T ), γi ∈ C∞c (Ω)} of tensorial functions in C∞(Ω × (0, T )) is dense in

Lp(0, T ;W 1,p
0 (Ω)), one can ensure that this distribution derivative ∂tu belongs to

Lp
′
(0, T ;W−1,p′(Ω)) = (Lp(0, T ;W 1,p

0 (Ω))′ by checking that the linear form

ϕ ∈ T 7→ 〈∂tu, ϕ〉D′,D = −
∫ T

0

∫
Ω

u(x, t)∂tϕ(x, t)dxdt

is continuous for the norm of Lp(0, T ;W 1,p
0 (Ω)).

Definition 4.1 (Space-time gradient discretisation). Let p ∈ (1,+∞) let

Ω be an open subset of Rd, with d ∈ N? and let T > 0 be given. We say that

D = (XD,0,ΠD,∇D, (t(n))n=0,...,N ) is a space-time gradient discretisation if

• (XD,0,ΠD,∇D) is a gradient discretisation of Ω, in the sense of Definition 2.1,

which satisfies ΠD(XD,0) ⊂ Lmax(p,2)(Ω),

• t(0) = 0 < t(1) . . . < t(N) = T .

We then set δt(n+ 1
2 ) = t(n+1) − t(n), for n = 0, . . . , N − 1, and δtD =

maxn=0,...,N−1 δt
(n+ 1

2 ).

Let D = (XD,0,ΠD,∇D, (t(n))n=0,...,N ) be a space-time gradient discretisation

in the sense of Definition 4.1. We define, for a given α ∈ [ 1
2 , 1], the following scheme

for the discretisation of Problem (1.2): we take u(0) ∈ XD,0 and consider a sequence

(u(n))n=0,...,N ⊂ XD,0 such that, for all n = 0, . . . , N − 1,
Setting u(n+α) = αu(n+1) + (1− α)u(n) and δ

(n+ 1
2 )

D u = u(n+1)−u(n)

δt(n+1
2
)

, we have:∫
Ω

[
ΠDδ

(n+ 1
2 )

D u(x)ΠDv(x) + a
(
x,ΠDu

(n+α),∇Du(n+α)(x)
)
· ∇Dv(x)

]
dx

=
1

δt(n+ 1
2 )

∫ t(n+1)

t(n)

∫
Ω

f(x, t)ΠDv(x)dxdt, ∀v ∈ XD,0.

(4.3)

Note that the choice α ≥ 1
2 is required for stability reasons and that the choice α = 1

leads to the implicit scheme. We use the notations ΠD and ∇D for the definition of



November 21, 2012 11:23 WSPC/INSTRUCTION FILE
gradient-schemes˙m3as

14

space-time dependent functions and we define

for a.e. (x, t) ∈ Ω× (t(n), t(n+1)), ∀n = 0, . . . , N − 1 :

Π
(ν)
D u(x, t) = ΠDu

(n+ν)(x) (for ν = α or 1) ,

∇Du(x, t) = ∇Du(n+α)(x) ,

δDu(t) = δ
(n+ 1

2 )

D u.

Lemma 4.1. (L∞(0, T ;L2(Ω)) estimate, discrete Lp(0, T ;W 1,p
0 (Ω)) estimate

and existence of a discrete solution)

Under Hypotheses (3.4) and (4.1), let D be a space-time gradient discretisation

in the sense of Definition 4.1. Then there exists at least one solution to Scheme (4.3)

and there exists C2 > 0, only depending on p, CP ≥ CD, Cini ≥ ‖uini−ΠDu
(0)‖L2(Ω),

uini, f , a such that, for any solution u to this scheme,

‖Π(1)
D u‖L∞(0,T ;L2(Ω)) ≤ C2 , ‖Π(α)

D u‖L∞(0,T ;L2(Ω)) ≤ C2

and ‖∇Du‖Lp(Ω×(0,T ))d ≤ C2.
(4.4)

Proof. Let us first prove the estimates. We let v = δt(n+ 1
2 )u(n+α) in (4.3). Since

δt(n+ 1
2 )ΠDδ

(n+ 1
2 )

D u ΠDu
(n+α) =

1

2
((ΠDu

(n+1))2 − (ΠDu
(n))2)

+

(
α− 1

2

)
(ΠDu

(n+1) −ΠDu
(n))2,

we get, by summing on n = 0, . . . ,m− 1 for a given m = 1, . . . , N ,

1

2
‖ΠDu(m)‖2L2(Ω) + a

∫ t(m)

0

‖∇Du(·, t)‖p
Lp(Ω)d

dt

≤ ‖f‖Lp′ (Ω×(0,t(m)))‖Π
(α)
D u‖Lp(Ω×(0,t(m))) +

1

2
‖ΠDu(0)‖2L2(Ω).

This leads, thanks to the Young inequality, to

1

2
‖ΠDu(m)‖2L2(Ω) + a

∫ t(m)

0

‖∇Du(·, t)‖p
Lp(Ω)d

dt

≤
21/(p−1)Cp

′

D
(pa)1/(p−1) p′

‖f‖p
′

Lp′ (Ω×(0,t(m)))
+

a

2CpD
‖Π(α)
D u‖p

Lp(Ω×(0,t(m)))
+

1

2
‖ΠDu(0)‖2L2(Ω).

Applying (2.2) proves the estimates on Π
(1)
D u and ∇Du. The estimate on

Π
(α)
D u follows from the inequality ‖ΠDu(n+α)‖L2(Ω) ≤ α‖ΠDu(n+1)‖L2(Ω) + (1 −

α)‖ΠDu(n)‖L2(Ω).

The existence for each n = 0, . . . , N − 1 of at least one solution to (4.3) follows

the same proof as that of Theorem 3.1, reasoning on u(n+α) rather than u(n+1) and

using the above estimates.

The following semi-norm on XD,0 will be useful to apply Theorem 5.1 in the

appendix.



November 21, 2012 11:23 WSPC/INSTRUCTION FILE
gradient-schemes˙m3as

15

Definition 4.2 (Dual semi-norm). Under Hypotheses (3.4), let D =

(XD,0,ΠD,∇D) be a gradient discretisation of Ω in the sense of Definition 2.1.

We define the following dual semi-norm on XD,0:

∀w ∈ XD,0 , |w|?,D = sup

{∫
Ω

ΠDw(x)ΠDv(x)dx : v ∈ XD,0, ‖v‖D = 1

}
. (4.5)

Lemma 4.2 (Estimate on the dual semi-norm of the discrete time deriva-

tive).

Under Hypotheses (3.4) and (4.1), let D be a space-time gradient discretisation

in the sense of Definition 4.1. Let u be a solution to Scheme (4.3). Then there

exists C3, only depending on p, µ, a, a, Cini ≥ ‖uini−ΠDu
(0)‖L2(Ω), uini, f , T and

CP ≥ CD, such that ∫ T

0

|δDu(t)|p
′

?,Ddt ≤ C3. (4.6)

Proof. Let us take v ∈ XD,0 as test function in Scheme (4.3). We have, thanks to

Assumption (3.4d) on a,∫
Ω

ΠDδ
(n+ 1

2 )

D u(x)ΠDv(x)dx ≤
∫

Ω

(a(x) + µ|∇Du(n+α)(x)|p−1)|∇Dv(x)|dx

+
1

δt(n+ 1
2 )

∫ t(n+1)

t(n)

∫
Ω

f(x, t)ΠDv(x)dxdt,

which leads, thanks to (2.2), to the existence of C4 > 0 only depending on p, µ such

that∫
Ω

ΠDδ
(n+ 1

2 )

D u(x)ΠDv(x)dx

≤ C4

(
‖a‖p

′

Lp′ (Ω)
+ ‖∇Du(n+α)‖p

Lp(Ω)d
+

CD

δt(n+ 1
2 )

∫ t(n+1)

t(n)

‖f(·, t)‖p
′

Lp′ (Ω)
dt

)(p−1)/p

×‖∇Dv‖Lp(Ω)d .

