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A cell-centred finite-volume approximation for anisotropic diffusion
operators on unstructured meshes in any space dimension

R. EYMARD†
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Université de Provence, France

[Received on 22 April 2005; revised on 15 August 2005]

Finite-volume methods for problems involving second-order operators with full diffusion matrix can
be used thanks to the definition of a discrete gradient for piecewise constant functions on unstructured
meshes satisfying an orthogonality condition. This discrete gradient is shown to satisfy a strong con-
vergence property for the interpolation of regular functions, and a weak one for functions bounded in a
discrete H1-norm. To highlight the importance of both properties, the convergence of the finite-volume
scheme for a homogeneous Dirichlet problem with full diffusion matrix is proven, and an error estimate
is provided. Numerical tests show the actual accuracy of the method.
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1. Introduction

The approximation of convection–diffusion problems in anisotropic media is an important issue in sev-
eral engineering fields. Let us briefly review four particular situations where the discretization of a
non-diagonal second-order operator is required.

1. In the case of a contaminant transported by a single-phase flow, one must account for the diffusion–
dispersion operator div(Λ∇u), where the matrix Λ(x) = λ(x)Id + µ(x)q(x)·q(x)t depends on
the space variable x and q(x) is the velocity of the fluid flow in the porous medium. The real
parameter λ(x) corresponds to a resulting isotropic diffusion term, including dispersion in the
directions orthogonal to the flow, and the real parameter µ(x) to an additional diffusion in the
direction of the flow (Chénier et al., 2004). The term q(x) is then given by q(x) = −K (x)∇ p(x),
where p(x) is a pressure and K (x) another non-diagonal matrix (the absolute permeability matrix,
depending on the geological layers), and satisfies the incompressibility equation divq(x) = 0.
In this coupled problem, one must simultaneously compute this pressure and the contaminant
concentration u(x).

2. In the study of undersaturated flows in porous media (e.g. air–water flows), two equations of con-
servation have to be solved, associated with two unknowns, pressure and saturation. These equa-
tions include non-linear hyperbolic and degenerate parabolic terms with respect to the saturation
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unknown. As in the preceding case, one must discretize such terms as divq(x) = div(K (x)∇ p(x)),
where again K (x) is a non-diagonal matrix depending on the geological layers.

3. In the case of the compressible Navier–Stokes equations, one has to discretize the operator rep-
resenting viscous forces, which can be written in the form a�u + b∇divu (a and b are deduced
from the dynamic viscosity coefficients and u is the fluid velocity). In this problem, the term ∇divu
involves all the cross derivatives ∂2

i j u.

4. Some problems arising in financial mathematics lead to anisotropic diffusion equations in high-
dimensional domains (e.g. dimension equal to five or more). Under some assumptions on financial
markets (Lamberton & Lapeyre, 1995), the price of a European or an American option is ob-
tained by solving a linear or non-linear partial differential equation, involving the second-order
anisotropic diffusion matrix Λ = ΣΣ t , where Σ is a real matrix.

All these cases involve a term of the form div(Λ∇u), where Λ is a (generally) non-diagonal matrix
depending on the space variable and u is a function of the space variable in steady problems and of
the space and time variables in transient problems. Finite-element schemes are known to allow for an
easy discretization of such a term on triangular or tetrahedral meshes (Putti & Cordes, 1998). However,
in engineering situations such as the ones described above, one also has to discretize convection and
reaction terms, and avoid numerical instabilities. Unfortunately, classical finite-element methods (and
more generally centred schemes) are known to generate instabilities on coarse grids, although some
cures have been proposed, see Angermann (2000) and Forsyth (1991); therefore, many numerical codes
(Aavatsmark et al., 1998a,b; Forsyth, 1991; Jayantha & Turner, 2003, 2005) use finite-volume or finite-
volume–finite-element type schemes, which admit the implementation of discretization techniques (such
as the classical upwind schemes) that prevent the appearance of instabilities. Let us also note that finite-
volume schemes are known for their simplicity of implementation, particularly so when discretizing
coupled systems of equations of various nature.

Besides, a thorough mathematical analysis has now been developed, showing that finite-volume
methods are well suited and convergent for a simple convection–diffusion equation in the case where
Λ(x) = λ(x)Id . Indeed, this analysis has been completed (Herbin, 1995; Gallouët et al., 2000; Mishev,
1998; Eymard et al., 1999), see also Eymard et al. (2000) for a review, in the case of grids (called
admissible in the sense of Eymard et al. (2000), see also Definition 2.1) satisfying an orthogonality
condition: the line joining two cell centres is orthogonal to the interface between the two cells, thus
ensuring a consistency property when approximating the normal flux at the cell interface by centred
finite differences. Some examples of such admissible grids are the Delaunay triangular meshes or
tetrahedral meshes, rectangular or parallelepiped meshes in 2D or 3D and the Voronoı̈ meshes in any
dimension.

But the situation is quite different in the case where the condition Λ(x) = λ(x)Id no longer holds:
only few of the actual discretization methods used for handling non-diagonal second-order terms on
finite-volume grids have a complete mathematical analysis of stability or convergence. Let us briefly
review some of them. The first one, in the case where Λ(x) = λ(x)M , where M is a symmetric positive
definite matrix, consists of adapting the above orthogonality condition by stating that the line joining
two cell centres is orthogonal to the interface between the two cells with respect to the dot product
induced by the matrix Λ−1. Indeed, it is also possible to consider the case where M depends on the
discretization cell, by using, in each cell, the orthogonal bisectors for the metric induced by M−1 (see
Herbin, 1996, and Eymard et al., 2000, section 11, p. 815). In the case of triangular grids, this yields
a well-defined scheme under some restriction on the admissible anisotropy for a given geometry, since
the cell centre is chosen as the intersection of the orthogonal bisectors of the triangle for the metric
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defined by M−1. Another method consists of defining the finite-volume method as a dual method to a
finite-element one (e.g. a P1 finite element (Chénier et al., 2004) or a Crouzeix–Raviart one, see e.g.
Eymard et al. (2004b)) or, for example, to interpret node-centred finite-volume discretizations in terms
of mixed finite-element methods (Angermann, 2003).

Another possibility to derive a finite-volume scheme for problems including anisotropic diffusion is
to construct a local discrete gradient, allowing to get, at each edge σ of the mesh, a consistent approxi-
mate value for the flux − ∫

σ (Λ(x)∇u(x))·nσ dγ (x) involved in the finite-volume scheme (nσ is a unit
vector normal to the edge σ and dγ (x) is the (d − 1)-dimensional Lebesgue measure on the edge σ ). In
two space dimensions, such a scheme was introduced in Coudière et al. (1999) for parallelograms and
generalized to triangles in Bertolazzi & Manzini (2004). However, no proof of convergence is available
in the general case. Still in 2D, a technique using dual meshes is introduced in Domelevo & Omnes
(2005) and Hermeline (2000), which generalizes the idea of Hu & Nicolaides (1992) and Nicolaides
(1992) for div–curl problems to meshes with no orthogonality conditions; however, the use of a dual
mesh renders the scheme computationally expensive; moreover, it does not seem to be easily extendable
to 3D. Another scheme for 2D and 3D problems, using reconstructed gradients at the vertices, has been
introduced in Le Potier (2005); although it leads to symmetric definite positive matrices, the proof of
its convergence does not seem to have been actually completed. For problems in any space dimension
and for any irregular grid, a mixed finite-volume method is proposed in Droniou & Eymard (2005),
involving the simultaneous computation of an approximate gradient and of the unknown; although this
method is shown to converge, its drawback is that the linear systems involve unknowns at the edges, in a
similar way to mixed hybrid finite-element methods. In Eymard et al. (2001), we used Raviart–Thomas
shape functions, generalized to the case of any admissible mesh (again in the sense specified in Ey-
mard et al. (2000); see also Definition 2.1), in order to define a discrete gradient for piecewise constant
functions. The strong convergence of this discrete gradient was then shown in the case of the elliptic
equation −�u = f . A drawback of this definition was the difficulty to find an approximation of these
generalized shape functions in cases other than triangles or rectangles.

We therefore propose in this paper a new cheap and simple method of constructing a discrete gra-
dient for a piecewise constant function, on arbitrary admissible meshes in any space dimension (this
method has been first introduced in Eymard et al. (2004a)). We prove that the discrete gradients of any
sequence of piecewise constant functions converging to some u ∈ H1

0 (Ω) weakly converges to ∇u in
L2(Ω). Moreover, the discrete gradient is shown to be consistent, in the sense that it satisfies a strong
convergence property for the interpolation of regular function. In order to show the efficiency of this
approximation method, we use this discrete gradient to design a scheme for the approximation of the
weak solution ū of the following diffusion problem with full anisotropic tensor:

−div(Λ∇ū) = f, in Ω,

ū = 0, on ∂Ω,
(1.1)

under the following assumptions:

Ω is an open bounded connected polygonal subset of Rd , d ∈ N	 = N\{0}, (1.2)

Λ is a measurable function from Ω toMd(R), whereMd(R) denotes the set of

d × d matrices, such that for a.e. x ∈ Ω,Λ(x) is symmetric,

the lowest and the largest eigenvalues of Λ(x), denoted by λ(x) and λ(x), (1.3)

are such that λ, λ ∈ L∞(Ω) and there exists λ0 ∈ R with

0 < λ0 � λ(x) � λ(x) for a.e. x ∈ Ω,
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and
f ∈ L2(Ω). (1.4)

We give the classical weak formulation in the following definition.

