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In this paper we prove the existence of solutions for equations of the type
—div(a(-, Pu))=f in a bounded open set @,u=0 on 82, where ¢ is a possibly
non-linear function satisfying some coerciveness and monotonicity assumptions and
fis a bounded measure. We also consider the equation —div{a(-, Du))+ gl u)=1
in £, u=0 on 3@ {with fe LYQ), or fe M(£2), g(-, #)-1=0) and the parabolic
equivatent of the first (elliptic} equation.  © 1989 Academic Press, Inc.

[. INTRODUCTION

1. Throughout this paper @ is a bounded open set of R (N=2).
We begin with some remarks on the well-known problem

Au=f inQ,
(1)
u=10 on 082,

where A is a linear, uniformly elliptic operator, with bounded coefficients
and feM(Q2}). M{£2) denotes the set of bounded measures on 2 (finite

Radon measures).
Problem (1) is known to have a solution in a suitable sense, but this
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150 BOCCARDO AND GALLOUET

solution is not obtained as easily as in the case where f lies in H ).
If for example A is taken to be — 4, it seems “natural” to introduce

E(u)=%jg |Duldx — {fiud, wue H Q) C(Q).

Unfortunately the solutions of (1) are not in general critical points of £
For instance, the minimum value of £ can be —ac.

A solution of (1) will be obtained by solving (1) with fin H 1) and
obtaining estimates on u, that will only depend on 4, €, and |/ 1. A
classical method (see [S] for instance) yields a solution of (1) through a
duality and and a C%%regularity argument. Indeed, if fe W17 with
g' > N, then u, solution of (1), lies in C™* and the mapping f —  is a linear
continuous map from W~ % in C** A duality argument then implies that
the adjoint operator maps M(Q2) into Wh#(Q).

Such a method leads to estimates on u» in WI9Q), for all
1 =g < N/(N—1), that only depend on 4, Q, and || /|| ,..

This method is however restricted to a linear setting, at least when [ lies
in M(Q2). In the case of a non-linear operator 4 with f in M(£2), it is
usually assumed that the principal part of 4 is linear (see, e.g., [BS, BBC,
GM1, GM2, G, BP]).

. 2. Our first goal in the present study (Section II) is to obtain a
solution of (1) with fin M(2) and a non-linear operator 4 of the form

Au= —div(g(x, Du)),

= with a function g: 2 x R" —» R” satisfying the following set of hypotheses:

a(x, &) is measurable in xe, for all ¢ in RY and
continuous in e R”, for ae. x in ©; (2)

there exist three constants p, M, o, with pe (2 — /N, N7,
M=0, «>0, such that, for any ¢ in R" with
1€l > M, a(x, &) Ez a |¢)7, for ae. x in Q, a(x, 0)=0; (3)

there exists a function b in L”{Q),p' = p/(p—1), and a
constant K20 such that, for any ¢ in RY, |a(x, &) <
K(b(x)+ &7, for ae x in Q; 4)

there exist three constants s, v, K and a function 4 such
that s22,de LY(Q), y<(s— DN/(N—1))p—1), K=0,
and  (a(x, &) = a(x, aN(E —m = (YB(x, & m)} |E—n|* for
ae. x in @ and any &4 in RY, 0<Bix, &n)<

K&~ (x)+ €7+ iy]7) for ae. x in Q and ¢ nin RY, (5)
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The hypotheses (2), (3), (4) are classical in the study of non-linear
operators in divergence form (see [LL]). The additional assumption on p,
ie, pe(2—1/N, N, is motivated, as far as the lower bound is concerned,
by Remark I in Section I[. The upper bound p< N is not a limitation,
because if p > N problem (1) is known to have a unique (variational) weak
solution in W #(£2) (see, e.g., [LL]), since M(Q) is included in W~ #(L).

Hypothesis {5) is more technical. It is more restrictive than strict
monotonicity and less restrictive than strong monotonicity. It should be
noted that an hypothesis such as (5} is almost never satisfied for “small
|&E—nl," if s is strictly less than 2.

The model example of function g satisfying (2)-(5) is a(x, &)= |£|F 2%
(p as in (3}), in which case (5) is satisficd with s=p, y=0 when p=2,
and with s=2, y=2— p when p<2. Furthermore y<(N/(N—1))(p—1)
since p>2—1/N. The corresponding operator is Au= —A,u=
—div(|Du|”~*Du).

