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ON SOME UPSTREAM WEIGHTING SCHEMES
FOR OIL RECOVERY SIMULATION

T. GALLOUET , A. PFERTZEL

Abstract. We prove the convergence results of particular numerical approximation
schemes for some nonlinear hyperbolic equation appearing in oil recovery simula-
tion. These schemes use new technics of upstrcam weighting in accord with the
physical meaning of the equations.

Sur des schémas décentrés amont pour la simulation de la récupéra-
tion d'hydrocarbures.

Résumé. On démontre la convergence de certains schémas d'approximation numé-
rique pour des équations hyperboliques non linéaires apparaissant dans la simulation
de la récupération d'hydrocarbures. Ces schémas utilisent de nouvclles techniques de
décentrement amont en accord avec le sens physique des équations.
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1. Imtreduction.
1.1. A simple model for cil recovery simulation.We be-

gin by giving a physical model in which the kind of equation studied in
this paper will appear. It concemns the flow of a diphasic incompressible
fluid in a porous medium. We assume that the phases are immiscible,
and we neglect capillarity effects. For simplicity, we assume that the
porosity of the medium is constant and that the permeability tensor is
equal to the identity tensor. The two phases are (for instance) water and
oil.

The principal unknowns are P and u, (pressure and water satura-
tion), and the equations to solve are

{1} () +divQ, = F, (water conservation)

(2) ), +divQ,=F, (oil conservation)
3) Q, + M, (gradP-r, g) =0 (Darcy's law)
(4) Q, + M, {(grad P -r, g) = 0 (Darcy's law)

( ) designes the partial derivative with respect 1o 2.

F, and F, are given source terms 7, and r,, are supposed constant.
g is a constant vector (gravity acceleration). M, [resp. M ] is a non-

decreasing [resp. non increasing] function of u..
We set M, =M, + M, F=F_+F, and Q@ =Q, +Q, . The

system (1)-(4) can be replaced by the following system :
(5 divQ=F

(6) Q+M, grad P=(M_r +M,r,)8

e M, M M,
{u), + dwEQ + div 7, (r,-T,)8=F,.

The spacial domain of the simulation is a given open set R N =
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1, 2 or 3) ; and we want 1o solve (5)-(7) on a given time interval [0, T],
with convenent conditions and initial conditions.

The system (5)-(7) appears to be a coupled system between an el-
liptic equation on P (equations (5)-(6) are the mixed from of that elliptic
equation), and a nonlinear hyperbolic equation on u (equaticn (7)). The
hyperbolic behaviour of (7) allows discontinuities to be created and to
propagate.

The most commonly used procedures in Reservoir Simulation are
IMPES procedures (IMplicit Pressure, Explicit Saturation). In that kind
of procedure, one has to solve (5)-(6) with a given u and to solve (7)
with a given (§, are a given P. In Eymard & al. [8], one solves (5)-(6)
with a particular finite element method, and we introduce some new up-
stream weighting schemes in order to solve (7). In this paper we study
these new upstream weighting schemes and we give some proofs of
convergence. We don't describe the discretization of (5)-(6) (this is
done in Eymard & al. [§].

There is many papers in the petroleum literature (SPE Papers) on
some similar models. Some of these papers seem to be related to the
methods used in this paper. One can see, for instance, Rozen [13], Ber-

tiger [1], Caracotsios & al. [3]. Related schemes or more complicated
models are also studied in Pfertzel [12] and Eymard [7]. Some numeri-

cal results can be seen in Pfertzel {12].
For simplicity we will assume that spacial domain of the simulation

is {RN(N =1,2),T=+eandF = 0. (the case N = 3 is very simular
to the case N =2).

1.2. Numerical method. The equation to solve is :
®)  (u) + diviu)Q+divgw)g=0,in R"x[0, eof
with an initial datum
6) u(O=uin R

Q and g are given and

_ Ak
U s A Bl A
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f1 is a nondecreasing function of u, and f, a nonincreasing function of

i. In the following we will used finite volums technics with Poand P,
discontinuous functions and with some upstream computation of some
terms of (8).