DEFINITION 1.1 (Weak solution) Under Hypotheses (1.2)–(1.4), we say that ū is a weak solution of
(1.1) if ⎧⎨⎩ū ∈ H1

0 (Ω),∫
Ω

Λ(x)∇ū(x)·∇v(x) dx =
∫

Ω
f (x)v(x) dx ∀v ∈ H1

0 (Ω).
(1.5)

REMARK 1.1 For the sake of clarity, we restrict ourselves here to the numerical analysis of Problem
(1.1); however, the present analysis readily extends to convection–diffusion–reaction problems and
coupled problems. Indeed, we emphasize that proofs of convergence or error estimates can easily be
adapted to such situations, since the discretization methods of all these terms are independent of one
another, and the treatment of the convection and reaction terms is well-known to be exact (see Gallouët
et al., 2000, or Eymard et al., 2000).

The outline of this paper is as follows. In Section 2, we present the method for approximating the
gradient of a piecewise constant function, and we show some functional properties which help to un-
derstand why the present definition of a gradient is well suited for second-order diffusion problems.
In Section 3, we present the finite-volume scheme for Problem (1.1), and we show the strong conver-
gence of the discrete solution and of its discrete gradient. In Section 3.4, we give an error estimate
for Problem (1.1), and we illustrate this study by some numerical examples in Section 4. Some short
conclusions are drawn in Section 5.

2. A discrete gradient for piecewise constant functions

We present in this section a method for the approximation of the gradient of piecewise constant func-
tions, in the case of grids satisfying some orthogonality condition as defined below.

2.1 Admissible discretization of Ω

We first present the following notion of admissible discretization, which is taken from Eymard et al.
(2000). The notations are summarized in Fig. 1 for the particular case d = 2 (we recall that the case
d � 3 is considered as well).

In the following definition, we shall say that a bounded subset of Rd is polygonal if its boundary is
included in the union of a finite number of hyperplanes.

DEFINITION 2.1 [Admissible discretization] Let Ω be an open bounded polygonal subset of Rd and
∂Ω = �Ω \ Ω its boundary. An admissible finite-volume discretization of Ω , denoted by D, is given by
D = (M, E,P), where

• M is a finite family of non-empty open disjoint convex polygonal subsets of Ω (the ‘control vol-
umes’) such that �Ω = ∪K∈MK . For any K ∈ M, let ∂K = K \ K be the boundary of K and
m(K ) > 0 denote the measure of K .

• E is a finite family of disjoint subsets of �Ω (the ‘edges’ of the mesh), such that, for all σ ∈ E , there
exists a hyperplane E of Rd and K ∈M with σ = ∂K ∩ E and σ is a non-empty open subset of E .
We then denote by mσ > 0 the (d − 1)-dimensional measure of σ . We assume that, for all K ∈M,
there exists a subset EK of E such that ∂K = ∪σ∈EK σ . It then follows from the previous hypotheses
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FIG. 1. Notations for a control volume K in the case d = 2.

that, for all σ ∈ E , either σ ⊂ ∂Ω or there exists (K , L) ∈M2 with K 
= L such that K ∩ L = σ ;
in the latter case we write σ = K |L .

• P is a family of points of Ω indexed byM, denoted by P = (xK )K∈M. The coordinates of xK are
denoted by x (i)

K , i = 1, . . . , d. The family P is such that, for all K ∈ M, xK ∈ K . Furthermore,
for all σ ∈ E such that there exists (K , L) ∈M2 with σ = K |L , it is assumed that the straight line
(xK , xL) going through xK and xL is orthogonal to K |L . For all K ∈M and all σ ∈ EK , let zσ be
the orthogonal projection of xK on σ . We suppose that zσ ∈ σ if σ ⊂ ∂Ω .

The following notations are used. The size of the discretization is defined by:

hD = sup{diam(K ), K ∈M}.
For all K ∈M and σ ∈ EK , we denote by nK ,σ the unit vector normal to σ outward to K . We denote
by dK ,σ the Euclidean distance between xK and σ . We then define

τK ,σ = mσ

dK ,σ
.

The set of interior (resp. boundary) edges is denoted by Eint (resp. Eext), i.e. Eint = {σ ∈ E ; σ 
⊂ ∂Ω}
(resp. Eext = {σ ∈ E ; σ ⊂ ∂Ω}). For all K ∈M, we denote byNK the subset ofM of the neighbouring
control volumes, and we denote by EK ,ext = EK ∩ Eext. For all σ ∈ Eint, let K , L ∈ M be such that
σ = K |L; we define by dK |L the Euclidean distance between xK and xL , by nK L the unit normal vector
to K |L from K to L , and we set

τσ = mσ

dK |L
. (2.1)

For all σ ∈ Eext, let K ∈M be such that σ ∈ EK ; we define

τσ = τK ,σ . (2.2)

For all K ∈M and σ ∈ EK , we define

DK ,σ = {t xK + (1 − t)y, t ∈ (0, 1), y ∈ σ }.
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For all σ ∈ Eint, let K , L ∈M be such that σ = K |L; we set Dσ = DK ,σ ∪ DL ,σ . For all σ ∈ Eext, let
K ∈M be such that σ ∈ EK ; we define Dσ = DK ,σ .

For all σ ∈ E , we define

xσ = 1

m(σ )

∫
σ

x dγ (x). (2.3)

We shall measure the regularity of the mesh through the function θD defined by

θD = inf

{
dK ,σ

diam(K )
, K ∈M, σ ∈ EK

}
. (2.4)

DEFINITION 2.2 Let Ω be an open bounded polygonal subset of Rd and D an admissible discretization
of Ω in the sense of Definition 2.1. We define HD as the set of functions u ∈ L2(Ω) which are constant
in each control volume. For u ∈ HD, we denote by uK the constant value of u in K . We define the
interpolation operator PD: C( �Ω) → HD, by ū �→ PDū such that

PDū(x) = ū(xK ) for a.e. x ∈ K ∀K ∈M. (2.5)

For (u, v) ∈ (HD)2 and for any function α ∈ L∞(Ω), we introduce the following symmetric bilinear
form:

[u, v]D,α =
∑

K |L∈Eint

τK |LαK |L(uL − uK )(vL − vK ) +
∑

K∈M

∑
σ∈EK ,ext

τK ,σ ασ uK vK , (2.6)

where we set

ασ = 1

m(Dσ )

∫
Dσ

α(x) dx ∀σ ∈ E . (2.7)

Note that (2.7) is not the only possible choice (see Remark 3.1). We then define a norm in HD
(thanks to the discrete Poincaré inequality (2.8) given below) by

‖u‖D = ([u, u]D,1)
1/2

(where 1 denotes the constant function equal to 1). Indeed, the discrete Poincaré inequality states that
(see Eymard et al., 2000):

‖w‖L2(Ω) � diam(Ω)‖w‖D ∀w ∈ HD. (2.8)

Let us now give a relative compactness result, which is also partly stated in some other papers concerning
finite-volume methods (Herbin & Marchand, 2001; Eymard et al., 2002).

LEMMA 2.1 (Relative compactness in L2(Ω)) Let Ω be an bounded open connected polygonal subset
of Rd , d ∈ N	 and let (Dn, un)n∈N be a sequence such that, for all n ∈ N, Dn is an admissible finite-
volume discretization of Ω in the sense of Definition 2.1 and un ∈ HDn (Ω) (cf. Definition 2.2). Let us
assume that limn→∞ hDn = 0 and that there exists C1 > 0 such that ‖un‖Dn � C1, for all n ∈ N.

Then there exists a subsequence of (Dn, un)n∈N, again denoted (Dn, un)n∈N, and ū ∈ H1
0 (Ω) such

that un tends to ū in L2(Ω) as n → +∞, and the inequality∫
Ω

|∇ū(x)|2 dx � lim inf
n→∞ ‖un‖2

Dn
(2.9)
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holds. Moreover, for all function α ∈ L∞(Ω), we have

lim
n→∞

[
un, PDn ϕ

]
Dn ,α

=
∫

Ω
α(x)∇ū(x) · ∇ϕ(x) dx ∀ϕ ∈ C∞

c (Ω). (2.10)

Proof. The proof of the existence of the subsequence, again denoted (Dn, un)n∈N, and of ū ∈ H1
0 (Ω)

such that un tends to ū in L2(Ω) as n → ∞, is given in Eymard et al. (2000). Assertion (2.9) was proven
in Eymard et al. (2002, Lemma 5.2). Let us first show (2.10) in the case α ∈ C1( �Ω). Let ϕ ∈ C∞

c (Ω).

Defining, for all n ∈ N, T (n)
1 = − ∫

Ω un(x)div(α(x)∇ϕ(x)) dx , we get that

lim
n→∞ T (n)

1 = −
∫

Ω
ū(x)div(α(x)∇ϕ(x)) dx =

∫
Ω

α(x)∇ū(x) · ∇ϕ(x) dx .