The proof of the existence of a solution of (1) when f lies in M(£2) is
divided in three steps. First (1) is shown to have a unique weak solution
win Wpe(2) for fin W1#(Q) (cf. [LL]). Then estimates on u in
Wh9(3), for all 1 =g < (N/(N—1)}p—1), that only depend on £, g, and
ilf] . are obtained. In the last step, an arbitrary f of M(2) is considered
and approximated by a sequence (f,) in W~ 17(€) which converges to f.
The limiting process hinges of the proof of the almost pointwise con-
vergence of the sequence (Du,), where u, is the weak solution of (1} with
f=/ '

The second part of this paper (Section III) is devoted to a generalization
of a few results of [BS, GM2, G] to the case of non-linear operators with
non-linearity on the principal part of the operator with the help of the
method introduced in Section II. Roughly speaking, we investigate
equations of the kind

Autglx,u)=f inQ
u=0 on 482,

(6)

A is as in Section II, g{-,u)u=0, and f in L'(£2). It should be
emphasized that, even when A4 is taken to be — 4, the existence of ¥ cannot
be expected for fin M(£2) whenever g increases too rapidly at infinity. The
reader is referred to [GM1, BP] for a characterization of the “admissible”
measures f when g is an increasing function of # and A4 is — 4.

The third part of this paper (Section IV) examines the parabolic
analogous of the equations studied in Section II.
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IT1. EXISTENCE OF SOLUTIONS FOR A NON-LINEAR ELLIPTIC
OPERATOR IN DIVERGENCE FORM AND A RIGHT HAND SIDE f IN M(£2)

3. Let us consider, for an arbitrary f in M{Q2), the equation

Au=f in
u=1_0 on 842,

where du= —div(g(- Du)), and g satisfies (2)-(5).
A function u will be called a weak solution of (7) if it satisfies

ue Wyl(), a(-, Duye L, (Q) and

(8)

[ alx, Du) Dv= {f, v), for any v in C{°(Q2).
2

Our first result is the following.

THEOREM 1. Let a satisfy (2)-(5) and f be an element of M(Q). Then
there exists a weak solution u of (7) with the regularity ue Wy 4(RQ) for all
Tsg<(N/(N—-1))p~—~1).

Remark 1. As already mentioned in the Introduction, Theorem 1 is
also true when p> N in (3), in which case hypothesis (5) is not necessary.
The existence of u is then an easy conmsequence of the results of

. Leray-Lions [LL7, since M(R2) is included in W~1#(£2). The limitation
p>2—1/N stems from the requirement that « lie in Wy '(€2). Then the
distribution Du is a function and the quantity a(-, Du) is meaningful.

If flies in W1 #(£2), (7) is known to have a unique weak solution u (see
[LL1), such that '

ne Whr(Q)

f a(x, Du) Dv = (f,v), for any vin W} 7(Q). 9y -
0

The first step in the proof of Theorem 1 consists in deriving a Wl “(2)
estimate on u for 1<g<(N/{N—1))(p—1) which only depends on
g, a, 8, | {1, whenever f lies in W™ "7 (@)~ LY(Q) and u is the solution
of (9). This is the object of Subsection 4. In Subsection 5 we take fin M(2)
a sequence (f,)in W17 ()~ L'(2) which converges to f and we pass to
the limit in the equation Au,=f,.
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4. In this subsection we prove the following estimate on u
{¢ satisfies hypotheses (2)-(5)):

for any 1<g<{N/(N—1)}{p—1), for any B>0, there
exists C >0, depending on ¢, g, £, and B such that if f lies
m WhPY A LYQ) and u is the solution of (9), then
lizell s = C whenever | f||: < B. (10)

Remark 2. p is given in (3) and the assumption p>2— I/N implies
that 1 <{N/(N-1)}{p—1).

In order to prove (10), let £ be an element of W17 (Q) ~ LY(£2) and let
u be the corresponding solution of (9), and assume that | f],: = B. From
now onward we denote by ¢y, ¢3, ... various constants which only depend
on q, 4, Q, and B.

Let # be a fixed integer and define yr as

Y(sy=n ifs=>n
yis)=s if —n=<s=<n

Yisy= —n ifs< —n

The choice of yr(u} as test function in (9) yields

jg W' (u) a(x, Du) Du= L fiw). (11)

By virtue of (3), (11) yields

[, 1t” <2 1= ey (12)
with
D,={xeQ, |u(x}| £n, |[Du(x}| =2 M}. (13)
Now we define  as
is)= if s=»n+1
Ylsy=s—n il n<s<n+l
W(s)=0 if —n<s<n

)
Y(s)=s+n if —p—1Zs< —n
)

Y(s)= -1 if s<—n—1
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Then, if ¢; =(t/x} [ f],,
J | Dul? dx < ¢, (14)
8,

with ,
B,={xeQ,n<|u(x) <n+1, Du(x)| 2 M}. s
The estimate (12) can be proved with the help of (14), (15) since
D,=ByuB v ---uB,_|.

