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Abstract. We show that the family of gradient schemes includes the Raviart–
Thomas RTk mixed finite elements. This result can be used to obtain conver-
gence results for a large number of linear and nonlinear problems.

1 Introduction

The numerical solution of environmental underground studies often in-
volves models which require the approximation of linear and nonlinear het-
erogeneous and anisotropic diffusion operators for general piecewise regular
coefficients and on general meshes [4, 2, 1, 3]. A wide number of numer-
ical schemes based on several different approaches have been developed in
the last fifteen years to this purpose. An illustration of the variety of these
approaches may be found in the two benchmarks which were held in 2008
(two-dimensional case) and in 2011 (3D case) [13, 12]. The family of gradi-
ent schemes was introduced to synthesize some of these approaches and was
proven to converge for a large number of nonlinear problems [10, 5]. This fam-
ily contains several wellknown schemes, such as conforming and lumped con-
forming schemes, mimetic schemes, discrete duality finite volume schemes.
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The aim of this paper is to show that it also contains the RTk mixed finite
element method and apply it to two phase flow problems.

2 Gradient schemes for diffusion problems

Let Ω be an open bounded subset of Rd, where d is the space dimension. A
gradient discretization D for a space-dependent second order elliptic prob-
lem posed on the domain Ω, with homogeneous Dirichlet boundary conditions
on the boundary ∂Ω, is defined by D = (XD,0,ΠD,∇D), where:
• the set of discrete unknowns XD,0 is a finite dimensional vector space on
R, corresponding to the approximation of the homogeneous Dirichlet elliptic
problem,
• the linear mapping ΠD : XD,0 → L2(Ω) is the reconstruction of an approxi-
mate function from the discrete unknowns (also often called “lifting operator”).
• the linear mapping ∇D : XD,0 → L2(Ω)d is the discrete gradient operator.
It must be chosen such that ‖ · ‖D := ‖∇D · ‖L2(Ω)d is a norm on XD,0.

Let us now give the fundamental properties that we seek when designing
a gradient discretization (or when recognizing a gradient discretization in an
existing scheme) in order to be able to prove its convergence.

• Coercivity. Let CD be the norm of the linear mapping ΠD, defined by

CD = max
v∈XD,0\{0}

‖ΠDv‖L2(Ω)

‖v‖D
. (2.1)

A sequence (Dm)m∈N of gradient discretizations is said to be coercive if there
exists CP ∈ R+ such that CDm ≤ CP for all m ∈ N.

• Consistency. Let SD be defined by: ϕ ∈ H1(Ω) 7→ SD(ϕ) ∈ [0,+∞) with

SD(ϕ) = min
v∈XD,0

(
‖ΠDv − ϕ‖L2(Ω) + ‖∇Dv −∇ϕ‖L2(Ω)d

)
. (2.2)

A sequence (Dm)m∈N of gradient discretizations is said to be consistent if, for
all ϕ ∈ H1

0 (Ω), SDm(ϕ) tends to 0 as m→∞.

• Limit–conformity. Let Hdiv(Ω) = {ϕ ∈ L2(Ω)d,divϕ ∈ L2(Ω)} and let
WD: Hdiv(Ω)×XD,0 → [0,+∞) be defined by

∀(ϕ, u) ∈ Hdiv(Ω)×XD,0,

WD(ϕ, u) =

∫
Ω

(∇Du(x) ·ϕ(x) + ΠDu(x)divϕ(x)) dx.
(2.3)

Note that for a conforming finite element method, we have WD(ϕ, u) = 0.
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A sequence (Dm)m∈N of gradient discretizations is said to be limit-conforming
if, for all sequence um ∈ XDm,0 such that ‖um‖Dm is bounded, and for all
ϕ ∈ Hdiv(Ω), WDm(ϕ, um) tends to 0 as m→∞.

• Compactness. A sequence (Dm)m∈N of gradient discretizations is said to
be compact if, for all sequence um ∈ XDm,0 such that ‖um‖Dm is bounded,
the sequence (ΠDmum)m∈N is relatively compact in L2(Ω).