We consider a value n sufficiently large such that for all K ∈ Mn and x ∈ K , if ϕ(x) 
= 0, then
∂K ∩ ∂Ω = ∅. Defining T (n)

2 = [
un, PDn ϕ

]
Dn ,α

− T (n)
1 , we obtain

T (n)
2 =

∑
σ∈Eint,σ=K |L

m(K |L)(uL − uK )RK L ,

with

RK L = αK |L
ϕ(xL) − ϕ(xK )

dK |L
−

∫
K |L

α(x)∇ϕ(x) · nK L dγ (x) ∀K ∈M, ∀L ∈ NK .

Since there exists some real value C2, which does not depend on Dn , such that |RK L | � C2hDn , we

conclude in a similar way as in Eymard et al. (2000) that limn→∞ T (n)
2 = 0, which gives (2.10) in this

case. Let us now consider the general case α ∈ L∞(Ω). Let ε > 0 be given. We first choose a function
α̃ ∈ C1( �Ω) such that ‖α − α̃‖L2(Ω) � ε. Then we have, for all n ∈ N, using the Cauchy–Schwarz
inequality,

([
un, PDn ϕ

]
Dn ,α̃

− [
un, PDn ϕ

]
Dn ,α

)2
�

⎛⎝ ∑
K |L∈Eint

τK |L(α̃K L − αK L)2|ϕ(xL) − ϕ(xK )|2
⎞⎠

×
⎛⎝ ∑

K |L∈Eint

τK |L |uL − uK |2
⎞⎠ .

Therefore, setting C3 = ‖∇ϕ‖L∞(Ω), the properties |ϕ(xL) − ϕ(xK )| � C3dK |L and m(K |L)dK |L =
dm(DK |L) lead to([

un, PDn ϕ
]
Dn ,α̃

− [
un, PDn ϕ

]
Dn ,α

)2 � dC2
3‖α − α̃‖2

L2(Ω)
C1 � dC2

3ε2C1.

In the same manner, we get(∫
Ω

α̃(x)∇ū(x) · ∇ϕ(x) dx −
∫

Ω
α(x)∇ū(x) · ∇ϕ(x) dx

)2

� C2
3ε2‖∇ū‖2

L2(Ω)d .

Since α̃ ∈ C1(Ω), we can apply (2.10), proven above for such a function. It then suffices to choose n
large enough such that ∣∣∣∣[un, PDn ϕ

]
Dn ,α̃

−
∫

Ω
α̃(x)∇ū(x) · ∇ϕ(x) dx

∣∣∣∣ � ε,
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to prove that ∣∣∣∣[un, PDn ϕ
]
Dn ,α

−
∫

Ω
α(x)∇ū(x) · ∇ϕ(x) dx

∣∣∣∣ � C4ε,

where the real C4 > 0 does not depend on n. This concludes the proof of (2.10) in the general case. �

2.2 Definition of a discrete gradient

We now define a discrete gradient for piecewise constant functions on an admissible discretization.

DEFINITION 2.3 (Discrete gradient) Let Ω be an bounded open connected polygonal subset of
R

d , d ∈ N
	. Let D = (M, E,P) be an admissible finite-volume discretization of Ω in the sense of

Definition 2.1. Let us define, for all K ∈M, for all L ∈ NK ,

AK ,L = τK |L(xK |L − xK ), (2.11)

and for all σ ∈ EK ,ext, we define
AK ,σ = τσ (xσ − xK ). (2.12)

(Recall that xσ is defined by (2.3) and that xK |L = xσ if σ = K |L .)
We define the discrete gradient ∇D: HD → Hd

D, for any u ∈ HD, by:

∇Du(x) = (∇Du)K

= 1

m(K )

⎛⎝ ∑
L∈NK

AK ,L (uL − uK ) −
∑

σ∈EK ,ext

AK ,σ uK

⎞⎠ ,

for a.e. x ∈ K ∀K ∈M.

Let us first state a bound on the L2(Ω)d -norm of the discrete gradient of any element of HD.

LEMMA 2.2 (Bound on ∇Du) Let Ω be an bounded open connected polygonal subset ofRd , d ∈ N	, let
D be an admissible finite-volume discretization of Ω in the sense of Definition 2.1 and let θ ∈ (0, θD].
Then, there exists C5, only depending on d and θ , such that, for all u ∈ HD:

‖∇Du‖L2(Ω)d � C5‖u‖D. (2.13)

Proof. Let u ∈ HD. Let us denote, for all K ∈M, L ∈ NK and σ = K |L , δK ,σ u = uL − uK , and for
σ ∈ EK ,ext, δK ,σ u = −uK . Then Definition (2.6) leads to

‖u‖2
D =

∑
K∈M

⎛⎝1

2

∑
L∈NK

τK |L(δK ,K |Lu)2 +
∑

σ∈EK ,ext

τσ (δK ,σ u)2

⎞⎠ ,

and Definition (2.3) leads, for a given K ∈M, to

m(K )(∇Du)K =
∑

σ∈EK

τσ (xσ − xK )δK ,σ u.

Using the Cauchy–Scharwz inequality, we obtain

m(K )2|(∇Du)K |2 �
∑

σ∈EK

τσ |xσ − xK |2
∑

σ∈EK

τσ (δK ,σ u)2,
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and since, for σ ∈ EK , one has |xσ − xK | = d(xσ , xK ) � dK ,σ

θ ,

m(K )2|(∇Du)K |2 �
∑

σ∈EK

1

θ2
m(σ )dK ,σ

∑
σ∈EK

τσ (δK ,σ u)2. (2.14)

Since
∑

σ∈EK
m(σ )dK ,σ = dm(K ), (2.14) gives

m(K )|(∇Du)K |2 � d

θ2

∑
σ∈EK

τσ (δK ,σ u)2.

Summing over K ∈M, we get

‖∇Du‖2
L2(Ω)d � 2

d

θ2
‖u‖2
D,

which gives (2.13) with C5 = ( 2d
θ2 )

1
2 . �

We now state a weak convergence property for the discrete gradient.

LEMMA 2.3 (Weak convergence of the discrete gradient) Let Ω be an bounded open connected polyg-
onal subset of Rd , d ∈ N

	, let D be an admissible finite-volume discretization of Ω in the sense of
Definition 2.1. We assume that there exist uD ∈ HD and a function ū ∈ H1

0 (Ω) such that uD tends to ū
in L2(Ω) as hD tends to 0 while ‖uD‖D remains bounded. Then ∇DuD weakly tends to ∇ū in L2(Ω)d

as hD → 0.

Proof. Let ϕ ∈ C∞
c (Ω). We assume that hD is small enough to ensure that for all K ∈M and x ∈ K ,

if ϕ(x) 
= 0, then EK ,ext = ∅. The expression TD3 , defined by

TD3 =
∫

Ω
PDϕ(x)∇DuD(x) dx,

satisfies, using (2.11),

TD3 =
∑

K |L∈Eint

τK |L(uL − uK )((xK |L − xK )ϕ(xK ) + (xL − xK |L)ϕ(xL)),

where we denote, for the sake of simplicity, uK = (uD)K for all K ∈M. We thus get TD3 = TD4 + TD5
with

TD4 =
∑

K |L∈Eint

τK |L(uL − uK )(xL − xK )
ϕ(xK ) + ϕ(xL)

2

and

TD5 =
∑

K |L∈Eint

τK |L(uL − uK )

(
xK |L − xL + xK

2

)
(ϕ(xL) − ϕ(xK )).

Thanks to the Cauchy–Schwarz inequality, we get

(TD5 )2 �
∑

K |L∈Eint

τK |L(uL − uK )2
∑

K |L∈Eint

τK |L(ϕ(xL) − ϕ(xK ))2
∣∣∣∣xK |L − xL + xK

2

∣∣∣∣2

.
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Since |xK |L − xL+xK
2 | � 1

2 |xK |L − xL | + 1
2 |xK |L − xK | � hD, there exists C6 > 0, depending on d, Ω

and ϕ such that
(TD5 )2 � ‖uD‖2

DC6h2
Dm(Ω),

and therefore we get
lim

hD→0
TD5 = 0.

We then compare TD4 with

TD6 = −
∫

Ω
uD(x)∇ϕ(x) dx =

∑
K |L∈Eint

(uL − uK )

∫
K |L

ϕ(x)nK ,L dγ (x).

Since

nK ,L = xL − xK

dK |L
and since ∣∣∣∣ 1

m(K |L)

∫
K |L

ϕ(x) dγ (x) − ϕ(xK ) + ϕ(xL)

2

∣∣∣∣ � ‖∇ϕ‖L∞(Ω) hD,

we get, thanks to the Cauchy–Schwarz inequality,

lim
hD→0

(TD4 − TD6 )2 = 0.

Since

lim
hD→0

TD6 = −
∫

Ω
ū(x)∇ϕ(x) dx =

∫
Ω

ϕ(x)∇ū(x) dx,

we have thus proven, thanks to the density of C∞
c (Ω) in L2(Ω), the weak convergence of ∇DuD to

∇ū(x) as hD → 0. This completes the proof of the lemma. �
We now study, for a regular function ϕ, the strong convergence of the discrete gradient ∇DPDϕ to

∇ϕ. This study uses the following lemma.