For any g < p, Holder’s inequality implies that
q/p
| |Du4qg“ |Du1f’) (meas(B,,))" =9,
B, By
But, if 1/g*=1/g—1/N (g<p<N), meas(B,) < (1/n%") [ 5 |u]*". Setting

¢, =c4", we obtain
. (p—aq¥p 1
q < q
LnIDHI -Ci"(JB lu ) P EnIe (16)

n

Applying Hélder’s inequality with the exponents p/(p — ¢) and p/g we find
that, for all positive integers ny,

[=}

S ] wourse( 3 [ o) (5 )"
=" y petie—ava ) -

=Ry Bﬂ n=ny =y

*The above estimate, together with estimate (12), yields

. o 1 alp
= Hpy
where ¢, = MY meas(Q), c, = c¥”(meas(2))" —9V».
Sobolev imbedding Theorem implies that

o 1 q/p
q . /) g¥(p—q)ip
uunmgcs(nswliullu- (Z nq*(p_m) ) (18)

H=tHy

_ Recall that 2~ 1/N< p=<N. Two cases have to be distinguished. If p
is equal to N, then ¢*(p—gq)/p=(gN/(N—-q))/((N—q)/N)=¢ and
g*((p —)/q9) = (gN/(N— g)/((N—q)/q)=N=2.

A proper choice of 1, in (18) gives the estimate

futl] o = 6.
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Then, by virtue of (17),
[Dull o = 5.

which prbves (10). Note that g< p={(N/(N—-1))(p—1), since p=N.If p

is strictly less than N, then ¢*((p—q)/q)=(gN/(N—g))/((p—q)/p)<q

and ¢*((p — q)/q) = N(p—q)/(N —q}> 1, provided g <(N/(N—1))(p—1).
We conclude with the help of (18), written for #ny=1, that

lu] o = €5

and thus that
[Du|| o = cq,

which also proves (10). Note that in the latter case (N/(N—1))(p—1)<p.
The above arguments prove the following

Lemma | Let2— 1/N<pE N (N=z2), M and ¢, positive constants and
Q be a bounded open set of R,

If1=g<{p—1)N/N—-1)), there exists a constant C depending only on
P, M, c,,Q, g such that, whenever ue Wy} satisfies (14) for all ne N,
then :

full e < C.

Remark 3. 1In the case where p= 0N, ¢ is restricted to be strictly less
than (N/{N —1))(p — 1), so as to be in position to apply Sobolev imbed-
ding theorem (g < N}). In the other case the limitation on ¢ guarantees the
convergence of the series in the right hand side of (18).

Remark 4. The proof of estimate (10) only uses the coerciveness of a
(hypothesis (3)) and hypothesis (4), which makes (9) meaninful. Then it is
casy to sce that these estimates are still true for a general “Leray-Lions
operator” (see [LL1]). In particular the function a can depend on w

Remark 5. We thank Idelfonso Diaz who informed us, after completion
of this work, that R. Gariepy and M. Pierre have obtained the same
estimate in the case 4= —4, with a different method.

5. In this subsection we prove Theorem 1. Let fe M(Q) and a let
satisfy (2)-(5).
A sequence {f,)c W17 (£2)n L'(£2) that converges to f in the distribu-
tion sense is considered. It is further assumed that || £, [, = B=1{flls0)
Let u, be the solution of (9) with f=f,. Then for every r integer,
a(-, Du,) e L),

—div(a(-, Du,)) = f, in the distribution sense. (19)

580/87/1-11
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By virtue of the estimate (10), ||u,| wit S C where C only depends on
g, 2,8, and Band 1 Sg<(N/{N—1)){p—1)

Then there exist » in W19(£2) and some subsequence (still denoted (u,))
such that

u, —u in Wi4(Q)— weak
U, —u in L9(Q) ' (20)
u,—>u a8

n

The above convergence does not however permit to pass to the limit -

in (19) except when ¢ is linear in its second argument. A pointwise
convergence of Du, is needed.

Assumption (5) plays a central role in proving such a convergence.
Specifically the following result holds true.

Let a satisfy (2)5), and (f,) be a sequence of
WLP(Q)yn LYQ).