The linear case. Let λ and λ ∈ R, such that 0 < λ ≤ λ and letMd(λ, λ)
denote the set of d× d symmetric matrices with eigenvalues in (λ, λ). Assum-
ing that Λ is a measurable function from Ω toMd(λ, λ), and f ∈ L2(Ω), we
seek an approximation of ū ∈ H1

0 (Ω) satisfying∫
Ω

Λ(x)∇ū(x) · ∇v(x)dx =

∫
Ω
f(x)v(x)dx,∀v ∈ H1

0 (Ω). (2.4)

IfD = (XD,0,ΠD,∇D) is a gradient discretization, the related gradient scheme
for the discretization of this problem is to look for u ∈ XD,0 such that∫

Ω
Λ(x)∇Du(x) · ∇Dv(x)dx =

∫
Ω
f(x)ΠDv(x)dx, ∀v ∈ XD,0. (2.5)

The coercivity, consistency and limit-conformity properties for a family of gra-
dient discretizations are sufficient to ensure the convergence of ΠDu to ū in
L2(Ω) and that of ∇Du to ∇ū in L2(Ω)d. The compactness property is only
needed for the convergence of gradient schemes in the case of nonlinear prob-
lems.

3 RTk mixed finite element schemes are gradient schemes

Let Ω be an open bounded connected subset of Rd, d ∈ N?. Let Q be a
finite dimensional subspace of L2(Ω). Let V be a finite dimensional subset
of Hdiv(Ω); the divergence operator is thus well defined on V whereas the
gradient of an element of Q is not defined. It is however natural to define
a discrete gradient on Q by a duality formula; let U be a finite dimensional
space of L2(Ω)d with same dimension as V and such that

∀v ∈ U,
∫

Ω
v(x) ·w(x)dx = 0 for all w ∈ V implies v = 0,

then the discrete gradient of u ∈ Q, denoted by∇au, is the unique solution of :

∇au ∈ U,
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∫
Ω
w(x) · ∇au(x)dx +

∫
Ω
u(x)divw(x)dx = 0, ∀w ∈ V. (3.1)

In the case of the linear problem (2.4), a natural (non conforming) scheme is
then

u ∈ Q,∫
Ω

Λ(x)∇au(x) · ∇av(x)dx =

∫
Ω
f(x)v(x)dx,∀v ∈ Q. (3.2)

In order to define the scheme completely, it remains to choose the subspace U .
Since the solution u of the continuous problem (2.4) satisfies Λ∇u ∈ Hdiv(Ω),
it is natural to take

U = {ϕ ∈ L2(Ω)d; Λϕ ∈ V }. (3.3)

With this choice for U , a function u ∈ Q is solution to (3.2) with ∇a defined
by (3.1), if and only if the pair (−Λ∇au, u) = (v, q) where (v, q) ∈ V ×Q is
a solution to∫

Ω
w(x) · Λ−1(x)v(x)dx−

∫
Ω
q(x)divw(x)dx = 0, ∀w ∈ V, (3.4a)∫

Ω
ψ(x)divv(x)dx =

∫
Ω
ψ(x)f(x)dx, ∀ψ ∈ Q. (3.4b)

Indeed, Equation (3.4a) corresponds to (3.1) with v = −Λ∇au. Letting u =
ψ ∈ Q in (3.1), we have∫

Ω
ψ(x)divv(x)dx = −

∫
Ω
v(x)·∇aψ(x)dx =

∫
Ω

Λ(x)∇au(x)·∇aψ(x)dx,

and therefore (3.4b) corresponds to (3.2), thanks to the choice (3.3) of U . Note
that at this point, the problems (3.2) and (3.4) are not necessarily well posed.
The well-posedness is obtained for adequate choices of (V,Q).
Here we choose V spanned by the corresponding RTk basis functions on a
regular simplicial mesh T [6], and Q spanned by the family (χi)i∈I of piece-
wise polynomial basis functions of degree k on each cell of the mesh. It is
wellknown that in this case, Problem (3.4) (and therefore (3.2)) is well posed.
We now wish to compare the mixed finite element for a general, possibly non
linear problem, to a gradient scheme discretization. So we again consider a
regular simplicial mesh, and V and Q as above, but we now generalize the
space U as follows:

U = {ϕ ∈ L2(Ω)d;Aϕ ∈ V }, (3.5)
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whereA is an arbitrary measurable function from Ω toMd(λ, λ). Let us define
the gradient discretization D = (XD,0,ΠD,∇D) by: XD,0 = RI , ΠDu =∑

i∈I uiχi and ∇Du = ∇a(ΠDu). Then (3.1) with U defined by (3.5) may be
written as

A∇Du ∈ V,∫
Ω
v(x) · ∇Du(x)dx +

∫
Ω

ΠDu(x)divv(x)dx = 0, ∀v ∈ V. (3.6)

Note that for most problems, we shall choose A to be the identity matrix.
However we can also choose A = Λ, the absolute permeability matrix of an
anisotropic heterogeneous porous media, for instance in the case modelled by
the linear problem (2.4).
Let us now show that the resulting gradient scheme is coercive, consistent,
limit conforming and compact, as stated in Theorem 3.1 below. In order to
do so, we first recall some known results on the RTk mixed finite element
schemes. Let us introduce the broken Sobolev space H1(T ) of functions
whose restriction to each simplex K of the mesh belongs to H1. First recall
that, for (V,Q) defined by the (RTk,Pk) mixed finite element approximation,
there exists [6, Lemma 3.5 page 17] an interpolation operator Pk : HT =
Hdiv(Ω) ∩ (H1(T ))d → RTk such that

∀p ∈ Pk, ∀v ∈HT ,

∫
Ω
p(x)div(v − Pkv)(x)dx = 0, (3.7)

and there exists α > 0, only depending on the regularity of the mesh [6, The-
orem 3.1], such that

∀v ∈HT , ‖v − Pkv‖L2(Ω)d ≤ αh(
∑
T∈T
‖v‖2H1(T ))

1/2, (3.8)

where h denotes the size of the mesh T . Let us recall how we deduce from the
above properties the standard “inf-sup” condition: let p ∈ Q, let us prolong p
by 0 on a ball B with radius R containing Ω. Then there exists w ∈ H1

0 (B)
such that

∀q ∈ H1
0 (B),

∫
B
∇w(x) · ∇q(x)dx =

∫
B
p(x)q(x)dx. (3.9)

Moreover w ∈ H2(B) and there exists β only depending on d and R such that

‖w‖H2(B) ≤ β‖p‖L2(Ω).
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Therefore, since∇w ∈HT , we have from (3.8)

‖∇w − Pk∇w‖L2(Ω)d ≤ αhβ‖p‖L2(Ω),

which shows that

‖Pk∇w‖L2(Ω)d ≤ (2Rα+ 1)β‖p‖L2(Ω), (3.10)

which immediately leads to the inf-sup condition. This enables to apply the
general result on mixed approximations [6, Theorem 5.3 p. 39] (due to Brezzi):
for a given f ∈ L2(Ω) and discretization spaces V,Q defined by the k-th order
Raviart–Thomas mixed approximation (RTk,Pk), there exists one and only
one (v, q) ∈ V ×Q solution to (3.4) and there exists δ, only depending on λ,
λ, on the regularity of the mesh and on Ω such that

‖q − u‖L2(Ω) + ‖v +A∇u‖Hdiv(Ω) ≤
δ( inf
ψ∈Q
‖ψ − u‖L2(Ω) + inf

w∈V
‖w − Λ∇u‖Hdiv(Ω)), (3.11)

where u ∈ H1
0 (Ω) is the unique solution of

∀v ∈ H1
0 (Ω),

∫
Ω
A(x)∇u(x) · ∇v(x)dx =

∫
Ω
f(x)v(x)dx. (3.12)

Let us now state that theRTk mixed finite element scheme is a gradient scheme.