LEMMA 2.4 Let Ω be an bounded open connected polygonal subset of Rd , d ∈ N
	, let D be an

admissible finite-volume discretization of Ω in the sense of Definition 2.1. Then we have

v = 1

m(K )

∑
σ∈EK

m(σ )(xσ − x0) (nK ,σ · v) ∀K ∈M, ∀x0 ∈ Rd , ∀v ∈ Rd . (2.15)

Proof. For any K ∈M, we denote, for a.e. x ∈ ∂K , by n∂K (x) the normal vector to ∂K at the point x
outward K . Let v and w ∈ Rd be given. We have, considering vectors as d × 1 matrices and denoting
by wt the transposed 1 × d matrix of w,

wt
(∫

∂K
(x − x0)nt

K (x) dγ (x)

)
v =

∫
∂K

wt (x − x0)nt
K (x)v dγ (x)

=
∫

∂K
wt (x − x0)v

t nK (x) dγ (x)

=
∫

∂K
(v(x − x0)

tw) · nK (x) dγ (x)

=
∫

K
div(v(x − x0)

tw) dx = m(K ) v tw.

This gives (2.15). �
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LEMMA 2.5 (Consistency property of the discrete gradient) Let Ω be an bounded open connected
polygonal subset of Rd , d ∈ N

	, let D be an admissible finite-volume discretization in the sense of
Definition 2.1 and let θ ∈ (0, θD]. Let ū ∈ C2( �Ω) be such that ū = 0 on the boundary of Ω . Then, there
exists C7, only depending on Ω , θ and ū, such that:

‖∇DPDū − ∇ū‖L2(Ω)d � C7hD. (2.16)

(Recall that PD is defined by (2.5) and ∇D in Definition 2.3.)

Proof. From Definition 2.3 and (2.5), we can write for any K ∈M
m(K )(∇DPDū)K =

∑
L∈NK

τK |L(xK |L − xK )(ū(xL) − ū(xK )) −
∑

σ∈EK ,ext

τσ (xσ − xK )ū(xK ). (2.17)

Let (∇ū)K be the mean value of ∇ū on K :

(∇ū)K = 1

m(K )

∫
K

∇ū(x) dx .

Thanks to the regularity of ū (and the fact that ū = 0 on the boundary of Ω), there exists C8, only
depending on ū (indeed, C8 only depends on the L∞-norm of the second derivatives of ū), such that, for
all σ = K |L ∈ Eint,

|eσ | � C8hD, with eσ = (∇ū)K · nK ,σ − ū(xL) − ū(xK )

dσ
, (2.18)

and, for all σ ∈ EK ,ext,

|eσ | � C8hD, with eσ = (∇ū)K · nK ,σ − −ū(xK )

dK ,σ
. (2.19)

Thanks to (2.17), (2.18) and (2.19), we get, for all K ∈M:

m(K )(∇DPDū)K =
∑

σ∈EK

m(σ )(xσ − xK )(∇ū)K · nK ,σ + RK ,

with RK = −
∑

σ∈EK

eσ m(σ )d(xσ , xK ). Applying (2.15) gives

m(K )(∇DPDū)K = m(K )(∇ū)K + RK . (2.20)

Using the inequalities (2.18) and (2.19), we have

|RK | � C8

θ
hD

∑
σ∈EK

m(σ )dK ,σ = d C8

θ
hDm(K ). (2.21)

Then, from (2.20) and (2.21), we obtain∑
K∈M

|(∇DPDū)K − (∇ū)K |2m(K ) �
∑

K∈M

(
d C8

θ

)2

h2
Dm(K )

= m(Ω)

(
d C8

θ

)2

h2
D.

(2.22)
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In order to conclude, we remark that, thanks to the regularity of ū, there exists C9, only depending on ū
(here also, C9 only depends on the L∞-norm of the second derivatives of ū), such that:∑

K∈M

∫
K

|∇ū(x) − (∇ū)K |2 dx � C9h2
D. (2.23)

Then, using (2.22) and (2.23), we get the existence of C7, only depending on Ω , θ and ū, such that
(2.16) holds. �
REMARK 2.1 (Choice of the points xK and xσ ) Note that in the proof of Lemma 2.3, one is free to
choose any point lying on K |L instead of xK |L in the definition of the coefficients AK ,L . However, we
need this choice in the proof of the strong consistency of the discrete gradient (Lemma 2.5). Conversely,
in the proof of Lemma 2.5, we could take any point of K instead of xK in the definition of AK ,L . How-
ever, the choice of xK is crucial in the proof of Lemma 2.3: when comparing the terms T5 and T6, one
needs the property of consistency of the normal flux, which follows from the fact that nK ,L = xL−xK

dK |L .

LEMMA 2.6 (A sufficient condition for the strong convergence of the discrete gradient) Let Ω be an
bounded open connected polygonal subset of Rd , d ∈ N	, let θ > 0 and let D be an admissible finite-
volume discretization in the sense of Definition 2.1, such that θD � θ . Assume that there exists a
function uD ∈ HD and a function ū ∈ H1

0 (Ω) such that uD tends to ū in L2(Ω) as hD tends to 0.
Assume also that there exists a function α ∈ L∞(Ω) and α0 > 0 such that α(x) � α0 for a.e. x ∈ Ω
and [uD, uD]D,α tends to

∫
Ω α(x)∇ū(x)2 dx as hD tends to 0. Then ∇DuD tends to ∇ū in L2(Ω)d as

hD tends to 0.

Proof. Let ϕ ∈ C∞
c (Ω) be given (this function is meant to approximate ū in H1

0 (Ω)). Thanks to the
Cauchy–Schwarz inequality, we have∫

Ω
(∇DuD(x) − ∇ū(x))2 dx � 3 (TD7 + TD8 + T9)

with

TD7 =
∫

Ω
(∇DuD(x) − ∇DPDϕ(x))2 dx,

TD8 =
∫

Ω
(∇DPDϕ(x) − ∇ϕ(x))2 dx

and

T9 =
∫

Ω
(∇ϕ(x) − ∇ū(x))2 dx .

We have, thanks to Lemma 2.5,
lim

hD→0
TD8 = 0. (2.24)

Thanks to Lemma 2.2, we have∫
Ω

(∇Dv(x))2 dx � C 2
5 [v, v]D,1 �

C 2
5

α0
[v, v]D,α, ∀v ∈ HD.

We thus get, setting v = uD − PDϕ in the above inequality, that

TD7 �
C 2

5

α0
([uD, uD]D,α − 2[uD, PDϕ]D,α + [PDϕ, PDϕ]D,α).
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We have, applying twice Lemma 2.1, that

lim
hD→0

[uD, PDϕ]D,α =
∫

Ω
α(x)∇ū(x) · ∇ϕ(x) dx (2.25)

and

lim
hD→0

[PDϕ, PDϕ]D,α =
∫

Ω
α(x)∇ϕ(x)2 dx . (2.26)

Under the hypotheses of the lemma, we then get that

lim sup
hD→0

TD7 �
C 2

5

α0

∫
Ω

α(x)(∇ū(x) − ∇ϕ(x))2 dx .

We then get, gathering the above results, setting C10 = C 2
5

α0
ess supx∈Ω α(x) + 1, that∫

Ω
(∇DuD(x) − ∇ū(x))2 dx � C10

∫
Ω

(∇ϕ(x) − ∇ū(x))2 dx + TD10 ,

with
lim

hD→0
TD10 = 0. (2.27)

Let ε > 0. We can choose ϕ such that
∫
Ω(∇ϕ(x) − ∇ū(x))2 dx � ε, and we can then choose hD such

that TD10 � ε. Hence we deduce that

lim
hD→0

∫
Ω

(∇DuD(x) − ∇ū(x))2 dx = 0. (2.28)

�
REMARK 2.2 Thanks to Lemma 2.6, we get the strong convergence of the discrete gradient in the
case of the classical finite-volume scheme for an isotropic problem. Note that in the above proof, we
did not use the weak convergence of the discrete gradient, and therefore, any point of K can be taken
instead of xK in the definition of the coefficients AK ,L . We thus find that the average value in K of the
gradient defined in Eymard et al. (2001) is also strongly convergent (the average of this gradient, defined
by the generalized Raviart–Thomas basis functions, is obtained by replacing xK by the barycentre of
K in the definition of AK ,L ). Note that the drawback of the generalization of the Raviart–Thomas basis
was the difficulty to compute approximate values of the gradients. This drawback no longer exists for
an averaged gradient. Nevertheless, the properties of convergence of the finite-volume method shown
here for non-isotropic problems are only proven for the choice (2.11) in the definition of AK ,L , and not
for the Raviart–Thomas basis.