Taking the supremum on v ∈ XD,0 such that ‖∇Dv‖Lp(Ω)d = 1 gives an estimate

on |δ(n+ 1
2 )

D u|?,D. The proof is concluded by raising this estimate to the power p′,

multiplying by δt(n+ 1
2 ), summing on n and estimating ‖∇Du‖pLp(Ω×(0,T ))d

thanks to

Lemma 4.1.

In order to prove the convergence of the scheme, we shall use the assumptions

of coercivity, limit-conformity and compactness already used for steady state prob-

lems. However, in order to pass to the limit on the time term, we need a modified

consistency property for the sequence of gradient discretisations.

Definition 4.3 (Space-time consistency). Let D be a space-time gradient dis-

cretisation for Problem (1.2) in the sense of Definition 4.1 and let ŜD : W 1,p
0 (Ω) ∩
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L2(Ω)→ [0,+∞) be defined by

∀ϕ ∈W 1,p
0 (Ω) ,

ŜD(ϕ) = min
v∈XD,0

(
‖ΠDv − ϕ‖Lmax(p,2)(Ω) + ‖∇Dv −∇ϕ‖Lp(Ω)d

)
. (4.7)

A sequence (Dm)m∈N of space-time gradient discretisations is said to be consistent

if:

• for all ϕ ∈W 1,p
0 (Ω) ∩ L2(Ω), ŜDm(ϕ) tends to 0 as m→∞,

• δtDm tends to 0 as m→∞.

Theorem 4.1 (Convergence of the scheme). Under assumptions (3.4) and

(4.1), let (Dm)m∈N be a sequence of space-time gradient discretisations in the sense

of Definition 4.1, which is consistent (Definition 4.3) and such that the associated

sequence of gradient discretisations is coercive (Definition 2.3), limit-conforming

(Definition 2.5) and compact (Definition 2.6). Let α ∈ [ 1
2 , 1] be given. For any

m ∈ N, let uDm be a solution to Scheme (4.3) with u
(0)
Dm chosen such that ‖uini −

ΠDmu
(0)
Dm‖L2(Ω) → 0 as m→∞.

Then, up to a subsequence, Π
(α)
DmuDm converges strongly in L1(0, T ;Lp(Ω)) and

in L2(Ω × (0, T )) to a solution u of (4.2), Π
(1)
DmuDm converges strongly in L2(Ω ×

(0, T )) to u and ∇DmuDm converges weakly in Lp(Ω× (0, T ))d to ∇u as m→∞.

Moreover, if we assume that the Leray-Lions operator a is strictly monotone in

the sense of (3.7), then ∇DmuDm converges strongly in Lp(Ω× (0, T ))d to ∇u and

Π
(α)
DmuDm converges strongly in Lp(Ω× (0, T )) to u as m→∞.

In the case where the solution u of (3.6) is unique, then the whole sequence

converges to u as m→∞ in the senses above.

Remark 4.2. As for the stationary problem (see Remark 3.5), the existence of a

solution to (4.2) is a by-product of the proof of this theorem.

Proof. We shall simply denote by um instead of uDm a solution to Scheme (4.3)

using the space-time gradient discretisation Dm. In this proof, some indices m are

omitted in the expressions which are developed.

Step 1 Proof that hypotheses (h1)-(h2)-(h3)-(h4) of Theorem 5.1 hold with

α
(n)
m = α and v

(n)
m = ΠDmu

(n)
m , and consequences.

In our setting, the space B of Theorem 5.1 is Lp(Ω). We take Bm =

ΠDm(XDm,0). We define the norm ‖ · ‖Xm by

‖v‖Xm = inf{‖w‖Dm , w ∈ XD,0 such that ΠDmw = v},

(note that, for all v ∈ Bm, there exists one and only one w ∈ XDm,0 such that

ΠDmw = v and ‖w‖Dm = ‖v‖Xm) and the norm ‖ · ‖Ym is defined from Definition
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4.2 by

‖v‖Ym = |w|?,Dm for any w ∈ XDm,0 such that ΠDmw = v

= sup

{∫
Ω

v(x)ΠDmz(x)dx , z ∈ XDm,0 , ‖z‖Dm = 1

}
.

We remark that ‖ · ‖Ym is indeed a norm (if v 6= 0, then v = ΠDmw with w 6= 0,

and taking z = w/‖w‖Dm shows that ‖v‖Ym > 0).

Let (vm)m∈N be a sequence of functions of Bm such that ‖vm‖Xm ≤ C for

some C ∈ R+. Then, taking wm ∈ XDm,0 such that vm = ΠDm(wm) and

‖vm‖Xm = ‖wm‖Dm , we get that the norm ‖wm‖Dm remains bounded. Thanks

to the coercivity and the compactness of the sequence of discretisations, a subse-

quence of (ΠDmwm)m∈N converges in Lp(Ω) to some v ∈ Lp(Ω). Thus, assumption

(h1) of Theorem 5.1 is satisfied.

Let us then show that assumption (h2) is also satisfied. Let (vm)m∈N be a se-

quence of functions of Lp(Ω) such that vm ∈ Bm, ‖vm‖Xm ≤ C for some C ∈ R+,

and such that there exists v ∈ B with vm → v in B and ‖vm‖Ym → 0 as m → ∞.

Taking wm ∈ XDm,0 such that vm = ΠDm(wm) and ‖vm‖Xm = ‖wm‖Dm , we have∫
Ω

(vm(x))2dx =

∫
Ω

(ΠDmwm(x))2dx

≤ |wm|?,Dm‖wm‖Dm
≤ C‖vm‖Ym → 0 as m→∞,

which shows that v = 0.

Estimates (4.4) and (4.6) show that hypotheses (h3) and (h4) of Theorem 5.1 are

satisfied as well. Therefore, we deduce that there exists u ∈ L1(0, T ;Lp(Ω)) and a

subsequence of (Dm)m∈N, again denoted by (Dm)m∈N, such that Π
(α)
Dmum converges

in L1(0, T ;Lp(Ω)) to u as m→∞.

Step 2 Convergence of Π
(1)
Dmum and ∇Dmum.

Thanks to Lemma 4.1, the convergence of Π
(α)
Dmum to u also holds in

L∞(0, T ;L2(Ω)) weak-∗. The same lemma allows us to assume that Π
(1)
Dmum con-

verges for the weak-∗ topology of L∞(0, T ;L2(Ω)). Let us take ϕ ∈ C∞c (Ω× (0, T )),

define

∀v ∈W 1,p
0 (Ω) ∩ L2(Ω) ,

PDv = argmin
w∈XD,0

(
‖ΠDw − v‖Lmax(p,2)(Ω) + ‖∇Dw −∇v‖Lp(Ω)d

)
, (4.8)

and let PDϕ(t) = PD(ϕ(·, t)). Using the fact that 0 ∈ XDm,0, we get that ŜD(ϕ(t)) ≤
‖ϕ(t)‖Lmax(p,2)(Ω) + ‖∇ϕ(t)‖Lp(Ω)d , which leads, thanks to the triangular inequality,

to

||ΠDmPDmϕ(t)||Lmax(p,2)(Ω) +||PDmϕ(t)||Dm ≤
2(‖ϕ(t)‖Lmax(p,2)(Ω) + ‖∇ϕ(t)‖Lp(Ω)d).

(4.9)
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We then write∣∣∣∣∣
∫ T

0

∫
Ω

(Π
(1)
Dmum(x, t)−Π

(α)
Dmum(x, t))ΠDmPDmϕ(x, t)dxdt

∣∣∣∣∣
≤ (1− α)δtDm

∫ T

0

|δDmu(t)|?,Dm‖PDmϕ(t)‖Dmdt

and use Lemma 4.2 and Estimate (4.9) to see that the right-hand side of this

inequality tends to 0 as m → ∞. Thanks to the consistency of the sequence of

approximations, for all t ∈ R we have ΠDmPDmϕ(t) → ϕ(t) in L2(Ω) as m → ∞.