Theorem 3.1 Let (Tm)m∈N be a sequence of regular simplicial meshes in the
sense of [6, Theorem 3.1 p.14] such that the size hm of the mesh Tm, tends to
0 as m → ∞. For k ∈ N, let (Vm, Qm)m∈N be the corresponding sequence
of RTk finite element spaces. Let Dm = (XDm,0,ΠDm ,∇Dm) be defined
from (Vm, Qm) by (3.6). Then Dm is a gradient discretization and the family
(Dm)m∈N is coercive, consistent, limit-conforming and compact in the sense
of the definitions of Section 2.

Proof
• Coercivity. Let u ∈ XDm,0 (which means that p = ΠDmu ∈ Qm). Using
(3.10), let w ∈ H1

0 (B) be defined by (3.9), and let v = Pk∇w ∈ Vm. Thanks
to (3.7), we get that

‖p‖2L2(Ω) = −
∫

Ω
p(x)divv(x)dx.

From (3.6), we get

‖ΠDmu‖2L2(Ω) =

∫
Ω
v(x) · ∇Dmu(x)dx.
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Thanks to (3.10), we then get

‖ΠDmu‖L2(Ω) ≤ (αD + 1)β‖∇Dmu‖L2(Ω)d ,

which proves the coercivity property.

• Consistency. Let us check the consistency property on the set R = {ϕ ∈
H1

0 (Ω); there exists f ∈ C∞c (Ω) such that ϕ is solution to (3.12)}. Let ϕ ∈ R.
Considering Problem (3.4) with f = −div(A∇ϕ), we define u ∈ XDm,0 by
p = ΠDmu and v = −A∇Dmu. Then, we get from (3.11)

‖ΠDmu− ϕ‖L2(Ω) + ‖A∇Dmu−A∇ϕ‖Hdiv(Ω)

≤ δ( inf
ψ∈Qm

‖ψ − ϕ‖L2(Ω) + inf
w∈Vm

‖w −A∇ϕ‖Hdiv(Ω)).

Since the right hand side of the above inequality tends to 0 as m → ∞, we
obtain that SDm(ϕ) tends to 0 as m → ∞. The proof of consistency is then
concluded by density ofR in H1

0 (Ω) (see Lemma 3.2 below).

• Limit-conformity. Let (um)m∈N such that um ∈ XDm,0 and ∇Dmum re-
mains bounded in L2(Ω)d as m→∞. Let ϕ ∈ Hdiv(Ω), and ϕm ∈ Vm be an
interpolation of ϕ such that ‖ϕ−ϕm‖Hdiv(Ω) tends to 0 as m→∞. Then

WDm(ϕ, um) =

∫
Ω

(∇Dmum(x) ·ϕ(x) + ΠDmum(x)divϕ(x)) dx =∫
Ω

(
∇Dmum(x)·(ϕ(x)−ϕm(x))+ΠDmum(x)(divϕ(x)−divϕm(x))

)
dx,

thanks to (3.6). Applying the coercivity inequality, we get that the right term
of the preceding inequality tends to 0 as m → ∞, which shows the limit
conformity of the sequence.

• Compactness. We consider a sequence (um)m∈N such that um ∈ XDm,0

and ∇Dmum remains bounded in L2(Ω)d as m → ∞. Then, thanks to the
coercivity property, we first extract a subsequence (samely denoted), such that
ΠDmum weakly converges in L2(Rd) to some u ∈ L2(Rd) (prolonging by 0
outside Ω). Using the limit-conformity, we get that ∇Dmum (prolonging by 0
outside Ω) weakly converges in L2(Rd)d to∇u, which shows that u ∈ H1

0 (Ω).
Let wm ∈ H1

0 (B) ∩H2(B) (resp. w ∈ H1
0 (B) ∩H2(B)) be defined by (3.9)

for p = ΠDmum (resp. p = u). A classical result is that wm converges in
H1

0 (B) to w (from the weak convergence of the gradient and the convergence
of its norm).
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Letting v = Pk∇wm in (3.6), we get∫
Ω
Pk∇wm(x) · ∇Dmum(x)dx +

∫
Ω

ΠDmum(x)divPk∇wm(x)dx = 0,

which provides, thanks to (3.7),∫
Ω
Pk∇wm(x) · ∇Dmum(x)dx−

∫
Ω

(ΠDmum(x))2dx = 0.