For the second term (8) we use "vertex upstream weighting"
scheme. The upstream direction is found with respect to (. in our "first
order scheme", this gives, in dimension N = 1, (section 2.2) the Godu-
nov's scheme for the second term of (8) (if g = 0, we then obtain exact-
ly the Godunov's scheme). Then in dimension N = 2, our first order

scheme appears to be, on the second term of (8), a "two dimensional
vertex Godunov's scheme” (section 3.2).

For the third term of (9) we use an "edge upstream weigthing”
scheme. Here the upstream direction is found with respect to g. In di-
mension N = 1, our first order scheme (section 2.2) gives on the third
term of (8) a scheme which looks a litde like the Engquist-Osher

scheme (see Engquist & al. [6]) the generalization to the dimension
N =2 1is easy (section 3.3).

For both terms (second and third terms of (8) ) we also describe
technics in order to obtain "stable” second order schemes in space (see

sections 2.3 and 3.4). This is done by using P, discontinuous functions

and slope limiters (followin g in this way the ideas of Van leer [14]).

All the schemes described here have conservation-form and are
consistent. For some of them we also prove sufficient stability proper-
ties to insure the convergence, in some appropriate space, to the weak,
entropic consistant, solution of (8).

2. The one dimensional case,
2.1. Preliminaries. Let N = 1. The equation to solve becomes :

(10) (), +a(f(u) ), +b(g () ), =0 in R x [0, oo

(D u(,0)=u, in R

a and b are some given constants. We assume that u,, the initial datum,
lies in the space L™ ([R) N BV (R). and the hypotheses on fand g are

(2) f=f/(fy +£), &= Kl {+f)

1)
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c! (R, Ryand 3a>0f; +Hza in R

(14) f, lresp fp} 15 a nonnegative nondecreasing [resp. nonin-

" creasing] function.

Let 4 be the space step and & the time step. We set A = k/4, Xj=
jhand x; +1/2= G+ 1/2) h forj € Z,andt =nk forn € [N. The

. n: . - :
desired approximative solution of (10)-(11) is defined by {n 1.3 & Z,

n N} < R
Indeed we have, by definition,

Fi+1/2
U (x)dx , and we set for;rcj_m <X EXip Joe Z

xj_llrz

!

n n no
fn5[<fn+ , R ‘;E:N , uh’k(x,t):uj:u (JC)ZMJ-

The way of computing W™ from u” describes the scheme. Our
principal aim is to find schemes for which i, , goes to u, weak entropic

solution of (10)-(11), in an appropriate sense, when Ak — 0, with
kih = ) constant, A small enough.

The schemes we describe below have conservation form (see Har-
ten & al. [11] or Crandall & al. [5}), they can be written under the
following form

] R n 1 n n ;3 —
(13) T (”j'ﬂ U )t ‘;;{a (P?H;Q'FJJ/Z) +b(Goip- Gj-l;'Z)} =0

with

n

n
a +b G?+I;2 = H;':—UZ = H(uj-pﬂ L uj+p

J+172

where p 1s a positive integer and // a function of 2p real arguments.
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In (15), F},,, can be viewed as an approximation of
flu (xj+1j2 )]
and G’}H 12as an. approximation of
8 (¥ (Xjqp s ty))
In fact in order to obtain convergent schemes we need schemes

like (15) with properties of consistancy and properties of L” stability
and BV stability. We recall that
N1l =Sup{ 14?1,/ € Z} and V=2, 1, -ul.
jez T

2.2. First order scheme. In this section we take following
choice for F and G in (15)

Cif a > 0 Fip=f0d)
(16) <
ifa >0 Fp=flg,)
[ (7) £y () )
if b >0 G’}Hm:fl gl u’:
fi (“;) + o (W01 )
(17)
fi el ) 5 (4
it h> 0, =t
fl(uj+1)+f2(uj)

(In (17) we set if the denominator is equal to zero).

Remark 2. 1In the model described in section 1.1 the choices of
(16) and (17) are quite natural. In fact if & = 0 and g > 0, the two phases
(water and oil) are moving from left to right and (16) the classical
upstream scheme {remark also that f is nondecreasing). If @ = 0 and
b > 0, the two phases are not moving in the same sense. Water is mo-
ving from left to right and oil from right to left, the choice of (17) is
again physically natural because f; comresponds to the water mobility
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and f, corresponds to o1l mobility. From the mathematical point of view

the choice of (17) correponds to an approximate Riemann solver.