Hence, the dominated convergence theorem and (4.9) show that ΠDmPDmϕ → ϕ

in L2(0, T ;L2(Ω)). Since Π
(α)
Dmum and Π

(1)
Dmum are bounded in L2(0, T ;L2(Ω)), we

deduce

0 = lim
m→∞

∫ T

0

∫
Ω

(Π
(1)
Dmum(x, t)−Π

(α)
Dmum(x, t))ΠDmPDmϕ(x, t)dxdt

= lim
m→∞

∫ T

0

∫
Ω

(Π
(1)
Dmum(x, t)−Π

(α)
Dmum(x, t))ϕ(x, t)dxdt.

(4.10)

This proves that the weak-∗ limits of Π
(1)
Dmum and Π

(α)
Dmum in L∞(0, T ;L2(Ω)) are

identical (equal to u).

By (4.4) and the coercivity of the sequence of gradient discretisations, we

also have Π
(α)
Dmum → u weakly in Lp(0, T ;Lp(Ω)) and we can assume that

∇Dmum converges weakly to some G in Lp(0, T ;Lp(Ω)d) as m → ∞. Extend-

ing Π
(α)
Dmum, ∇Dmum, u and G by 0 outside Ω, the consistency of the underly-

ing gradient discretisation gives, as in the proof of Theorem 3.1, G = ∇u and

u ∈ Lp(0, T ;W 1,p
0 (Ω)). Finally, we notice that, by Assumption (3.4d), the functions

ADm(x, t) = a(x,Π
(α)
Dmum(·, t),∇Dmum(x, t)) remain bounded in Lp

′
(Ω × (0, T ))d

and converges therefore, up to a subsequence, to some A weakly in Lp
′
(Ω× (0, T ))d

as m→∞.

Step 3 Proof that u is solution to (4.2).

Let ϕ ∈ C1
c (−∞, T ) and v ∈W 1,p

0 (Ω) ∩L2(Ω). We introduce δt(n+ 1
2 )ϕ(t(n))PDv

as test function in (4.3). Summing on n we get T
(m)
1 + T

(m)
2 = T

(m)
3 , with

T
(m)
1 =

N−1∑
n=0

ϕ(t(n))δt(n+ 1
2 )

∫
Ω

ΠDδ
(n+ 1

2 )

D u(x)ΠDPDv(x)dx,

T
(m)
2 =

N−1∑
n=0

ϕ(t(n))δt(n+ 1
2 )

∫
Ω

a(x,ΠDu
(n+α),∇Du(n+α)(x)) · ∇DPDv(x)dx,

T
(m)
3 =

N−1∑
n=0

ϕ(t(n))

∫ t(n+1)

t(n)

∫
Ω

f(x, t)ΠDPDv(x)dxdt.
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Using discrete integrate-by-parts formula to transform the terms ϕ(t(n))(ΠDu
(n+1)−

ΠDu
(n)) appearing in T

(m)
1 into (ϕ(t(n))− ϕ(t(n+1)))ΠDu

(n+1), we have

T
(m)
1 = −

∫ T

0

ϕ′(t)

∫
Ω

Π
(1)
D u(x, t)ΠDPDv(x)dxdt

−ϕ(0)

∫
Ω

ΠDu
(0)(x)ΠDPDv(x)dx.

Letting ϕD(t) = ϕ(t(n)) for t ∈ (t(n), t(n+1)), we have

T
(m)
2 =

∫ T

0

ϕD(t)

∫
Ω

AD(x, t) · ∇DPDv(x)dxdt ,

T
(m)
3 =

∫ T

0

ϕD(t)

∫
Ω

f(x, t)ΠDPDv(x)dxdt.

We may then let m→∞ and see that u satisfies

u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;L2(Ω)),

−
∫ T

0

ϕ′(t)

∫
Ω

u(x, t)v(x)dxdt− ϕ(0)

∫
Ω

uini(x)v(x)dx

+

∫ T

0

ϕ(t)

∫
Ω

A(x, t) · ∇v(x)dxdt =

∫ T

0

ϕ(t)

∫
Ω

f(x, t)v(x)dxdt,

∀v ∈W 1,p
0 (Ω) ∩ L2(Ω), ∀ϕ ∈ C∞c (−∞, T ).

(4.11)

Linear combinations of this relation show that it also holds with ϕ(t)v(x) replaced

by a tensorial functions in C∞c (Ω× (0, T )) and, by Remark 4.1, allows to prove that

∂tu ∈ Lp
′
(0, T ;W−1,p′(Ω)). Standard arguments then show that u can be identified

with an element of C0([0, T ];L2(Ω)), with the property u(·, 0) = uini. Using the

density of tensorial functions in Lp(0, T ;W 1,p
0 (Ω)), we then see that u satisfies

∫ T

0

〈∂tu(·, t), v(·, t)〉W−1,p′ (Ω),W 1,p
0 (Ω)dt

+

∫ T

0

∫
Ω

A(x, t) · ∇v(x, t)dxdt =

∫ T

0

∫
Ω

f(x, t)v(x, t)dxdt ,

∀v ∈ Lp(0, T ;W 1,p
0 (Ω)).

(4.12)

It remains to prove that

A(x, t) = a(x, u(·, t),∇u(x, t)), for a.e. (x, t) ∈ Ω× (0, T ). (4.13)

We start by writing (4.12) with v = ϕ(t)u, for a given ϕ ∈ C∞c (−∞, T ) such that

ϕ′(t) ≤ 0 for all t ≥ 0 (which implies ϕ(t) ≥ 0 for all t ≥ 0). Using∫ T

0

〈∂tu(·, t), ϕ(t)u(·, t)〉W−1,p′ (Ω),W 1,p
0 (Ω)dt = −1

2

∫ T

0

ϕ′(t)

∫
Ω

u(x, t)2dxdt

−1

2
ϕ(0)

∫
Ω

u(x, 0)2dx,
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we get
−1

2

∫ T

0

ϕ′(t)

∫
Ω

u(x, t)2dxdt− 1

2
ϕ(0)

∫
Ω

uini(x)2dx

+

∫ T

0

ϕ(t)

∫
Ω

A(x, t) · ∇u(x, t)dxdt =

∫ T

0

ϕ(t)

∫
Ω

f(x, t)u(x, t)dxdt.

(4.14)

We then introduce the test function v = ϕ(t(n))u(n+α) in (4.3), and we sum on

n = 0, . . . , N − 1. Since we have

N−1∑
n=0

ΠD(u(n+1) − u(n))ϕ(t(n))ΠD(αu(n+1) + (1− α)u(n))

= −1

2

N−1∑
n=0

(ΠDu
(n+1))2(ϕ(t(n+1))− ϕ(t(n)))

−1

2
(ΠDu

(0))2ϕ(0) +

(
α− 1

2

)N−1∑
n=0

(ΠDu
(n+1) −ΠDu

(n))2ϕ(t(n)),

we may write, setting ϕD(t) = ϕ(t(n)) for t ∈ (t(n), t(n+1)),

−1

2

∫ T

0

ϕ′(t)

∫
Ω

(Π
(1)
D u(x, t))2dxdt− 1

2
ϕ(0)

∫
Ω

(ΠDu
(0)(x))2dx

+

∫ T

0

ϕD(t)

∫
Ω

a(x,Π
(α)
D u(·, t),∇Du(x, t)) · ∇Du(x, t)dxdt

≤
∫ T

0

ϕD(t)

∫
Ω

f(x, t)Π
(α)
D u(x, t)dxdt.