Let u, be the solution of (9) with = f,.

If (f,,) is bounded in L'(£2), then (u,,) is relatively compact

in W5Q) for every ¢ in [1, (N/(N—1))(p—1)). (20

As in Subsection 4, let i € C(R, R) be such that, for &> 0 fixed, y(s)=¢

ifs>e g(s)=sif —e s Y(s)= —eif s< —e Using (9) with f = f, and
Smsu=u, and u,,, and v={u, —u,) we obtain

[, ¥t = w,)atx, D) = a(x, Du,))(Du, ~ D,

=, (o=t =) (22)

Since || £, pyay < B, (5) and (22) imply the estimate
1

Dy me ﬁ(xo Duns Dum)

Dn,m,s = {XE Q! |un(x) - um(x)l é g}'

(Du, — Du,,|* < 2B
(23)

Estimate (23) and Holder’s inequality give

. 1/s
I |Dun - Duml g Suscl (J (ﬁ(x! Dunz Dum))y/s) a
DH,M,E

Dot

where ¢, = (2B)'”,
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- The above inequality, assumption (5}, and the W %-estimate on u,, yield

IDuiI - Duml é CZSUS' (24)

D e

Estimate (24) is used to prove that (Du,) is a Cauchy sequence in L'(Q).
We have

|D(un - um)ls

NDpm. o

| 1= =] 1D+ |

so that, by (24),
J [D(tt,, — )|l € €26 + 3 meas{x e Q: Ju,(x) —u,(x)| >}~ (25)
2

for some g in (1, (N/{(N—1)}{p—1)).
Since u, is a Cauchy sequence in measure (in fact u, is even a Cauchy
sequence in L'(£2)), (25) implies that for some ny(e) depending on ¢

) J- lD(unium)l §C281'IS+S, for namgno(g)u
0

which proves that {(Du,) is a Cauchy sequence in L*(£2) and thus that

Du, - Du in L'(Q).
By virtue of (20), we also obtain the convergence statement

N
Du,— Du in LI(£2), for every ¢ in [1, N1

LD} 09

Assertion (21) is proved. Assumption {4) together with Vitali’s theorem
imply that

a(-, Du,)—af-, Du) in L) for cveryrin[l,%). 27

It is now possible to pass to the limit in (19). We conclude that
—divia(-, Du)}=f  in the distribution sense.

Thus, « is a weak solution of (7) (that is, it satisfies (8)). Theorem 1 is
proved,
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Remark 6. The conclusion is stronger than (8). Indeed, since u belongg
to Wy (@) for all ¢ in [1, (N/(N=1)(p—1)), a(-, Du) belongs to L’ (),
for all » in {1, N/(N—1)) and

J a(x, Du) Dv = { f, 97 yio. cay» foreveryvin |} Wy (Q).
2

=N

Remark 7. The method used in this section does not allow us to prove
Theorem 1 in the case of a general “Leray-Lions” operator, for example,
when ¢ has a non-linear dependence on Du, together with a dependence
on .

Remark 8. Under the assumptions of Theorem 1, the uniqueness of the
solution of (7) in the sense of (8) is false. Indeed there exists, in the linear
case (p=2), an example of non-uniqueness due to J. Serrin (see [SE]).
This example gives non-uniqueness in the space WH4(Q) for ¢=
N/N—1+¢) and an arbitrary £ Q.

Remark 9. After completion of this work, we learned that §,
Kichenassamy has obtained a result of existence and uniqueness of solution
for (7) in the particular case A= —4,, Q=R", and /=37 ,7,0(-—a,),
with l<p<ow,q,eR", mz1,v,e R, Y7, y;=0 (see [K]).

6. Our goal in this subsection is to obtain the appropriate func-
tional space for a weak solution of (7) when fis in L™(Q) with m > 1.
Let g satisfy {2)-(5), and p be given by (3). We set it = Np/(Np — N + p).
If p=N, then m=1, and if fis in L™(Q), then m>m=1 and (7} is
sknown to have a weak solution in W #(€2} (which is the solution of (9),
given by [LL], since fe W 47(Q)).

Let us now assume that p< N. Then s> 1 and if fis in L™(Q), m'=m,
{7) is known to have a weak solution in W} #(Q) (since fe W17 (Q)).
The only case of interest is when fis in L™(Q), 1 <m <, and we prove
the following

ProrosiTION 1. Lef g satisfy (2)-(5) and p <N (p given by (3)). Let
l<m<m=Np/{(Np—N+p) and f be in L™(Q2). Then (7) has a weak solu-
tion w in Wy(Q) for all | £q<(p— 1Ym* (recall that m* = mN/(N —m)).