3. Discretization of the anisotropic diffusion problem (1.1)

3.1 The finite-volume scheme

Under Hypotheses (1.2)–(1.4), let D be an admissible discretization of Ω in the sense of Definition
2.1. The finite-volume approximation to Problem (1.1) is given, for a suitable choice of the function
α ∈ L∞(Ω), as the solution of the following equation:{

uD ∈ HD,∫
Ω(Λ(x) − α(x)Id)∇DuD(x) · ∇Dv(x) dx + [uD, v]D,α = ∫

Ω f (x)v(x) dx, ∀v ∈ HD,
(3.1)
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denoting by Id the identity mapping in Rd . In the sequel, we shall refer to Scheme (3.1) as the ‘gradient
scheme’, since it is obtained from a discretization formula for the gradient. Note that in this formulation,
we use the discrete gradient on part of the the operator only, while on the homogeneous part, we write the
usual cell-centred scheme. This needs to be done in order to obtain the stability of the scheme through
a certain a priori estimate on the discrete solution. If we take α = 0 in (3.1), we are no longer able to
prove the discrete H1 estimate (3.7) below. Taking for v the characteristic function of a control volume
K in (3.1), we may note that (3.1) is equivalent to finding the values (uK )K∈M (we again denote uK

instead of (uD)K ) that comprise the solution of the following system of equations:∑
L∈NK

FK L +
∑

σ∈EK ,ext

FKσ =
∫

K
f (x) dx ∀K ∈M, (3.2)

where

FK L = τK |LαK |L(uK − uL) + (ΛL AL K · ∇DuL − ΛK AK L · ∇DuK ) ∀K |L ∈ Eint, (3.3)

and
FKσ = τKσ ασ uK + ΛK AKσ · ∇DuK ∀σ ∈ EK ,ext. (3.4)

In (3.3) and (3.4), the matrices (ΛK )K∈M are defined by:

ΛK = 1

m(K )

∫
K
(Λ(x) − α(x)Id) dx . (3.5)

One can then complete the discrete expressions of FK L and FKσ using Definition 2.3 for AK L , AKσ

and ∇DuK for all K ∈M, L ∈ NK and σ ∈ EK .
This is indeed a finite-volume scheme, since

FK L = −FL K ∀K |L ∈ Eint.

The mathematical study of this scheme (existence of a solution to (3.1) and proof of the convergence of
this solution to that of Problem (1.1)) is carried out in this paper under the following assumption for α,
denoted by Hypothesis (3.6): the function α ∈ L∞(Ω) is such that there exists α0 > 0 with

0 < α0 � α(x) � λ(x) for a.e. x ∈ Ω, (3.6)

where λ is defined in (1.3).

REMARK 3.1 Note that, in some cases of actual engineering studies involving multiphase flow in soils,
because of computing costs, only coarse meshes can be used and accurate results can only be obtained
if fluxes are computed by harmonic-averaging of absolute permeabilities (this is done in most of the
commercial codes). Hence, in practical implementations of the gradient scheme, one can define the
function α by α(x) = |Λ(x)nK ,σ | for all K ∈M, σ ∈ EK and a.e. x ∈ DK ,σ , and then replace (2.7) by

1

ασ
= 1

m(Dσ )

∫
Dσ

1

α(x)
dx .

In the case where Λ is heterogeneous and isotropic, the above formula reduces to the classical harmonic
average method. However, the mathematical analysis of the gradient scheme in such a case remains an
open problem since, on one hand, this function α depends on the mesh, and on the other hand Hypothesis
(3.6) no longer holds.
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3.2 Discrete H1(Ω) estimate

We now prove the following estimate.

LEMMA 3.1 (Discrete H1 estimate) Under Hypotheses (1.2)–(1.4) and (3.6), let D be an admissible
discretization of Ω in the sense of Definition 2.1. Let u ∈ HD be a solution to (3.1). Then the following
inequality holds:

α0‖u‖D � diam(Ω)‖ f ‖(L2(Ω))2 . (3.7)

Proof. We apply (3.1) setting v = u . We get∫
Ω

(Λ(x) − α(x)Id)∇Du(x) · ∇Du(x) dx + [u, u]D,α =
∫

Ω
f (x)u(x) dx .

Thanks to (3.6), the above relation implies

α0[u, u]D �
∫

Ω
f (x)u(x) dx .

Then the conclusion follows from the discrete Poincaré inequality (2.8). �
We can now state the existence and the uniqueness of a discrete solution to (3.1).

COROLLARY 3.1 (Existence and uniqueness of a solution to the finite-volume scheme). Under Hy-
potheses (1.2)–(1.4) and (3.6), let D be an admissible discretization of Ω in the sense of Definition 2.1.
Then there exists a unique solution uD to (3.1).

Proof. Note that (3.1) is a finite-dimensional linear problem. Assume that f = 0. From the discrete
Poincaré inequality (2.8), we get that u = 0. This proves that the linear problem (3.1) is uniquely
solvable. �

3.3 Convergence

We have the following result, which states the convergence of the gradient scheme (3.1).

THEOREM 3.1 (Convergence of the finite-volume scheme) Under Hypotheses (1.2)–(1.4) and (3.6), let
θ > 0. Let D be an admissible discretization of Ω in the sense of Definition 2.1, such that θD � θ . Let
uD ∈ HD(Ω) be the solution to (3.1). Then

• uD converges in L2(Ω) to ū, the weak solution of Problem (1.1) in the sense of Definition 1.1,

• the discrete gradient ∇DuD converges in L2(Ω)d to ∇ū,

as hD tends to 0.

Proof. We consider a sequence of admissible discretizations (Dn)n∈N such that hDn tends to 0 as
n → ∞ and θDn � θ for all n ∈ N. Thanks to Lemma 3.1, we can apply the compactness result (2.1),
which gives the existence of a subsequence (again denoted (Dn)n∈N) and of ū ∈ H1

0 (Ω) such that uDn

(given by (3.1) with D = Dn) tends to ū in L2(Ω) as n → ∞. Let ϕ ∈ C∞
c (Ω) be given; we choose

v = PDn ϕ as test function in (3.1). We obtain∫
Ω

(Λ(x) − α(x)Id)∇Dn uDn (x) · ∇Dn PDn ϕ(x) dx + [
uDn , PDn ϕ

]
Dn ,α

=
∫

Ω
f (x)PDn ϕ(x) dx . (3.8)
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We let n → ∞ in (3.8). Thanks to Lemma 2.3 and Lemma 2.5 (which provide a weak/strong conver-
gence result), we get that

lim
n→∞

∫
Ω

(Λ(x) − α(x)Id)∇Dn uDn (x) · ∇Dn PDn ϕ(x) dx =
∫

Ω
(Λ(x) − α(x)Id)∇ū(x) · ∇ϕ(x) dx .

Using Lemma 2.1, we deduce that

lim
n→∞

[
uDn , PDn ϕ

]
Dn ,α

=
∫

Ω
α(x)∇ū(x) · ∇ϕ(x) dx .

Since it is easy to see that

lim
n→∞

∫
Ω

f (x)PDn ϕ(x) dx =
∫

Ω
f (x)ϕ(x) dx,

we thus get that any limit ū of a subsequence of solutions satisfies (1.5) with v = ϕ. A classical density
argument and the uniqueness of the solution to (1.5) permit to conclude the convergence in L2(Ω) of
uD to ū, the weak solution of the problem in the sense of Definition 1.1, as hD tends to 0, thanks to the
fact that θD � θ . Let us now prove the strong convergence of ∇DuD to ∇ū. We have, using (3.1) with
v = uD, ∫

Ω
(Λ(x) − α(x)Id)∇DuD(x) · ∇DuD(x) dx =

∫
Ω

f (x)uD(x) dx − [uD, uD]D,α. (3.9)

Thanks to Lemma 2.1, we have∫
Ω

α(x)∇ū(x)2 dx � lim inf
hD→0

[uD, uD]D,α,

and therefore, passing to the limit in (3.9), we get that

lim sup
hD→0

∫
Ω

(Λ(x) − α(x)Id)∇DuD(x) · ∇DuD(x) dx �
∫

Ω
f (x)uD(x) dx −

∫
Ω

α(x)∇ū(x)2 dx .

We then have, letting v = ū in (1.5),∫
Ω

(Λ(x) − α(x)Id)∇ū(x) · ∇ū(x) dx =
∫

Ω
f (x)ū(x) dx −

∫
Ω

α(x)∇ū(x)2 dx . (3.10)

This leads to

lim sup
hD→0

∫
Ω

(Λ(x) − α(x)Id)∇DuD(x) · ∇DuD(x) dx �
∫

Ω
(Λ(x) − α(x)Id)∇ū(x) · ∇ū(x) dx .

Using Lemma 2.3, which states the weak convergence of the gradient ∇DuD to ∇ū, we get that∫
Ω

(Λ(x) − α(x)Id)∇ū(x) · ∇ū(x) dx � lim inf
hD→0

∫
Ω

(Λ(x) − α(x)Id)∇DuD(x) · ∇DuD(x) dx .

The above inequalities yield

lim
hD→0

∫
Ω

(Λ(x) − α(x)Id)∇DuD(x) · ∇DuD(x) dx =
∫

Ω
(Λ(x) − α(x)Id)∇ū(x) · ∇ū(x) dx . (3.11)
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From (3.9), (3.10) and (3.11), we thus obtain that

lim
hD→0

[uD, uD]D,α =
∫

Ω
α(x)∇ū(x)2 dx .

Therefore, we can apply Lemma 2.6. This completes the proof of the strong convergence of the discrete
gradient. �

3.4 Error estimate

We now give an error estimate, assuming first that the solution of (1.5) is in C2( �Ω). In Theorem 3.3, we
will consider the weaker hypothesis that the solution of (1.5) is only in H2(Ω) under the assumption
d � 3.