(4.15)

Since Π
(1)
Dmum converges to u weakly in L2(Ω× (0, T )) and recalling that ϕ′(t) ≤ 0,

we have

lim inf
m→∞

−1

2

∫ T

0

ϕ′(t)

∫
Ω

(Π
(1)
Dmum(x, t))2dxdt ≥ −1

2

∫ T

0

ϕ′(t)

∫
Ω

(u(x, t))2dxdt.

This shows, thanks to (4.14), that

lim sup
m→∞

∫ T

0

ϕDm(t)

∫
Ω

a(x,Π
(α)
Dmum(·, t),∇Dmum(x, t)) · ∇Dmum(x, t)dxdt

≤
∫ T

0

ϕ(t)

∫
Ω

A(x, t) · ∇u(x, t).

(4.16)

It is now possible to apply Minty’s trick. Considering, for G ∈ Lp(0, T ;Lp(Ω))d,∫ T

0

ϕD(t)

∫
Ω

(
a(x,Π

(α)
D u(·, t),∇Du(x, t))− a(x,Π

(α)
D u(·, t),G(x, t))

)
·(∇Du(x, t)−G(x, t))dxdt ≥ 0.



November 21, 2012 11:23 WSPC/INSTRUCTION FILE
gradient-schemes˙m3as

21

Developing this inequality and using (4.16) for the only “weak-weak” term, we may

take the lim sup as m→∞ to find∫ T

0

ϕ(t)

∫
Ω

(A(x, t)− a(x, u(·, t),G(x, t))) · (∇u(x, t)−G(x, t))dx ≥ 0 ,

∀G ∈ Lp(0, T ;Lp(Ω)d).

By taking ϕ which approximates the characteristic function of (−∞, T ), we can

remove it from this equation. Application of Minty’s method then shows that (4.13)

holds and concludes the proof that u is a weak solution to (4.2).

Step 4 Strong L2(Ω× (0, T ))-convergence of the approximate solution.

In view of (3.4c) and (4.16) we have

lim
m→∞

∫ T

0

ϕD(t)

∫
Ω

(
a(x,Π

(α)
D u(·, t),∇DuD(x, t))

−a(x,Π
(α)
D u(·, t),∇u(x, t))

)
· (∇DuD(x, t)−∇u(x, t)) dxdt = 0,

(4.17)

which proves, using (4.13), that

lim
m→∞

∫ T

0

ϕDm(t)

∫
Ω

a(x,Π
(α)
Dmu(·, t),∇Dmum(x, t)) · ∇Dmum(x, t)dxdt

=

∫ T

0

ϕ(t)

∫
Ω

a(x, u(·, t),∇u(x, t)) · ∇u(x, t)dxdt.

(4.18)

As a result, from (4.14), (4.15) and (4.18) and letting ϕ(t)→ T − t, we obtain

lim sup
m→∞

1

2

∫ T

0

∫
Ω

(Π
(1)
Dmum(x, t))2dxdt ≤ 1

2

∫ T

0

∫
Ω

(u(x, t))2dxdt,

which shows that the weak convergence of Π
(1)
Dmum to u in L2(Ω× (0, T )) is in fact

strong. We then remark that∣∣∣∣∣
∫ T

0

∫
Ω

(Π
(α)
Dmum(x, t))2dxdt−

∫ T

0

∫
Ω

Π
(1)
Dmum(x, t)Π

(α)
Dmum(x, t)dxdt

∣∣∣∣∣
≤ (1− α)δtDm

∫ T

0

|δDmum(t)|?,Dm‖um(·, t)‖Dmdt

≤ (1− α)δtDm

(∫ T

0

|δDmum(t)|p
′

?,Dm

)1/p′

‖∇Dmum‖Lp(Ω×(0,T ))d .

By Lemmas 4.1 and 4.2, the right-hand side tends to 0 as m → ∞. Moreover, by

strong/weak convergence we have

lim
m→∞

∫ T

0

∫
Ω

Π
(1)
Dmum(x, t)Π

(α)
Dmum(x, t)dxdt =

∫ T

0

∫
Ω

(u(x, t))2dxdt.

Therefore,

lim
m→∞

∫ T

0

∫
Ω

(Π
(α)
Dmum(x, t))2dxdt =

∫ T

0

∫
Ω

(u(x, t))2dxdt
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and the weak convergence of Π
(α)
Dmum to u in L2(Ω× (0, T )) is in fact also strong.

Step 5 Assuming now hypothesis (3.7), strong convergence of the approximate

gradient.

Using (4.17), the proof is similar to that of Theorem 3.1.

Remark 4.3. Due to the generic form of a and the very limited number of discrete

properties we require on gradient schemes to prove their convergence, we cannot

provide an error estimate similar to the one in Lemma 3.1. One would expect such

an error estimate to be expressed in terms of the L∞(0, T ;L2(Ω)) norm and to give,

in particular, convergence in this space.

The following can however be noticed. In the continuous case, the

L∞(0, T ;L2(Ω)) norm of a function can be estimated using its L2(Ω) norm at t = 0,

its Lp(0, T ;W 1,p
0 (Ω)) norm and the Lp

′
(0, T ;W−1,p′(Ω)) norm of its time derivative.

A similar estimate can be written, using the dual semi-norm from Definition 4.2, in

the setting of gradient schemes: for all v : [0, T ] → XD,0 piecewise constant equal

to v(n) on (t(n), t(n+1)), we have

∀t ∈ (0, T ) :

||ΠDv(t)||2L2(Ω) ≤ ||ΠDv(0)||2L2(Ω)

+2

(∫ T

0

|δDv(t)|p
′

?,D dt

)1/p′

||∇Dv||Lp(Ω×(0,T ))d

(4.19)

(this is proved by writing (ΠDv
(n+1))2 − (ΠDv

(n))2 = (ΠDv
(n+1) +

ΠDv
(n))δt(n+ 1

2 )ΠDδ
(n+ 1

2 )

D v and summing on n). Hence, if we assume the existence

of an interpolant QDm ū : [0, T ] → XDm,0 of the exact solution, which is constant

on each (t(n), t(n+1)) and such that, as m→∞,

QDm ū→ ū in L∞(0, T ;L2(Ω)) , ∇DmQDm ū→ ∇u in Lp(Ω× (0, T ))d and(∫ T

0

|δDmQDm ū(t)|p
′

?,D dt

)
m∈N

remains bounded,

applying (4.19) to v = uDm − QDm ū proves that if a is strictly monotone (and

therefore ∇DmuDm → ∇ū strongly) then the convergence of ΠDmuDm to ū also

holds in L∞(0, T ;L2(Ω)).

Under some regularity assumptions on ū, the existence of QDm ū is clearly true

for all gradient schemes considered in the introduction.

5. The Hybrid Mimetic Mixed family of schemes

We proved in Ref. 18 that three families of numerical methods independently de-

veloped for the linear problem (3.1), namely the SUSHI scheme20, the Mimetic

Finite Difference methods7,8 and the Mixed Finite Volume methods16,17, can all be

gathered under a same generalising framework, the Hybrid Mimetic Mixed (HMM)
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methods. Some adaptations of these methods to nonlinear equations and systems

have been proposed in Ref. 15, 11, 19, but they involve ad-hoc (and arguably cum-

bersome) stabilisations and do not fully take advantage, as in Section 3 and 4 above,

of coercive gradients coming from gradient schemes. It was however proved in Ref.

21 that one of the HMM methods, the SUSHI scheme, can be written as a gradient

scheme for linear equations.

We show in this section that, in fact, any scheme of the HMM family can be

viewed as a gradient scheme for the linear problem (3.1), for gradient discretisa-

tions which are coercive, consistent, limit-conforming and compact. The work of

Sections 3 and 4 therefore allows for a very natural generalisation of HMM meth-

ods to the nonlocal nonlinear elliptic and parabolic problems (1.1) and (1.2), using

in the formulations (2.1) and (4.3) the gradient discretisations coming from the

HMM methods for linear problems. This is probably the most natural and efficient

adaptation of HMM methods to nonlinear problems, since it involves a natural co-

ercive gradient and does not require the introduction of artificial stabilisation terms

as in previous works.