Remark 10. Note that, when m=1, (p— 1)m*= (N/(N—1))(p—1)
and, when m=rm, (p —1)m* = p. In both cases we obtain the optimal 4.

Proof of Proposition 1. Proposition 1 will be proved il an estimate in
W), q<({p—1)m*, for the solution # of (9) is obtained when
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feWg 7 (2) and fis an arbitrary element of a bounded set of L™(2). 1t
suffices to prove that

for every ¢ in [1, (p— 1)m*), for every B> 0, there exists
C >0 (depending only on w1, ¢, a, 2, and B) such that if f

lies in W=7 () ~ L™(2) and u is a solution of (9) then
Juli pro < C, whenever | f| < B. (28)

We prove (28) by a method very similar to that of Subsection 4.

Let {'be an element of W=17{Q)~ L™(£2), and u be the solution of (9),
and assume that | /|| .» = B. We denote various constants (depending only
onm, g, a Q and BYby ¢y, ey

We now follow step by step the proofl of the estimate of # in Sub-
section 4.

Setting, for an integer »n

={xeQ,n|u(x}<n+1, |Dulx) =M}

E,={xeQ n<|ulx)|}

and taking the same ¥ as in the proof of (14) in Subsection 4, we obtain

of 1Durs| ft

Then

L \Du |p<”f” (meas(£, )", (withm’:%). (29)

"

Let g be strictly less than p. Holder’s inequality yields

qir
f wuws(j IDul") (meas(B,))? ",
B, B,

Since

1 -
B)= *j 1l
meas(B,) <2 ; |22}

n

and

l *
meas(E,) < *J fu| 7,
n g
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we deduce with the help of (29) that

r— gl
f |Dul? < ¢ u] 587 J ol ——
5 =0 f Ly 5 piaT PN/ p— gy
"

n

Repeated use of Holder’s inequality implies that

© o) oo Np—aip oo 1 ' 9/
4 < 4 ——
> f |Dul? < ¢ fullf. (E J || ) 7 (Z n(q*/q‘)(,'ﬂ-—fﬁm)) .

n=1"By ne=i v Bn n=1

Then, recalling (12), we obtain

oo

g/p
g ¢*(q/pm’ +{p—4g)p) ;
L |Du? £ ¢y + ¢y flulff Zl @ —am | (30)

n=

Using Sobolev Imbedding Theorem, as in Subsection 4, we derive an
estimate on » in L7(Q) and, by (30), in W} 4(Q), provided

o (_q_ﬁm)q,
pm P

#
7 ( r— E) > 1.
g m
The second part of (31) is true if g is strictly less than {(p — 1}m*. Note that
l<(p—1)m*<p, since 1 <m <
The first part of (31) is true since l<p<N and m<m=
,Np/(Np— N+ p).
We have thus proved (28), and therefore Proposition 1.

(31)

Remark 11. Estimates on Du are also obtained in [Ta] by rearrange-
ment techniques.

ITI. LowER ORDER PERTURBATIONS

7. Qur goal in this section is to show how the method described in
Section II enables us to generalize certain results for semilinear eiliptic
equations (see [BS, GM2, G7) to the case of operators with a non-linear
principal part as in Section IL

Consider for instance the equation

Au+ g(-,u)=f inQ

32
u=>0 on JQ, (32)
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where Au= —div(a(-, Du)), a satisfies (2)-(5), f lies in M{(f2), and g
satisfies:

g{x, s) measurable in x € £, for all s& R and continuous in

sekR, ae in xeQ; (33}
gix,5}s20 Vse R ae in xe 2, (34)
Sup{lg(x, s)|, s| St} e L (R), Ve RT, (35)

We say that u is a weak solution of (32} if

(£2),

loc

ue W),  al, Du)ell (Q), g, u)elL;
[, ate D DY+ [ slewpy=<hoy, VheC@.  (6)
The following theorem holds.

THEOREM 2. let a satisfy (2)-(5), g satisfy (33)-(35), and f be an
element of L*($2).
Then there exists a weak solution u of (32).