THEOREM 3.2 (C2 error estimate) Assume Hypotheses (1.2)–(1.4) and (3.6) and that Λ and α are of
class C1 on �Ω . Let D be an admissible finite-volume discretization (in the sense of Definition 2.1). Let
θ ∈ (0, θD], where θD is defined by (2.4). Let uD ∈ HD be the solution of (3.1) and ū ∈ H1

0 (Ω) be the
solution of (1.5). We assume that ū ∈ C2( �Ω).

Let us first assume that∫
σ

Λ(x)n∂Ω(x) · (xσ − zσ ) dγ (x) = 0 ∀σ ∈ Eext, (3.12)

where n∂Ω(x) is the unit normal vector to ∂Ω at point x , outward to Ω .
Then, there exists C11 only depending on Ω , θ , α0, α, β, Λ and ‖ū‖C2(Ω), such that:

‖uD − PDū‖D � C11hD, (3.13)

‖uD − ū‖L2(Ω) � C11hD (3.14)

and
‖∇DuD − ∇ū‖L2(Ω)d � C11hD. (3.15)

If (3.12) does not hold, then there exists C12, only depending on Ω , θ , α, β, Λ and ‖ū‖H2(Ω), such that

(3.38), (3.39) and (3.40) hold with C12
√

hD instead of C11hD.

REMARK 3.2 Let us give some sufficient (and practical) conditions for (3.12) to hold.

• If the normal vector to ∂Ω is an eigenvector of Λ(x) for a.e. x ∈ ∂Ω , then (3.12) holds. Since this
property is always satisfied in the isotropic case, the error estimate on the gradient (3.15) holds for
the classical cell-centred scheme, for any admissible mesh.

• If for all σ ∈ Eext with σ ∈ EK , the barycentre xσ of σ is equal to the orthogonal projection zσ of
xK on σ , then (3.12) holds. This hypothesis is easy to ensure on rectangular and triangular meshes.

Note also that one could replace (3.12) by |zσ − xσ | � 1
θ diam(K )(hD)

1
2 for all σ ∈ Eext.

Proof. In the proof, we denote by Ci (i ∈ N), various quantities only depending on Ω , θ , α0, α, β, Λ
and ‖ū‖C2(Ω).
Step 1 Let v ∈ HD. We first perform an estimation of a consistency error, namely, a bound for |T11(v)|,
where T11(v) is defined by:∫

Ω
(Λ(x) − α(x)Id)∇DPDū(x) · ∇Dv(x) dx + [PDū, v]D,α =

∫
Ω

f (x)v(x) dx + T11(v). (3.16)
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We first consider the second term of the left-hand side of (3.16). Using classical consistency error esti-
mation (also used in the proof of Lemma 2.1), one has:

[PDū, v]D,α = −
∫

Ω
div(α∇ū)(x)v(x) dx + T12(v), (3.17)

with
|T12(v)| �

∑
σ∈E

m(σ )|Rσ |δσ v,

where δσ v = |vK − vL | if σ = K |L is an interior edge, δσ v = |vK | is σ ∈ Eext and |Rσ | � C13hD.
Using the Cauchy–Schwarz inequality, this leads to:

|T12(v)| � C14hD‖v‖D. (3.18)

We now consider the first term of the left-hand side of (3.16). We have∫
Ω

(Λ(x) − α(x)Id)∇DPDū(x) · ∇Dv(x) dx = T13(v) + T14(v), (3.19)

with

T13(v) =
∫

Ω
(Λ(x) − α(x)Id)∇ū(x) · ∇Dv(x) dx

and
|T14(v)| � C15‖∇DPDū − ∇ū‖L2(Ω)d ‖∇Dv‖L2(Ω)d .

Using Lemma 2.5 and Lemma 2.2, we obtain

|T14(v)| � C16hD‖v‖D. (3.20)

We now compute T13(v). For K ∈ M and σ ∈ E , let µK and µσ , respectively, be the mean values of
(Λ(x) − α(x)Id)∇ū on K and σ :

µK = 1

m(K )

∫
K
(Λ(x) − α(x)Id)∇ū(x) dx, µσ = 1

m(σ )

∫
σ
(Λ(x) − α(x)Id)∇ū(x) dγ (x).

The regularity of ū, Λ and α gives, for all K ∈M and all σ ∈ EK (recall that |·| denotes the Euclidean
norm in Rd ):

|µK − µσ | � C17hD. (3.21)

Indeed, C17 only depends on the L∞-norms of Λ, α and ∇ū and on the L∞-norms of the derivatives of
Λ, α and ∇ū.

We now use (3.21) in order to give a bound on T13(v) as a function of hD. Indeed, the definition of ∇Dv
leads to:

T13(v) =
∑

K∈M
µK · m(K )(∇Dv)K

=
∑

K∈M

⎛⎝ ∑
L∈NK

µK · AK ,L (vL − vK ) −
∑

σ∈EK ,ext

µK · AK ,σ vK

⎞⎠
=

∑
K∈M

⎛⎝ ∑
L∈NK

µK |L · AK ,L (vL − vK ) −
∑

σ∈EK ,ext

µσ · AK ,σ vK

⎞⎠ + T15(v),
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with

|T15(v)| � C17hD
∑

K∈M

⎛⎝ ∑
L∈NK

|AK ,L ||vL − vK | +
∑

σ∈EK ,ext

|AK ,σ ||vK |
⎞⎠

� C17hD

⎛⎝ ∑
σ=K |L∈Eint

(|AK ,L | + |AL ,K |)|vL − vK |

+
∑

K∈M

∑
σ∈EK ,ext

|AK ,σ ||vK |
⎞⎠ .

Since AK ,L = τK |L(xK |L − xK ) and AK ,σ = τσ (xσ − xK ), one deduces from the preceding inequality,
thanks to the definition of θD (which gives d(xσ , xK ) � (dK ,σ /θ) if σ ∈ EK ) and using the Cauchy–
Schwarz inequality:

|T15(v)| � C18hD‖v‖D. (3.22)

We now remark that:

T13(v) − T15(v) =
∑

K∈M

⎛⎝ ∑
L∈NK

µK |L · AK ,L (vL − vK ) −
∑

σ∈EK ,ext

µσ · AK ,σ vK

⎞⎠
=

∑
σ=K |L∈Eint

µσ · (xL − xK )τσ (vL − vK )

−
∑

K∈M

∑
σ∈EK ,ext

µσ · (xσ − xK )τσ vK . (3.23)

For σ ∈ Eint, one has σ = K |L and (xL − xK ) = dσ nK ,σ , where nK ,σ is the normal vector to σ exterior
to K .
For σ ∈ Eext, one has σ ∈ EK . Thanks to the fact that under homogeneous Dirichlet boundary conditions,
the gradient of ū is normal to the boundary, using Assumption (3.12), we get that

µσ · (xσ − xK )τσ =
∫

σ
(Λ(x) − α(x)Id)∇ū(x) · n∂Ω(x) dγ (x).

Then, one deduces from (3.23):

T13(v) − T15(v) = −
∫

Ω
div((Λ − α Id)∇ū)(x)v(x) dx . (3.24)

Therefore, since −div(Λ∇ū) = f , one has (3.16) with T11(v) = T12(v) + T14(v) + T15(v). This gives,
with (3.18), (3.20) and (3.22):

|T11(v)| � C19hD‖v‖D. (3.25)

This concludes Step 1.
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Step 2 Let eD = PDū − uD be the discrete discretization error. Using (3.16) and (3.1) gives, for all
v ∈ HD: ∫

Ω
(Λ(x) − α(x)Id)∇DeD(x) · ∇Dv(x) dx + [eD, v]D,α = T11(v).

Taking v = eD in this formula gives, with (3.25), [eD, eD]D,α � C19hD‖eD‖D and then, with C20 =
C19/α0 (since α0‖eD‖2

D � [eD, eD]D,α):

‖eD‖D � C20hD, (3.26)

which is exactly (3.13).
Using the discrete Poincaré estimate (2.8) and the fact that ū ∈ C( �Ω), one deduces (3.14)

from (3.13).
The last estimate, inequality (3.15), is a direct consequence of (3.26), (2.16) and (2.13). This con-

cludes the first part of the theorem, i.e. assuming (3.12).
If D no longer satisfies the hypothesis (3.12), one has to replace (3.24) by:

T13(v) − T15(v) = −
∫

Ω
div((Λ − α Id)∇ū)(x)v(x) dx + T15(v),

where, recalling that by zσ the orthogonal projection of xK on σ (see Definition 2.1):

T16(v) =
∑

K∈M

∑
σ∈EK ,ext

µσ · (zσ − xσ )τσ vK .