In this section, we assume Ω to be an open polygonal bounded and connected

subset of Rd with Lipschitz-continuous boundary ∂Ω.

5.1. Polygonal meshes

Let us first give the definition of the meshes which are used for the HMM family,

see Figure 1 for some notations.

dK,σ′

dK,σ

@K

nK,σ′

K

nK,σ

σ′

σ

Fig. 1. A control volume K of a pointed strictly star-shaped polygonal mesh

Definition 5.1 (Pointed strictly star-shaped polygonal mesh). A pointed

strictly star-shaped polygonal mesh of Ω is given by the triplet (M, E ,P), where:
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(1) M is a finite family of non empty connected open disjoint subsets of Ω (the

“control volumes” or “cells”) such that Ω = ∪K∈MK. For any K ∈ M, let

∂K = K \K be the boundary of K, |K| > 0 be the measure of K and hK be

the diameter of K.

(2) E = Eint ∪ Eext is a finite family of disjoint subsets of Ω (the “edges” of the

mesh) such that any σ ∈ E is a non-empty open subset of an hyperplane of Rd.
We denote by Eint the set of edges included in Ω and by Eext the set of edges

included in ∂Ω. The (d − 1)-dimensional measure and the center of gravity of

σ ∈ E are respectively denoted by |σ| and xσ.

We assume that, for all K ∈ M, there exists a subset EK of E such that

∂K = ∪σ∈EKσ. We then set Mσ = {K ∈M, σ ∈ EK} and we assume that, for

all σ ∈ E , either Mσ has exactly one element and then σ ∈ Eext or Mσ has

exactly two elements and then σ ∈ Eint. For all K ∈ M and any σ ∈ EK , we

denote by nK,σ the unit vector normal to σ outward to K.

(3) P = (xK)K∈M is a family of points of Ω indexed by M such that, for all

K ∈ M, xK ∈ K. We then denote by dK,σ the signed distance between xK
and σ (see Figure 1), that is:

dK,σ = (x− xK) · nK,σ, x ∈ σ. (5.1)

(Note that (x− xK) · nK,σ is constant for x ∈ σ.)

We further assume that all cells K ∈ M are strictly xK-star-shaped, which means

that, for all x ∈ K, the line segment [xK ,x] is included in K or, equivalently, that

dK,σ > 0 for all σ ∈ EK .

The size of the discretisation is defined by hD = max{hK ,K ∈ M}. For all

K ∈ M and σ ∈ EK , we denote by DK,σ the cone with vertex xK and basis σ:

DK,σ = {txK + (1− t)y, t ∈ (0, 1), y ∈ σ}. We have

|DK,σ| =
1

d
|σ|dK,σ and

∑
σ∈EK

|σ|dK,σ = d|K|. (5.2)

The following lemma, which directly results from the Stokes formula, is classi-

cally used in the construction of consistent approximate gradients.

Lemma 5.1. Let K be a nonempty polyhedral subset of Rd. For σ ∈ EK , we denote

by xσ the barycentre of σ and by nK,σ the unit vector normal to σ outward to K.

Let xK be any point of Rd. Then:∑
σ∈EK

|σ|nK,σ(xσ − xK)t = |K|Id, (5.3)

where (xσ − xK)t is the transpose of xσ − xK ∈ Rd and Id is the d × d identity

matrix.
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5.2. Hybrid Mimetic Mixed methods

There are several equivalent implementations of HMM methods for linear problems.

The one presented here, which allows to interpret all HMM methods as gradient

schemes, uses “pressure” unknowns on the faces of the mesh (other implementations

use flux unknowns on the faces).

Let (M, E ,P) be a strictly star-shaped pointed polygonal mesh of Ω, in the

sense of Definition 5.1. Let

XD,0 = {v = ((vK)K∈M, (vσ)σ∈E) : vK ∈ R, vσ ∈ R ,
vσ = 0 for all σ ∈ Eext},

(5.4)

and define, for v ∈ XD,0, K ∈M and σ ∈ EK ,

∇Kv =
1

|K|
∑
σ∈EK

|σ|(vσ − vK)nK,σ and RK,σ(v) = vσ − vK −∇Kv · (xσ − xK).

We also define RK(v) = (RK,σ(v))σ∈EK and ΛK = value of Λ on K (Λ is assumed to

be constant in each cell). With these notations, any Hybrid Mimetic Mixed method

for Problem (3.1) can be written

Find u ∈ XD,0 such that, for all v ∈ XD,0,∑
K∈M

|K|ΛK∇Ku · ∇Kv +
∑
K∈M

RK(v)TBKRK(u) =
∑
K∈M

vK

∫
K

f(x)dx (5.5)

with BK ∈ REK×EK symmetric positive definite matrices with suitable properties

(see Remark 5.3).

Remark 5.1 (A generalisation with barycentric edge unknowns).

We could, as in Ref. 20, express some values vσ as barycentric combinations of

the values vK , thus obtaining a cell-centred scheme. All the properties given here

can be extended to this case.

5.3. All HMM methods are gradient schemes

5.3.1. Definition of the gradient discretisation

Let ΠD : XD,0 → L2(Ω) be defined by

∀v ∈ XD,0 , ∀K ∈M , ΠD(v) = vK on K. (5.6)

The right-hand side of (5.5) is therefore equal to
∫

Ω
fΠDv. In order to prove that

any HMM method is a gradient scheme we now have to find, for any choice of

(BK)K∈M, a discrete gradient ∇D such that, for all (u, v) ∈ X2
D,0,∑

K∈M
|K|ΛK∇Ku · ∇Kv +

∑
K∈M

RK(v)TBKRK(u)

=

∫
Ω

Λ(x)∇Du(x) · ∇Dv(x)dx.

(5.7)
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For any v ∈ XD,0, we look for a piecewise constant gradient ∇Dv defined by:

∀K ∈M ,∀σ ∈ EK ,∀x ∈ DK,σ :

∇Dv(x) = ∇K,σv := ∇Kv +

√
d

dK,σ
(AKR̃K(VK))σnK,σ,

(5.8)

where

• VK = (vσ − vK)σ∈EK ,

• R̃K : REK → REK is the linear mapping defined by R̃K(ξ) = (R̃K,σ(ξ))σ∈EK
with

R̃K,σ(ξ) = ξσ −

(
1

|K|
∑
σ′∈EK

|σ′|ξσ′nK,σ′
)
· (xσ − xK),

• AK is an isomorphism, to be defined, of the vector space Im(R̃K) ⊂ REK .

We prove below that, for any symmetric positive definite matrix BK ∈ REK×EK , we

can find AK such that for all (u, v) ∈ X2
D,0,∑

σ∈EK

|DK,σ|ΛK∇K,σu · ∇K,σv = |K|ΛK∇Ku · ∇Kv +RK(v)TBKRK(u). (5.9)

With such AK ’s, the gradient ∇D defined by (5.8) satisfies (5.7) and the HMM

method (5.5) is exactly the gradient scheme given by the gradient discretisation

D = (XD,0,ΠD,∇D).