It is known that it is not possible to replace f€ L'(Q) by fe M(2) in
Theorem 2, even when A= —A. For instance, if N=3, 0ef2, f=4,
A= —A, g(-,u)=u> (32) has no weak solution (see [B], or more
generally [BV, BP], for the problem of “removable singularities”). It
would be interesting to characterize the measures f for which {32) has a
weak solution (as it is done in [GM1] for 4 = —4, see also [BP]). An
easy result is that we can assume f in M(2) in Theorem 2 il g does not
grow too rapidly at infinity with respect to its second argument. For
instance, we can suppose / in M(€2) if we replace the very weak hypothesis
(35) by the following stronger hypothesis:

there exist by, b,,¢ with hell (Q), b,eLis(82),
8 < N(p— 1)/{N — p),such that | g(x, s)| £ b,(x) + ba(x) |s]°
a.e. in x, for every real number s. (37)

In fact we will prove the following theorem.

TuEOREM 3. Let g satisfy (2)-(5), g satisfy (33), (34), and (37), and [
lies in M(Q). Then there exists a weak solution u of (32} (that Is, a u that
satisfies (36)).

Remark 12. If for example, p=2, A= —A4, g(u)=1u|°""u, then the
bound & < N/(N 2} is optimal for Nz 3. If ¢ = N/(N—2), there exists
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some fin M(£2) for which (32) has no weak solution. It suffices to take for
fa Dirac mass at y for any y 8. :

Remark 13. Tt is also possible to have some dependence of g on Dy i
Theorems 2 and 3. In the case of Theorem 2, this dependence is possible if
g(x, 5, £} grows at infinity in £ less than |&£|? ¢ for some > 0. The argu-
ment is developed in [G] for p=2 in the case of a lincar operator 4.

The proof of Theorems 2 and 3 are performed by solving an approximate
problem (Subsection 8). Estimates on the solutions of the approximate
problem are obtained (Subsection 9} and the limit process is the object of
Subsection 10. The proof of these Theorems is very similar to that of
[GM2, G]. ‘ '

8. In this subsection the function g satisfies (2)-(5) and g satisfies

(33), (34). We define, for ne N, the function g, by truncation of g, that is,
g.(x, 5)=g(x, 5) if |gix,5)|=nxec, seR

gux, 5)=n if glx,s)>nxe,serR (38)

g.(x, 8}= —n if glx,s)< —m xef2,sekR

Note that (33), (34) are satisfied with g, in place of g.
Let f,, be an element of W~ 1#(Q), with p' =p/(p— 1) and p given in (3).
It is known [LL] that there exists a weak solution u,, of (32) with g = £,
and f = f,, which satisfies

u, € Who(Q)
[ate Du) Dot [ gimu)o=Cfuvd,  VoeWin@). (39)
2 2

9. This subsection is devoted to the derivation of estimates on the
solution u, of (39), when (f,) is bounded in L'(£2). More precisely we
assume that the hypotheses of Subsection 8 are satisfied and we assume
that

there exists a positive constant B, with |f,|l.< B,
Yrel. (40)

We are going to establish the following two assertions.
j{lu,,l):} Jg(-X, un)l gj{|unj>l} Ifn|1 for cvery integer n and
every tin R*, where {|u,|>1} = {xeQ: |u(x)| >t} {41)

The sequence (u,) is relatively compact in W19() for all
gin [1, (N(N—1))(p—1)), where p is given in (3). (42)
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Proof of (41). Let (¢,) be a sequence of real smooth increasing
functions. The choice of ¥, (u,) as a test function in (39) yields

XA ACRES AN (43)

v
if v, (s) converges to the function y(s) defined by
f(s)=1 if s>t
Wis)=0 f —t15s5<s
Y(s)= -1 if s<—1,
we obtain estimate (41).
Proof of (42). Letting =0 in (41) yields
Il ga e 2t e S W Sfull 1
Recalling (40) and setting ,=f, — g.(-, u,), we deduce that
Mol o S 2B, by e W h7(Q) o LNEQ). (44)

Note that u, is the solution of (9) with /=4,

From (44) and Subsection 4 of Section II (see (10)), we then deduce that
(,) is bounded in W7 for 1 <g<(N/N-1)){p—1) and (21} in Sub-
section 5 of Section IT implies (42).

1¢. This subsection is devoted to the proof of Theorems 2 and 3.
Let g satisfy (2)-(5), g satisly (33), (34), and (f,) be a sequence of
WL (2)n L'(£2) such that there exists a positive constant B, with

I fall 2 £ B.
Let g, be defined by (38).