Thanks to the Cauchy–Schwarz inequality, we get

T16(v)2 �
∑

K∈M

∑
σ∈EK ,ext

τσ µ2
σ (diam(K ))2

∑
K∈M

∑
σ∈EK ,ext

τσ v2
K ,

which leads to

T16(v)2 � hD
θ

m(∂Ω)‖∇ū‖2∞‖v‖2
D,

where m(∂Ω) is the (d − 1)-dimensional Lebesgue measure of ∂Ω . This gives (3.25) with h
1
2
D instead

of hD. Following Step 2, this allows to conclude the proof. �
We now want to derive an error estimate when the solution of (1.5) is in H2(Ω) instead of

C2( �Ω), in the case where the space dimension is less than or equal to 3. Indeed, the C2-regularity of the
solution of (1.5) was used, in the preceding proofs, only four times, namely, to prove (2.18), (2.19) and
(2.23) in Lemma 2.5 and to prove (3.21) in Theorem 3.2 (in fact, it is also used for the classical con-
sistency error (3.17), but, for this term, the generalization to the case where the solution of (1.5) is in
H2(Ω) instead of C2( �Ω), in the case d � 3, has already been done in Eymard et al. (2000)). We will
now prove similar inequalities for ū ∈ H2(Ω) ∩ H1

0 (Ω) (instead of ū ∈ C2(Ω) with ū = 0 on the
boundary of Ω) which will allow us to obtain the desired error estimate.

LEMMA 3.2 (Consistency of the gradient, ū ∈ H2(Ω)) Under hypothesis (1.2), with d � 3, let D
be an admissible finite-volume discretization in the sense of Definition 2.1, and let θ ∈ (0, θD]. Let
ū ∈ H2(Ω) ∩ H1

0 (Ω). Then, there exists C21, only depending on Ω , θ and ū, such that:

‖∇D(PDū) − ∇ū‖L2(Ω)d � C21hD‖ū‖H2(Ω). (3.27)

(Recall that PD is defined in (2.5) and ∇D in Definition 2.3.)
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Proof. The proof follows along the same lines as the proof of Lemma 2.5 (in particular, recall that
H2(Ω) ⊂ C( �Ω) since d � 3). The C2-regularity was only used to prove (2.18), (2.19) and (2.23). We
now prove similar inequalities in the case ū ∈ H2(Ω).

We begin with providing inequalities similar to (2.18) and (2.19). We denote by (∇ū)σ the mean
value of ∇ū on σ (recall that (∇ū)K is the mean value of ∇ū on K ). We use inequality (9.63) of
Eymard et al. (2000) (in the proof of Theorem 9.4, using the H2-regularity). This inequality states the
existence of C22, only depending on d and θ , such that, for all σ = K |L ∈ Eint:

|Eσ |2 � C22
h2
D

m(σ )dσ

∫
Dσ

|H(ū)(z)|2 dz, with Eσ = (∇ū)σ · nK,σ − ū(xL) − ū(xK)

dσ
, (3.28)

and, for all σ ∈ Eext, if σ ∈ EK :

|Eσ |2 � C22
h2
D

m(σ )dσ

∫
Dσ

|H(ū)(z)|2 dz, with Eσ = (∇ū)σ · nK,σ − −ū(xK)

dK,σ
, (3.29)

where:

|H(ū)(z)|2 =
d∑

i, j=1

|Di D j ū(z)|2.

We have now to compare (∇ū)σ and (∇ū)K . This is possible thanks to inequality (9.38) in Lemma 9.4
of Eymard et al. (2000). Following this result, there exists C23, only depending on d and θ , such that,
for all K ∈M, all σ ∈ EK and all v ∈ H1(K ):∣∣∣∣ 1

m(K )

∫
K

v(x) dx − 1

m(σ )

∫
σ

v(x) dγ (x)

∣∣∣∣2

� C23
diam(K )

m(σ )

∫
K

|∇v(x)|2 dx

� 2C23
h2
D

m(σ )dσ

∫
K

|∇v(x)|2 dx . (3.30)

Using (3.30) with the derivatives of u, one deduces from (3.28) and (3.29), that there exists some real
value C24 only depending on d and θ , such that

|eσ |2 � C24
h2
D

m(σ )dσ

∫
Dσ

|H(ū)(z)|2 dz, with eσ = (∇ū)K · nK,σ − ū(xL) − ū(xK)

dσ
, (3.31)

and, for all σ ∈ Eext, if σ ∈ EK :

|eσ |2 � C24
h2
D

m(σ )dσ

∫
Dσ

|H(ū)(z)|2 dz, with eσ = (∇ū)K · nK,σ − −ū(xK)

dK,σ
. (3.32)

Since |RK | � ∑
σ∈EK

m(σ )dK ,σ

θ |eσ | (where RK is defined in (2.20)), using the Cauchy–Schwarz in-
equality, (3.31) and (3.32) lead to the following bound:

R2
K �

1

θ2

∑
σ∈EK

m(σ )dK ,σ

∑
σ∈EK

m(σ )dK ,σ e2
σ

� dm(K )

θ2

∑
σ∈EK

m(σ )dK ,σ C24
h2
D

m(σ )dσ

∫
Dσ

|H(ū)(z)|2 dz
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and since dK ,σ � dσ and θD � θ :(
RK

m(K )

)2

m(K ) � d C24

θ2
h2
D

∑
σ∈EK

∫
Dσ

|H(ū)(z)|2 dz.

Then, (2.22) becomes:∑
K∈M

|(∇DPDū)K − (∇ū)K |2m(K ) �
∑

K

d C24

θ2
h2
D

∑
σ∈EK

∫
Dσ

|H(ū)(z)|2 dz,

which gives the existence of C25, only depending on d and θ such that:∑
K∈M

|(∇DPDū)K − (∇ū)K |2m(K ) � C25h2
D‖ū‖2

H2(Ω)
. (3.33)

We have now to obtain an inequality similar to (2.23) (but without using ū ∈ C2( �Ω)). We will use here
the fact that dK ,σ � θdiam(K ) if σ ∈ EK .

If ω is a convex, bounded, open subset of Rd , the well-known ‘Mean Poincaré Inequality’ gives, for
all v ∈ H 1(ω): ∫

ω
|v(x) − mωv|2 dx � 1

m(ω)
d2
ωm(B(0, dω))

∫
ω

|∇v(x)|2 dx, (3.34)

where mω(v) is the mean value of v on ω, dω is the diameter of ω, B(a, δ) is the ball in Rd of centre a
and radius δ and m(ω) (resp. m(B(a, δ)) is the d-dimensional Lebesgue measure of ω (resp. B(a, δ)).
(A discrete counterpart of (3.34) is given, for instance, in Eymard et al. (2000, Lemma 10.2.))
Let K ∈M. We will use (3.34) for ω = K . Since dK ,σ is the distance between xK to σ (for σ ∈ EK ),
there exists σ ∈ EK such that B(xK , dK ,σ ) ⊂ K . Then, one has m(B(0, 1))dd

K ,σ = m(B(xK , dK ,σ )) �
m(K ) and, using dK ,σ � θdiam(K ), one obtains:

m(K ) � m(B(0, 1))(θ)d(diam(K ))d . (3.35)

Taking ω = K in (3.34) gives, for all K ∈M and all v ∈ H1(K ):∫
K

|v(x) − mωv|2 dx � 1

θd
diam(K )2

∫
K

|∇v(x)|2 dx . (3.36)

Taking v equal to the derivatives of ū (which are in H1(K ) for all K ∈M) in (3.36) gives the existence
of C26, only depending on d and θ , such that:∑

K∈M

∫
K

|∇ū(x) − (∇ū)K |2 dx � C26h2
D‖ū‖2

H2(Ω)
. (3.37)

Then, we conclude as in Lemma 2.5, using (3.33) and (3.37), that there exists C21 only depending on
Ω , θ and ū such that (3.27) holds. �
THEOREM 3.3 (H2 error estimate) Assume hypotheses (1.2)–(1.4) and (3.6), with d � 3 and that Λ and
α are of class C1 on �Ω . LetD be an admissible finite-volume discretization in the sense of Definition 2.1,
and let θ ∈ (0, θD]. We assume that the card(EK ) � 1

θ for all K ∈M. Let uD ∈ HD be the solution of
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(3.1) and ū ∈ H1
0 (Ω) be the solution of (1.5). We assume that ū ∈ H2(Ω) (which is necessarily true if

Ω is convex).
Let us first assume that hypothesis (3.12) holds. Then, there exists C27, only depending on Ω , θ , α,

β, Λ and ‖ū‖H2(Ω), such that:

‖uD − PDū‖D � C27hD, (3.38)

‖uD − ū‖L2(Ω) � C27hD (3.39)

and
‖∇DuD − ∇ū‖L2(Ω)d � C27hD. (3.40)

(Recall that HD, ∇D and ‖·‖D are defined in Definition 2.3, PD is defined in (2.5).)
Let us then assume that (3.12) no longer holds, then there exists C28, only depending on Ω , θ , α, β,

Λ and ‖ū‖H2(Ω), such that (3.38), (3.39) and (3.40) hold with C28
√

hD instead of C27hD.

Proof. The proof of Theorem 3.3 follows the same lines as the proof of Theorem 3.2. The quantities
C25 and C26, depending on θ , are now used to get a bound for T12(v) (as in Aavatsmark et al., 1998a),
and the quantity C16, also depending on θ since it is obtained with (3.27) (Lemma 3.2) instead of (2.16)
(Lemma 3.2), is used to obtain a bound for T14(v).