To find AK : Im(R̃K)→ Im(R̃K) we first notice that, by Lemma 5.1, the linear

mapping

GK : η ∈ REK →
∑
σ∈EK

|σ|ησnK,σ ∈ Rd (5.10)

vanishes on Im(R̃K). Since AK takes its values in this space, using (5.2) we deduce

∀ξ ∈ REK ,∑
σ∈EK

|DK,σ|
√
d

dK,σ
(AKR̃K(ξ))σnK,σ =

1√
d

∑
σ∈EK

|σ|(AKR̃K(ξ))σnK,σ = 0.
(5.11)

Hence, from the definition (5.8) and since
∑
σ∈EK |DK,σ| = |K|, we infer∑

σ∈EK

|DK,σ|ΛK∇K,σu · ∇K,σv

= |K|ΛK∇Ku · ∇Kv

+
∑
σ∈EK

|DK,σ|
d

d2
K,σ

ΛKnK,σ · nK,σ(AKR̃K(UK))σ(AKR̃K(VK))σ

= |K|ΛK∇Ku · ∇Kv + (AKR̃K(VK))TDK(AKR̃K(UK))
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where UK = (uσ−uK)σ∈EK and DK = diag( |σ|dK,σ
ΛKnK,σ ·nK,σ) is diagonal definite

positive. Since RK(u) = R̃K(UK) and RK(v) = R̃K(VK), (5.9) is satisfied provided

that, for all (ξ, η) ∈ (REK )2,

(AKR̃K(ξ))TDK(AKR̃K(η)) = R̃K(ξ)TBKR̃K(η). (5.12)

We now apply Lemma 5.2 below with E = Im(R̃K) ⊂ REK and the inner products

〈x, y〉1 = yTBKx and 〈x, y〉2 = yTDKx. The isomorphism AK : Im(R̃K)→ Im(R̃K)

given by Lemma 5.2 satisfies (5.13) which, applied with x = R̃K(η) and y = R̃K(ξ),

is precisely (5.12).

Lemma 5.2. Let E be a finite-dimensional vector space endowed with two inner

products 〈 , 〉1 and 〈 , 〉2. Then there exists an isomorphism A : E → E such that

for all (x, y) ∈ E2, 〈x, y〉1 = 〈Ax,Ay〉2. (5.13)

Proof. Let e be an orthonormal basis for 〈 , 〉2 and Me be the (symmetric definite

positive) matrix of 〈 , 〉1 in this basis. If Xe and Ye are the coordinates of x and y

in e then 〈x, y〉1 = Y Te MeXe. Let then Ae =
√
Me and define A as the isomorphism

whose matrix relative to the basis e is Ae. Since e is orthonormal for 〈 , 〉2, the

relation Y Te MeXe = (AeYe)
T (AeXe) translates into 〈x, y〉1 = 〈Ax,Ay〉2.

Remark 5.2. Since (nK,σ)σ∈EK spans Rd, the mapping GK defined by (5.10) has

rank d, which implies dim(kerGK) = Card(EK)−d. It is easy to see that ker(R̃K) =

{ξ ∈ REK ; ∃Zξ ∈ Rd such that ξσ = Zξ · (xσ − xK)} and thus that Z ∈ Rd →
(Z · (xσ − xK))σ∈EK ∈ ker(R̃K) is an isomorphism (the one to one property comes

from the fact that (xσ−xK)σ∈EK spans Rd). Hence, dim(Im(R̃K)) = Card(EK)−d =

dim(ker(GK))). Since Im(R̃K) ⊂ ker(GK), we infer that Im(R̃K) = ker(GK).

Thus, AK can be indifferently sought as an isomorphism of Im(R̃K) or as an

isomorphism of ker(GK).

5.3.2. Coercivity, consistency, limit-conformity and compactness

We prove here that a gradient discretisation corresponding to an HMM method

is, under the usual assumptions on HMM methods, coercive, consistent, limit-

conforming and compact. The proof is based on the characterisation of these prop-

erties given in Lemma 2.1.

Lemma 5.3 (Coercivity). Let p ∈ [1,+∞), (M, E ,P) be a strictly star-shaped

pointed polygonal mesh of Ω in the sense of Definition 5.1 and let (XD,0,ΠD,∇D)

be given by (5.4), (5.6) and (5.8), for some (AK)K∈M. We take θ > 0 such that

max

(
max

σ∈Eint,K,L∈Mσ

dK,σ
dL,σ

, max
K∈M,σ∈EK

hK
dK,σ

)
≤ θ (5.14)
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and

∀K ∈M , ∀ξ ∈ REK ,

1

θ

∑
σ∈EK

|DK,σ|

∣∣∣∣∣ R̃K,σ(ξ)

dK,σ

∣∣∣∣∣
p

≤
∑
σ∈EK

|DK,σ|

∣∣∣∣∣ (AKR̃K(ξ))σ
dK,σ

∣∣∣∣∣
p

≤ θ
∑
σ∈EK

|DK,σ|

∣∣∣∣∣ R̃K,σ(ξ)

dK,σ

∣∣∣∣∣
p

.

(5.15)

Then there exists C5 > 1 only depending on Ω, p and θ such that:

1

C5
‖u‖1,p ≤ ‖∇Du‖Lp(Ω) ≤ C5‖u‖1,p ∀u ∈ XD,0, (5.16)

where we have taken

‖u‖p1,p =
∑
K∈M

∑
σ∈EK

|σ|dK,σ
∣∣∣∣uσ − uKdK,σ

∣∣∣∣p .
Consequently, there exists C6 > 0 only depending on Ω, p and θ such that:

CD ≤ C6, (5.17)

where CD is defined by (2.2).

Remark 5.3. To ensure the convergence of the HMM method, matrices BK are

assumed to satisfy the following18: there exist s∗ > 0 and S∗ > 0 independent of

the mesh such that, for all K ∈M and all ξ ∈ REK ,

s∗
∑
σ∈EK

|σ|
dK,σ

(R̃K,σ(ξ))2 ≤ R̃K(ξ)TBKR̃K(ξ) ≤ S∗
∑
σ∈EK

|σ|
dK,σ

(R̃K,σ(ξ))2.

If AK is chosen so that (5.12) holds then, since DK = diag( |σ|dK,σ
ΛKnK,σ · nK,σ),

there exists C7 only depending on d, s∗, S∗, λ and λ (see (3.2)) such that

1

C7

∑
σ∈EK

|σ|
dK,σ

(R̃K,σ(ξ))2 ≤
∑
σ∈EK

|σ|
dK,σ

(AKR̃K(ξ))2
σ ≤ C7

∑
σ∈EK

|σ|
dK,σ

(R̃K,σ(ξ))2,

which is precisely (5.15) for p = 2. Hence, in the linear framework (the only one in

which generic HMM methods have been defined up to now), the gradient scheme

corresponding to an HMM method satisfies the assumptions in Lemma 5.3 with θ

not depending on the mesh.

Remark 5.4. An easy way to choose AK such that (5.15) holds is to take AK =

βKIdIm(R̃K) for some βK ∈ [ 1
θ , θ]. The corresponding HMM method is then the

SUSHI scheme of Ref. 20.

Proof.

In this proof, the notation A(u) ∼ B(u) means that there exists C only depend-

ing on Ω, p and θ such that, for all u ∈ XD,0, C−1A(u) ≤ B(u) ≤ CA(u).
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The key ingredient in the proof is to notice that ∇Ku is a convex combina-

tion of (∇K,σu)σ∈EK . Precisely, (5.11) shows that ∇Ku =
∑
σ∈EK

|DK,σ|
|K| ∇K,σu. By

convexity of | · |p on Rd, we infer

|∇Ku|p ≤
∑
σ∈EK

|DK,σ|
|K|

|∇K,σu|p. (5.18)

From
√
d (AKR̃K(UK))σ

dK,σ
nK,σ = ∇K,σu−∇Ku, we also have

dp/2
∑
σ∈EK

|DK,σ|

∣∣∣∣∣ (AKR̃K(UK))σ
dK,σ

∣∣∣∣∣
p

≤ 2p−1|K| |∇Ku|p

+2p−1
∑
σ∈EK

|DK,σ| |∇K,σu|p.
(5.19)

Together with (5.15), Estimates (5.18) and (5.19) show that

|K| |∇Ku|p +
∑
σ∈EK

|DK,σ|

∣∣∣∣∣ R̃K,σ(UK)

dK,σ

∣∣∣∣∣
p

∼
∑
σ∈EK

|DK,σ| |∇K,σu|p. (5.20)