There exists u, € Wy ?(£2) such that (cf, Subsection 8)
| atx, Duy Do+ [ gt u,,)u:j fiv,  YeeC2(@).  (45)
£ 2 £

With the help of the results of Subsection 9, the sequence (w,,) is relatively
compact in Wy9Q) for 1 £q< (N/(N—1))(p—1). Then we can assume
(after extraction of a subsequence, still denoted by (u,))

N
U, U in Wyi2),1Sg<——(p—1),
N—1
U, > u a.e. (46)

N
g(-,Du,J—»g(-,Du) in L”(Q),1§r<ﬁ.
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The last assertion in (46) s a-direct consequence of hypothesis (4) as i .

Subsection 5 of Section II.

Proof of Theorem 3. We can take B=
converges to f in the distribution sense. The continuous imbedding of
Wy9(2) in LT(2) for 1 £ g < N implies that

Np—1)
N

u,—u inL'{2),1=r< F (47
Note that g* < N(p — 1)/(N - p) because g < N(p—1Y{N—1).
Then assumption {37) coupled with {47) yields
gl u) = gl u)  in L (Q). (48)

By (46), (48), and the fact that f, converges to fin the distribution sense,
we can pass to the limit in (45) and we obtain (36). This completes the
proof of Theorem 3. In fact by Fatow’s lemma and estimate (41} (with
t=0) we also have g(-, u)e L'(2) (and jjg(-, u)| p £ B= L7l priy)- We can
thus say that

N
ue Wyi8), - foralll§q<m(p—1),

N
. r <7 —_—
al ,Du)eL(Q), foralll=r<N_I,

g, u)e L)

| ate Duy Do+ | g, mpo= (10,

foranyvin [} W37 (Q). (49)

>N
Proof of Theorem 2. 1In the case of Theorem 2 it is not so easy to pass
to the limit in the second term of the left hand side of (45) (g does not
satisfy (37) but only (35)). We proceed as in [GM2]. We can take

= [|fllz+ and assume that f, converges to fin L' (Q)

By (46) we have
gn('s“n)"g('!u) a.c. (50)

In order to prove that g,(-,
to prove that

u,) converges to g(-, u) in L},

(£2), it suffices

g.{+ u,} is equiintegrable on X for all K=, K compact. {51)

We omit the proof of (51), which is the same as the corresponding result
ih [GM2]. We remark that the sequence (f,) is equiintegrable on £2, and

£} sroy and we assume that £,
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meas{|u,| > 1]} converges to zero, uniformiy with respect to #, when f goes
to +o0. Then we use the estimate (41) and the hypothesis (35).
By (50) and (51), we deduce that

in L}

loc

Ean '5un)—>g('u) (Q) (52)

As in the proof of Theorem 3 we then conclude {from (45), (46}, (52),
and f, = fin LY(Q)) that u satisfies (36). This proves Theorem 2. In fact,
we have g(-,w)e LY(Q) and |g(-w)l|pn £ B=|fll, by Fatous lemma,
(50}, and (41) with r=0. Thus u satisfies (49}, that is,

N
ue Whi(Q), foralllgg<m(pf1),

N
al(-, Du)ye L'(2), for ail 1 <r<-ﬁw

1
g(- u)e LI{Q)

L?g(-,Du)Derl[ glx, u va

foranyvin {] Wy (Q)

>N

(53)

IV. ParasoLic CaSE

In this section we show how the method of Section II allows us to
extend the previous existence results to the parabolic case.
Tet Q=0x%x{0,T), T a real positive number and P the differential

operator
du .
P(v) :Tl—le(g(x, t, Dv)), (54)
o
where @: 2 x (0, T) x RY - R¥ satisfies the following hypotheses:
a is measurable in (x, ¢), for all ¢ in RY and continuous in
(eRY for ae (x, 1) in Q; (55)
there exists three constants p, M, o, with pe (2 —1/{N+ 1), ),
M =0, a>0, such that for any & in BY with |&| > M
a(x, 1, )2 2o |E17 for ae. (x, ) in O,
alx, 1,0)=0; (56)
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there existst a function & in L7{Q) and a constant K= 0
such that, for any & in R", :

la(x, &, &) = K(b(x, 1)+ |¢]7") for ae. (x, ) in @ (37}

there exists three constants s, y, k and a function d such

that s=2, deLY(Q), k=0, y<(s—D[{p{NF+1})—N)/

(N+ 1), ' .