Thanks to (3.8) and to the convergence of∇wm to∇w in L2(Ω)d, we get that
Pk∇wm converges in L2(Ω)d to∇w. By strong/weak convergence on the first
term, we get

lim
m→∞

∫
Ω

(ΠDmum(x))2dx =

∫
Ω
∇w(x) · ∇u(x)dx

= −
∫

Ω
div(∇w(x))u(x)dx =

∫
Ω
u(x)2dx.

This shows the convergence of ΠDmum to u in L2(Ω), hence concluding the
proof of the compactness of the discretization. �

Lemma 3.2 (A density result) Let Ω be an open bounded subset of Rd, let A
be an arbitrary measurable function from Ω to the set of d × d matrices, and,
for a.e. x ∈ Ω, A(x) is symmetric with eigenvalues in (λ, λ) ⊂ (0,+∞),
and let R = {ϕ ∈ H1

0 (Ω); there exists f ∈ C∞c (Ω) such that ϕ solution of
(3.12)}. ThenR is dense in H1

0 (Ω).

Proof The mapping T : H1
0 (Ω) → H−1(Ω) defined by u 7→ T (u) =

−divΛ∇u is continuous and one-to-one thanks to the Lax-Milgram lemma.
Therefore the inverse mapping T−1 is also continuous. Since C∞c (Ω) is dense
in H−1(Ω) andR = T−1(C∞c (Ω)), the conclusion follows. �

Convergence of the schemes. Let us recall that for a coercive, consistent,
limit-conforming and compact gradient discretization, we are able to prove the
convergence of the associated gradient scheme for a number of linear or non
linear problems [8, 11, 7, 5] In particular, Theorem 3.1 proves that the gradient
discretization defined by (3.5)-(3.6) is coercive, consistent, limit-conforming,
and compact, whatever the choice of the matrix A inMd(λ, λ). In particular,
for A = Λ, it yields the convergeequation*nce of the classical mixed finite
element scheme for the diffusion problem 2.4, with no regularity assumption
on the solution (see [9, Lemma 2.2] or [5, Lemma 3.1]). In the following
section, we recall the convergence result that was proven for two phase flow in
[10] for gradient discretizations and which naturally includes the RT0 scheme.
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4 Application to two phase flow in porous media and Richards’
equation

We are interested here in the approximation of (u, v), solution to the incom-
pressible two-phase flow problem in the space domain Ω during the time period
(0, T ):

Φ(x)∂tS(x, p)− div(k1(x, S(x, p))Λ(x)∇u) = f1, (4.1a)

Φ(x)∂t(1− S(x, p))− div(k2(x, S(x, p))Λ(x)∇v) = f2, (4.1b)

p = u− v, for ∈ Ω× (0, T ), (4.1c)

where u (resp. v) denotes the pressure of the phase 1, called the wetting
phase (resp. of the phase 2, which is the nonwetting phase), p is the difference
between the two pressures, called the capillary pressure, the saturation of the
phase 1 is denoted by S(x, p) (it is called the “water content” in the framework
of Richards’ equation), and where Φ, Λ, ki, gi and fi (i = 1, 2) respectively
denote the porosity, the absolute permeability, the relative permeabilities, the
gravity and the source terms.
Remark Alternately, we also consider a generalized Richards equation ob-
tained from (4.1) either by replacing Equation (4.1a) by

u(x, t) = ū(x) for (x, t) ∈ Ω× (0, T ), (4.2)

or replacing (4.1b) by

v(x, t) = v̄(x) for (x, t) ∈ Ω× (0, T ). (4.3)