In order to obtain a bound for T15(v) (and then to conclude the proof of Theorem 3.3), we need
to obtain an inequality similar to (3.21) (where the C2-regularity of ū was used), which gives a bound
for the difference between the mean values of (Λ(x) − α(x)Id)∇ū on K and σ if σ ∈ EK . Here, we
will obtain a bound for the difference between these mean values using once again the consequence
(3.30) of inequality (9.38) in Lemma 9.4 of Eymard et al. (2000). Applying (3.30) to the derivatives of
(Λ − α Id)∇ū, there exists C29 only depending on Ω , θ , Λ and α (indeed, the C1-norms of Λ and α),
such that, for all K ∈M, all σ ∈ EK and all v ∈ H1(K ):

|µK − µσ |2 � C29
diam(K )

m(σ )
‖ū‖2

H2(K )
. (3.41)

Following the proof of Theorem 3.2, (3.41) is used to obtain a bound for T15(v):

|T15(v)| �
∑

K∈M

⎛⎝ ∑
L∈NK

|µK |L − µK ||AK ,L (vL − vK )| +
∑

σ∈EK ,ext

|µσ − µK ||AK ,σ vK |
⎞⎠

�
∑

σ=K |L∈Eint

|µσ − µK | + |µσ − µL |
θ

m(σ )dσ
δσ v

dσ
+

∑
σ∈Eext

|µσ − µK |
θ

m(σ )dσ
δσ v

dσ
,

where, in the last term, K is such that σ ∈ EK and where δσ v = |vK − vL | if σ = K |L ∈ Eint and
δσ v = |vK | if σ ∈ Eext ∩ EK . (We also used the fact that |AK ,L | � m(σ )

θ and |AK ,σ | � m(σ )
θ , thanks to

θD � θ .)
Then, using Cauchy–Schwarz inequality and (3.41), one obtains:

|T15(v)| � ‖v‖D
√

2C5

θ

⎛⎝ ∑
σ=K |L∈Eint

dσ (diam(K )‖ū‖2
H2(K )

+ diam(L)‖ū‖2
H2(L)

)

+
∑

σ∈Eext

dσ diam(K )‖ū‖2
H2(K )

⎞⎠
1
2

.
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Using dσ � 2hD, diam(K ) � hD and the fact that card(EK ) � 1
θ for all K ∈ M, one deduces the

existence of C6, only depending on Ω , θ , Λ and α, such that:

|T15(v)| � C6hD‖ū‖H2(Ω)‖v‖D. (3.42)

Then, we conclude the proof of Theorem 3.3 exactly as in the proof of Theorem 3.2 ((3.42) replaces
(3.22)). �

4. Numerical results

The gradient scheme was tested for various academic problems, for which the analytical solution is
known. We first recall that, in the case where Λ(x) = α0 Id and α(x) = α0 for some α0 > 0 and
for a.e. x ∈ Ω , the gradient scheme reduces to the classical cell-centred finite-volume scheme for
the computation of the approximate solution, while providing in addition an approximate value for the
gradient of the continuous solution. First note that in the classical cell-centred scheme, the equation
relative to a given cell involves the neighbours of this cell, while in the gradient scheme, it involves
the neighbours of this cell and the neighbours of the neighbours. Hence, in the case of a rectangular
(resp. parallelepiped) mesh, the classical cell-centred scheme is a 5-point (resp. 7 point) scheme, while
the gradient scheme is a 13-point (resp. 24 point) scheme. Similarly, if one uses a triangular (resp.
tetrahedral) mesh, the classical scheme is a 4-point (resp. 5 point) scheme, while the gradient scheme is
at most a 10-point (resp. at most 17 point) scheme. Hence, on isotropic problems, the gradient scheme
is more expensive in terms of time and memory than the classical finite-volume scheme; however, in
anisotropic cases where the classical finite-volume scheme no longer applies, its cost is comparable to
that of the piecewise bilinear finite-element scheme in the case of a parallelepiped mesh (or a finite-
volume scheme with vertex-centred reconstructed gradient), which leads to a 9-point scheme (2D) and
a 27-point scheme (3D).

Experiments were carried out for Ω = (0, 1) × (0, 1), using triangular and rectangular meshes. In
order to obtain convergence ratios, the number of cells was varied from 1600 to 102400 for rectangular
meshes (note that, in fact, rectangles are squares) and from 1400 to 89600 for triangular meshes.

Let us first consider the case Λ(x) = Id for a.e. x ∈ Ω , with the solution of Problem (1.1) given
by ū(x1, x2) = x1(1 − x1)x2(1 − x2). In this case, we found an order 2 for the convergence of the
approximate solution for both types of meshes and an order 1.5 for the gradient computed on rectangular
meshes and 1 in the case of triangular meshes (the convergence rates being fitted, using a least-square
regression on the logarithmic values of the errors and of the characteristic size of the mesh).

We then tested the gradient scheme for a heterogeneous anisotropic problem inspired by Le Potier
(2005). Let us define x̄ = (−0.1, −0.1), and for any x = (x1, x2), denoting x̃i = xi − x̄i , i = 1, 2, set

Λ(x) =
(

x̃2
2 + εx̃2

1 −(1 − ε)x̃1 x̃2

−(1 − ε)x̃1 x̃2 x̃2
1 + εx̃2

2

)
,

for the three values ε = 1, ε = 10−2 and ε = 10−4. Then the eigenvalues of Λ(x) are equal to
λ(x) = ε|x − x̄ |2 and λ(x) = |x − x̄ |2: the anisotropy ratio is therefore 1/ε in the whole domain. Note
that, thanks to the choice x̄ = (−0.1, −0.1), we have infx∈Ω λ(x) = 0.02ε and supx∈Ω λ(x) = 2.42ε
(similar relations hold on λ) which corresponds to a highly heterogeneous case from both the point of
view of the magnitude of the ratio of the eigenvalues and that of the directions of anisotropy: indeed,
since these directions are not constant in space, one may not solve the problem by a classical finite-
volume method on a tilted rectangular mesh.
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REMARK 4.1 We have also successfully performed the computations with x̄ = (0, 0), as in
Le Potier (2005), and obtained results similar to that of Le Potier (2005). However, in this case, one
has infx∈Ω λ(x) = 0, so that inequality (1.3) does not hold, and no theoretical estimate may be obtained
in this case.

Assume that the solution of problem (1.1) is given by ū(x) = sin(πx1) sin(πx2); in this case,
‖ū‖L2(Ω) = 1/2 and ‖∇ū‖L2(Ω) = π/

√
2, and the function f satisfies:

f (x) = π2(1 + ε) sin(πx1) sin(πx2)|x − x̄ |2 + π(1 − 3ε) cos(πx1) sin(πx2)x̃1

+ π(1 − 3ε) sin(πx1) cos(πx2)x̃2 + 2π2(1 − ε) cos(πx1) cos(πx2)x̃1 x̃2.

The rates of convergence obtained in this case, with the choice α(x) = λ(x) for a.e. x ∈ Ω , are given in
the following table.

ε = 1 ε = 10−2 ε = 10−4

Triangles Rectangles Rectangles Rectangles
u 2.0 2.0 2.1 2.4
∇u 1.0 2.0 1.7 1.9

These results indicate that the use of the gradient scheme leads to a correct numerical behaviour,
indeed, comparable with low-degree finite-element schemes on similar problems.

Next, we tested different choices for the function α, taken to be of the form α(x) = α̂ λ(x) for a
given α̂ > 0 and for a.e. x ∈ Ω (note that, for α̂ > ε, assumption (3.6) no longer holds). The results
obtained are shown in Fig. 2. It seems that there is some dependence of the optimal value of α̂ on the
type of mesh and the eigenvalues of Λ and that this optimal value seems to differ for the solution and
its gradient. In our numerical experiments, we found the choice α = λ (namely, the lowest eigenvalue
which was indeed chosen in the theoretical study) to be robust and convenient. We also performed some
tests with large and small values of α̂ (not shown in Fig. 2, for ease of readability) and found the error
to tend to 1/2 as α̂ tends to infinity irrespective of the value of ε, whereas the error stays bounded and
small as α̂ tends to 0 (e.g. this error tends to 3.9 × 10−2 for ε = 10−2 on the 160 × 160 mesh, or to
6.2 × 10−3 for ε = 10−4 on the 320 × 320 mesh).

5. Conclusion

In this paper, we constructed a discrete gradient for piecewise constant functions. This discrete gradient
exhibits several advantages: it is easy and cheap to compute, and it provides a simple scheme for the
approximation of anisotropic convection-diffusion problems. We showed a weak convergence property
of this discrete gradient to the gradient of the limit of the sequence of functions, together with a consis-
tency property, both leading to the strong convergence of the discrete solution and of its discrete gradient
in the case of a Dirichlet problem with full matrix diffusion.

Since this notion of admissible mesh includes Voronoı̈ meshes, which are more and more used
in practice, and which seem to remain tractable even in high space dimensions, applications to finan-
cial mathematics problems are being studied (Berton, 2006). Applications to finite-volume schemes for
compressible Navier–Stokes equations are also expected to be succesful (Touazi, 2007). Further work
includes a parametric study and the generalization to meshes without the orthogonality condition.
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FIG. 2. Variation of the L2 errors in the solution (left) and its gradient (right) for ε = 1 (top), ε = 10−2 (middle), ε = 10−4

(bottom) for the 40 × 40 and 160 × 160 rectangular meshes, and the 1400 and 22400 triangular meshes, with respect to the value
of the parameter α̂.
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