(g{x! I! é)_g(x: t! 17))(6_}7) g (l/lB(xs Zs és ’?)) lf _1,”3 f(}l’

ae. (x,7) in Q and any ¢,  in R",

0<p(x, ¢, ¢, n) Shkl(d(x, 1)~ + €17 + |n]?) for ae. (x, £} in

Q and any ¢&, 5 in RV, (58)

We consider the following Cauchy problem ‘

Plu)=f

N+1}—N
40 T W””S? gLﬁ______
ue ( > ) Q ( )) fof q< N+ 1
ul(x, ) = uy{x), (59)
where
fis an element of M(Q) (60)
gy 1s an element of M(£2). ' (613

In (59) the initial condition, u(x, 0} = uy(x), is to be taken in a classical
sense, since we will show that ue C([0, T, H~*(£2)) for 5 large enough.
We will prove the following theorem

&

THEOREM 4.  Under the hypotheses (54)-(38) and {(60), (61), there exists
a solution u of the equation (59).

Proof. We sketch the proof, which is similar to the one of Theorem 1.
We define an “aproximate” equation to (59) for which we know the
existence of a solution {see [L]). We choose a sequence (f,) = C°(Q) such
that [ flloo)Z B=|fllao, and a sequence (u¥)c C(2) such that
5] 2102y € 6]l as2y = C. The sequences £, and u]; converge respectively to
Jfand u, in the distribution sense.

Let u, be the solution of the Cauchy-Dirichlet problem

Plu,)=1,
w,e LP(0, T; W) (62)

Ulx, 0)=uj(x).
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Let  be the real function

w(s)=1 if s>1
Y(s)=s if ~1=s=21
yis)=—1 if s< —1.

Taking yr(u,(1) X, as test function in (62} we have

1
{ w01~ @) < B+ meas .
@ o 2

where @(s) = [ ¥(5) do.
By virtue of the previous inequality we have

flae ] L5500, T; LI2)) 2oy,

because

| o] wei<e

Let # be a fixed integer and define ¥ by

g(s)=1 if s»n+1
Yis)=s5—n if +u<ssgtn+1l
Yi{s)=s5+n if —n—1l<s<—n
W(s)= — i osE —n—1
Y{s)=0 if —n<s<n
The choice of t{u,) as a test function yields
B+C
[ =™t
By

with

B, ={(x,)eQimZ|ulx, )l Sm+1, |Du,x, 1) 2 M}.

Now let g< (p(N+ 1)— NY(N+ 1), r=((N+1)/N)gq. We have

| (p—q)ip 1
[ buwprsemens By s ([ wl) o
By, B M

n

167

(65)
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So that

me—air

. 0 (r—qip 1
J‘Q ‘Dun|q§£’4(ﬂ0)+63 Z (J‘ iurzlr)
B

B =Hp

(r—q)ip w 1 N de )
§C4(”u)+63(_[giun|r) ( )y Wm) - (66)
m=ny .

Applying Holder’s inequality yields

24, ey < Hotll Sagcay Nt 1vfiny = €5 0l Lor(iay o

where 1 —0=((1—r)/(1 —g*))-(g*/r).
The above inequality leads to

T
o I 0 L A
0

=g |1, f‘_‘?[(), T, L1

if r is such that ¢*(1 —r)/(1 —g*)=gq, that is, r = (N + 1)/N)g.
Sobolev imbedding Theorem implies that

T : aly*
letall o0, 7500, = ( ) “
”L(O,T,L‘?) jo J-Qi“|
T
q
gqfo (LDM )dt

g C8(”{!) + Co ”M”“ i%?[]?ﬁ;)j’_?:i')

o 1 alp
x( ) m(NH)(p—q)/N) .

m=ng
From the previous bound on ¢ we have the a priori estimate

.| 1900, 7518 = C1p» (67)

and then the estimate
flunl Lo, T Wi = Oy (68)

follows as in Theorem 1.

From the previous a priori estimates we deduce that (u)) is a
sequence bounded in the space L'(0, 7 W~ ")+ LY0, T LY), with
s={p(N+1)=-N)/(N-+1){(p—1). So the sequence (u,) is relatively
compact in L'(Q) by a compactness lemma of Aubin’s type. Such a
lemma can be found, for example, in [Si, Te]. Finally we can prove the
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convergence in L'(Q) of Du, as in Theorem 1 (using (58)) and we deduce
that u, converges to u in L0, T, W) for all g < (p(N+1)— N)/(N +1).

Thus « is a solution of equation {59).

Note that for s large enough du,/dt converges strongly to du/dt in
L'(0, T; H*{2)). Thus u, converges strongly to u in C{[0, 7], H*(2)),
and u,(-,0) converges to u(-,0) in H°(2). Since u,(-,0)=u] and u
converges to i, in the distribution sense, we deduce that u,=u(-, 0).
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