Problem (4.1) is considered with the following initial condition:

S(x, p(x, 0)) = S(x, pini(x)), for a.e. x ∈ Ω, (4.4)

together with the non-homogeneous Dirichlet boundary conditions:

u(x, t) = ū(x) and v(x, t) = v̄(x) on ∂Ω× (0, T ). (4.5)

The detailed assumptions are provided in [10] and include that the functions
ki, i = 1, 2, are bounded by below by some value kmin > 0. This latter
assumption is needed for the convergence proof (it is classical for the Richards
problem). Problem (4.1)-(4.4)-(4.5) is considered under an appropriate weak
sense, and it is approximated by the tools provided here, in the following way.

We consider a time interval (0, T ) and (t(n))n=0,...,N such that t(0) = 0 <

t(1) . . . < t(N) = T . We then set δt(n+ 1
2

) = t(n+1)−t(n), for n = 0, . . . , N−1.
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Let us consider the following mixed finite element scheme for the approxima-
tion of Problem (4.1),(4.4),(4.5) (let us emphasize that this discretization is
not based on the global pressure formulation of the problem). We consider a
simplicial mesh of Ω, which is sufficiently regular, and we define Q ⊂ L2(Ω)
as the set of the piecewise constant functions on the elements of the mesh,
and V ⊂ Hdiv(Ω) be defined by the RT0 basis. The scheme is then given
(dropping the time indices (n+ 1) for the unknowns) by

find u, v ∈ Q, u,v ∈ V, p = u− v,

∀w ∈ V,
∫

Ω
(k1(S(x, p))Λ)(−1)u ·w +

∫
Ω
udivw = 0,

∀w ∈ V,
∫

Ω
(k2(S(x, p))Λ)(−1)v ·w +

∫
Ω
vdivw = 0,

∀q ∈ Q,
∫

Ω

(
Φ(x)

S(x, p)− S(x, p(n))

δt(n+ 1
2

)
+ divu

)
q(x)dx

=
1

δt(n+ 1
2

)

∫ t(n+1)

t(n)

∫
Ω
f1(x, t)q(x)dxdt.

∀q ∈ Q,
∫

Ω

(
−Φ(x)

S(x, p)− S(x, p(n))

δt(n+ 1
2

)
+ divv

)
q(x)dx

=
1

δt(n+ 1
2

)

∫ t(n+1)

t(n)

∫
Ω
f2(x, t)q(x)dxdt.

We can then rewrite the above discretization, for example in the case of (4.1a),
under the form of a gradient scheme:

find u, v ∈ XD,0, p = u− v,

∀w ∈ XD,0,
∫

Ω

(
Φ(x)

S(x,ΠDp)− S(x,ΠDp
(n))

δt(n+ 1
2

)
ΠDw

+ k1(S(x,ΠDp)Λ∇Du · ∇Dw
)

dx

=
1

δt(n+ 1
2

)

∫ t(n+1)

t(n)

∫
Ω
f1(x, t)ΠDw(x)dxdt,

defining ΠD and ∇D by (3.6) with A = k1(SD(x, p))Λ. Writing a simi-
lar equation for (4.1b), the resulting scheme is then very close to that given
in [10], and a similar study to that given in [10] can be done for proving its
convergence to the weak sense of Problem (4.1),(4.4),(4.5), based on the four
properties (coercivity, consistency, limit-conformity and compactness) intro-
duced in this paper. This proof also requires that the reconstruction operator
be piecewise constant, and therefore it applies to the case of the RT0 scheme.
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In the case of the Richards equation, the scheme is obtained by replacing one
of the discrete conservation equations by the imposed value for the pressure.
A possible extension of this work is the generalization of this result to the RTk
scheme, which could be obtained by a comparison between the reconstruction
operator with a piecewise constant reconstruction operator.
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