Since
R̃K,σ(UK)
dK,σ

= uσ−uK
dK,σ

−∇Ku · xσ−xKdK,σ
and |xσ−xK |dK,σ

≤ θ thanks to (5.14), we see

that

|K| |∇Ku|p +
∑
σ∈EK

|DK,σ|

∣∣∣∣∣ R̃K,σ(UK)

dK,σ

∣∣∣∣∣
p

∼ |K| |∇Ku|p

+
∑
σ∈EK

|DK,σ|
∣∣∣∣uσ − uKdK,σ

∣∣∣∣p . (5.21)

Finally, the definition of ∇Ku and (5.2) show that

∇Ku = d
∑
σ∈EK

|DK,σ|
|K|

uσ − uK
dK,σ

nK,σ

and thus that

|∇Ku|p ≤ dp
∑
σ∈EK

|DK,σ|
|K|

∣∣∣∣uσ − uKdK,σ

∣∣∣∣p . (5.22)

Since ||∇Du||pLp(Ω)d
=
∑
K∈M

∑
σ∈EK |DK,σ| |∇K,σu|p, Estimate (5.16) follows from

(5.20), (5.21) and (5.22). To deduce (5.17) from (5.16), we notice that, whenever σ

is a common edge between K and L,

|uL − uK |
dK,σ + dL,σ

≤ |uL − uσ|
dL,σ

+
|uσ − uK |
dK,σ

and we conclude by Lemma 5.4 in Ref. 20.

Lemma 5.4 (Limit-conformity). Let p ∈ [1,+∞), (M, E ,P) be a strictly

star-shaped pointed polygonal mesh of Ω in the sense of Definition 5.1 and let
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(XD,0,ΠD,∇D) be given by (5.4), (5.6) and (5.8), for some (AK)K∈M. We take

θ > 0 such that (5.14) and (5.15) hold.

Then there exists C8 only depending on Ω, p and θ such that

WD(ϕ) ≤ C8hD‖ϕ‖(W 1,∞(Rd))d , ∀ϕ ∈ (C∞c (Rd))d. (5.23)

Proof. Let ϕ ∈ C∞c (Rd)d and u ∈ XD,0. Let us define the terms TD1 and TD2 by

TD1 =

∫
Rd
∇DuD(x) ·ϕ(x)dx and TD2 = −

∫
Rd

ΠDuD(x)divϕ(x)dx.

Since nK,σ = −nL,σ whenever σ is an edge between K and L, and since uσ = 0 if

σ ∈ Eext, letting ϕσ = 1
|σ|
∫
σ
ϕ(x)dγ(x) we have

TD2 =
∑
K∈M

∑
σ∈EK

|σ|(uσ − uK)nK,σ ·ϕσ.

By (5.8), we have TD1 = TD3 + TD4 with

TD3 =
∑
K∈M

∑
σ∈EK

|σ|(uσ − uK)nK,σ ·ϕK

and

TD4 =
∑
K∈M

∑
σ∈EK

√
d

dK,σ
(AKR̃K(UK))σnK,σ ·

∫
DK,σ

ϕ(x)dx ,

where ϕK = 1
|K|
∫
K
ϕ(x)dx. Since

|ϕK −ϕσ| ≤ hD||ϕ||(W 1,∞(Rd))d

whenever σ ∈ EK , using Hölder’s inequality we get |TD3 − TD2 | ≤
hD‖ϕ‖(W 1,∞(Rd))d‖u‖1,p(d|Ω|)(p−1)/p. By (5.16), we therefore find C9 only depend-

ing on Ω, p and θ such that

|TD3 − TD2 | ≤ C9hD‖ϕ‖(W 1,∞(Rd))d‖∇Du‖Lp(Ω)d . (5.24)

Invoking (5.11), we see that

TD4 =
∑
K∈M

∑
σ∈EK

√
d

dK,σ
(AKR̃K(UK))σnK,σ ·

∫
DK,σ

(ϕ(x)−ϕK)dx.

Since |
∫
DK,σ

(ϕ(x)−ϕK)dx| ≤ hD‖ϕ‖(W 1,∞(Rd))d |DK,σ|, this leads to

|TD4 | ≤
√
d hD‖ϕ‖(W 1,∞(Rd))d

∑
K∈M

∑
σ∈EK

|DK,σ|

∣∣∣∣∣ (AKR̃K(UK))σ
dK,σ

∣∣∣∣∣
≤
√
d|Ω|(p−1)/phD‖ϕ‖(W 1,∞(Rd))d

( ∑
K∈M

∑
σ∈EK

|DK,σ|

∣∣∣∣∣ (AKR̃K(UK))σ
dK,σ

∣∣∣∣∣
p) 1

p

.
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Recalling (5.15) and (5.20) in the proof of Lemma 5.3, we deduce the existence of

C10 only depending on Ω, p and θ such that

|TD4 | ≤ C10hD‖ϕ‖(W 1,∞(Rd))d‖∇Du‖Lp(Ω)d . (5.25)

Equations (5.24) and (5.25) prove that there exists C11 only depending on Ω, p and

θ such that |TD1 −TD2 | = |TD3 −TD2 +TD4 | ≤ C11hD‖ϕ‖(W 1,∞(Rd))d‖∇Du‖Lp(Ω)d and

the proof is complete.

Lemma 5.5 (Consistency). Let p ∈ [1,+∞), (M, E ,P) be a strictly star-shaped

pointed polygonal mesh of Ω in the sense of Definition 5.1 and let (XD,0,ΠD,∇D)

be given by (5.4), (5.6) and (5.8), for some (AK)K∈M. We take θ > 0 such that

(5.14) and (5.15) hold.

Then there exists C12 only depending on Ω, p and θ such that:

SD(ϕ) ≤ ChD‖ϕ‖W 2,∞(Ω), ∀ϕ ∈ C∞c (Ω). (5.26)

Proof. For all ϕ ∈ C∞c (Ω), let v ∈ XD,0 such that vK = ϕ(xK) for all K ∈ M
and vσ = ϕ(xσ) for all σ ∈ E . We clearly have ||ΠDv − ϕ||L∞(Ω) ≤ hD||ϕ||W 1,∞(Ω).

Regarding the gradients, we first write

|∇K,σv −∇ϕ(xK)| ≤ |∇Kv −∇ϕ(xK)|+

∣∣∣∣∣
√
d

dK,σ
(AKR̃K(VK))σ

∣∣∣∣∣ . (5.27)

Let ZK,σ = ϕ(xσ)− ϕ(xK)−∇ϕ(xK) · (xσ − xK). We have, by Lemma 5.1,

∇ϕ(xK) =
1

|K|
∑
σ∈EK

|σ| [∇ϕ(xK) · (xσ − xK)]nK,σ

=
1

|K|
∑
σ∈EK

|σ|(ϕ(xσ)− ϕ(xK))nK,σ −
1

|K|
∑
σ∈EK

|σ|ZK,σnK,σ

= ∇Kv −
1

|K|
∑
σ∈EK

|σ|ZK,σnK,σ.

Since hK ≤ θdK,σ and |ZK,σ| ≤ h2
K‖ϕ‖W 2,∞(Ω), we deduce

|∇ϕ(xK)−∇Kv| ≤ dθhK ||ϕ||W 2,∞(Ω). (5.28)

We have R̃K,σ(VK) = vσ − vK −∇Kv · (xσ − xK) = ZK,σ − (∇Kv −∇ϕ(xK)) ·
(xσ − xK) and thus | R̃K,σ(VK)

dK,σ
| ≤ C13hK ||ϕ||W 2,∞(Ω) with C13 only depending on

d, p and θ. Using (5.15), we infer

∑
σ∈EK

|DK,σ|

∣∣∣∣∣ (AKR̃K(VK))σ
dK,σ

∣∣∣∣∣
p

≤ θCp13h
p
K‖ϕ‖

p
W 2,∞(Ω)|K|.

Using this estimate and (5.28) in (5.27) we obtain ||∇Dv − ∇ϕ||Lp(Ω) ≤
C14hD||ϕ||W 2,∞(Ω) with C14 only depending on Ω, p and θ. The proof is complete.
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Remark 5.5. Since we estimated ||ΠDv − ϕ||L∞(Ω) (and not only the Lp norm),

the same proof shows that the space-time consistency (Definition 4.3) also holds.

Lemma 5.6 (Compactness). Let p ∈ [1,+∞), (M, E ,P) be a strictly star-shaped

pointed polygonal mesh of Ω in the sense of Definition 5.1 and let (XD,0,ΠD,∇D)

be given by (5.4), (5.6) and (5.8), for some (AK)K∈M. We take θ > 0 such that

(5.14) and (5.15) hold.

Then there exists ν > 0 and C15 only depending on Ω, p and θ such that, for all

ξ ∈ Rd, TD(ξ) ≤ C15|ξ|ν .

Proof.

Let v ∈ XD,0. Noticing that, if σ is an edge between K and L, we have
|vK−vL|
dK,σ+dL,σ

≤ |vK−vσ|
dK,σ

+ |vL−vσ|
dL,σ

, Lemma 5.5 in Ref. 20 and (5.16) show that there

exists C16 only depending on Ω and θ such that

‖ΠDv(·+ ξ)−ΠDv‖L1(Rd) ≤
√
d|ξ|

∑
K∈M

∑
σ∈EK

|σ|dK,σ
∣∣∣∣vσ − vKdK,σ

∣∣∣∣
≤ C16|ξ|‖∇Dv‖Lp(Ω)d .

(5.29)

Moreover, by Lemma 5.4 in Ref. 20 and (5.16) we can find r > p and C17 only

depending on Ω, p and θ such that

‖ΠDv‖Lr(Rd) ≤ C17‖∇Dv‖Lp(Ω)d . (5.30)

We now write, thanks to Hölder’s inequality, || · ||Lp(Rd) ≤ || · ||νL1(Rd)|| · ||
1−ν
Lr(Rd)

where

ν > 0 is such that ν
1 + 1−ν

r = 1
p , and (5.29) and (5.30) conclude the proof.

Appendix

The proof of the following theorem is inspired by Ref. 25.

Theorem 5.1 (Discrete Aubin-Simon lemma). Let T > 0 and let B be a

Banach space. Let (Bm)m∈N be a sequence of finite dimensional subspaces of B. For

any m ∈ N, let Nm ∈ N∗, t(0)
m = 0 < t

(1)
m < . . . < t

(Nm)
m = T and δt

(n+ 1
2 )

m = t
(n+1)
m −

t
(n)
m , n = 0, . . . , Nm− 1. Let {v(n)

m , n = 0, . . . , Nm} ⊂ Bm and let vm ∈ L1(0, T ;Bm)

be defined, for a given real family (α
(n)
m )n=0,...,Nm−1, by

vm(t) = (1− α(n)
m )v

(n)
m + α

(n)
m v

(n+1)
m ∈ Bm,

for a.e. t ∈ (t
(n)
m , t

(n+1)
m ) and n ∈ {0, . . . Nm − 1}.

(5.31)

Let δmvm be the “discrete time derivative”, defined by:

δmvm(t) = δ
(n+ 1

2 )
m vm :=

1

δt
(n+ 1

2 )
m

(v(n+1)
m − v(n)

m ),

for a.e. t ∈ (t(n)
m , t(n+1)

m ) and n ∈ {0, . . . , Nm − 1}.

Let ‖ · ‖Xm and ‖ · ‖Ym be two norms on Bm. We denote by Xm the space Bm
endowed with the norm ‖ · ‖Xm and by Ym the space Bm endowed with the norm

‖ · ‖Ym . We assume that



November 21, 2012 11:23 WSPC/INSTRUCTION FILE
gradient-schemes˙m3as

33

(h1) For any sequence (wm)m∈N such that wm ∈ Bm and (‖wm‖Xm)m∈N is bounded,

there exists w ∈ B such that, up to a subsequence, wm → w in B as m→ +∞.

(h2) For any sequence (wm)m∈N such that wm ∈ Bm, (‖wm‖Xm)m∈N is bounded,

there exists w ∈ B such that wm → w in B and ‖wm‖Ym → 0 as m→ +∞, we

have w = 0.

(h3) The family (α
(n)
m )n=0,...,Nm−1,m∈N and the sequence (‖vm‖L1(0,T ;Xm))m∈N are

bounded.

(h4) The sequence (‖δmvm‖L1(0,T ;Ym))m∈N is bounded.

Then there exists v ∈ L1(0, T ;B) such that, up to a subsequence, vm → v in

L1(0, T ;B) as m→ +∞.

Proof. The first step is to apply Lemma 3.2 in Ref. 25, which states that, under

Hypothesis (h1), there exists CX > 0 such that, for all m ∈ N, for all v ∈ Bm,

‖v‖B ≤ CX‖v‖Xm . Following the proof of Lemma 3.1 in Ref. 25, thanks to (h1)

and (h2) we remark that the following variant of Lions’ lemma holds: for all ε > 0

there exists C(ε) > 0 such that

∀m ∈ N, ∀v ∈ Bm, ‖v‖B ≤ ε‖v‖Xm + C(ε)‖v‖Ym , (5.32)

Let us now notice, using (h4), that there exists Ct > 0 such that, ∀m ∈ N,∑Nm−1
n=0 δt

(n+ 1
2 )

m ‖δ(n+ 1
2 )

m vm‖Ym ≤ Ct. We therefore get from (h3) that the se-

quence (‖vm‖BV (0,T ;Ym))m∈N is bounded since, denoting by ṽ
(n)
m = (1−α(n)

m )v
(n)
m +

α
(n)
m v

(n+1)
m the value of vm(t) on (t(n), t(n+1)), we can write

Nm−2∑
n=0

‖ṽ(n+1)
m − ṽ(n)

m ‖Ym

≤
Nm−2∑
n=0

(
|α(n+1)
m |δt(n+ 3

2 )
m ‖δ(n+ 3

2 )
m vm‖Ym + |1− α(n)

m |δt
(n+ 1

2 )
m ‖δ(n+ 1

2 )
m vm‖Ym

)
≤ (1 + 2Cα)Ct,

where Cα is a bound of the family (α
(n)
m )n=0,...,Nm−1,m∈N. We then extend vm by

symmetry on (−T, 2T ), setting vm(−t) = vm(t) and vm(T + t) = vm(T − t) for a.e.

t ∈ (0, T ). We get vm ∈ BV (−T, 2T ;Ym) with ‖vm‖BV (−T,2T ;Ym) ≤ 3(1 + 2Cα)Ct.

We also see, using (h3), that the sequence (‖vm‖L1(−T,2T ;Xm))m∈N is bounded, say

by C0. Applying (5.32), we write, for any τ ∈ (0, T ) and t ∈ (−T, 2T − τ),

‖vm(t+ τ)− vm(t)‖B ≤ ε‖vm(t+ τ)− vm(t)‖Xm + C(ε)‖vm(t+ τ)− vm(t)‖Ym ,

which provides∫ 2T−τ

−T
‖vm(t+ τ)− vm(t)‖Bdt ≤ 2C0ε+ 3C(ε)(1 + 2Cα)Ctτ.

This proves that
∫ 2T−τ
−T ‖vm(t + τ) − vm(t)‖Bdt tends to 0 with τ , uniformly with

respect to m ∈ N. Multiplying vm by a function ψ ∈ C∞c (−T, 2T ) equal to 1 on
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(0, T ), we may then apply the compactness theorem (Theorem 2.1) of Ref. 25 to

obtain the relative compactness of the family (vm)m∈N in L1(0, T ;B).
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