TueoreM 1. Ler ape u, L' (R)nL”(R), andfg saisfy
(12)-(14). Let o, = R such thar asu,<p ae, and A suich that
(18) Asap (laVf (u} + b1f (u)- blfy(u) e [o,Bl} € 1.

Then the scheme (15)-(17) is a consistent, conservation-from, mono-

tone (on [af]) scheme. Furthermore when h — 0, and kih = A (fixed)
satisfy (18), u, , converges toward the weak entropic solution of (10)-

(1), in L' ( R) uniformly for boundedt 20 ; that is

limsuph = 00<t<T ey, ((x8) - w(x,t)tdx=0 foreachT > 0.
R

Proof of Theorem 1. We prove the theorem 1 in the case, for in-
stance, @ >0 and b > 0 (all the cases are similar). The scheme (15)-
(17) can be written on the form

+i )
(19) ¥ =i - MH - Hiap)
with

(20) H?+1/2 = H(”;l : ”;1+1)

o H B ; fi(w) fr(v)
(21) H(uy} = af (u) + AOESAT)

fi(u) fo(v) _ \
(In (21) we set OESAO) =0 if fy() =f,(v) = 0).

On this form we see that (15)-(17) is a 3 point conservation-form
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scheme. Its numerical flux is the function H. It is a consistent scheme
since H{u,u) = aflu) + bg(u).

We now prove that # is locally Lipschitz continous. This is a con-
sequence of (12)-(14). We first remark that A is continous. Indeed,
since J; and f2 are nonnegative functions and continous, the only dif-
ficulty is to prove continuitty of H points ( u,v) where fi{u) =0 = f£,(v),
but this continuity is then an easy consequence of

IH (uy) 1<y (u) | and IH(uv) | < ffy(v) 1

For proving that H is locally Lipschitz continous, it suffices to
notice that if fi(u} # 0 or fo(v)# 0, then H is derivable and

OH fov) £y(u)

-a——(u,v)’ = {af(u) + b s|STaf (w1 +bf ()]
“ (fy(u) + fo(v) )

dH fou) £ofv)

—ww’=b AR A0L

ou (i) + fy(v) )

Then in order to prove Theorem 1 it only remains to prove that
(15)-(17) is (under the hypothesis (18)) a monotone scheme on [o.B].
(We recall in particular - see for instance Grandall & al. [12] - that a
consistent, conservation-form, monotone on [o,p] scheme, with a local-

ly Lipschitz continous numerical flux is convergent - if o < U, <pae.-

in the sense of Theorem 1). We now prove that (15)-(17) is (with (18))
a monotone scheme on [o,p].

Let # (uv,w)=v - A (H(v,w) - Huv)).

We have to prove that 3f is nondecreasing with respect to its arguments
when u,v,w € [,] (we can notice that in this case we prove in parti-

cular o < 1" < B, foralln ¢ IN). The monotonicity of #with respect to
its first and third arguments is a very easy consequence of (12)-(14)
(we do not make use of (18)). For proving the monotonicity of 3¢ with
respect to its second argument, let v, > v, one has

T. Galiouét, A. Plertezl
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W (uyv,w) -HWuyw) = (v;-v) - A (H{vyw) -

- (H{v,w) ) + H(_u,vl) - H(uyv) ).

v . f%(w)(fl(vl) 'fi(v)) +
= (v -v)- Malftvy) -JON - A0 T () + (W)

" Fuhyvy) - H(V)
A G ) () + V)

Then, with (12)-(14), we deduce

2 (Vl-V) -A { (af(vl )+ bfl(vl) - bfz(vl)

W (uv,w) -H{wy,w)
- (af (v)+ bf ((v) - bf 5(v) } }

and then, with (18),

W (wyw) -Huyvw) 20

The proof Theorem 1 is complete.

Remark 3. The scheme (15)-(17) is a first order scheme and it in-
troduces some numerical diffusion (which is necessary for the mon-
otonicity of the scheme). Its disadvantage is, as usual, that it smeras the
front. The numerical diffusion of that scheme is higher than that of the
classical upstream weighting scheme used in reservoir simulation
(which is also a monotone scheme - Brenier [2], Pfertzel [12]). For the
sake of completness we recall that this classical upstream weighting
scheme is (15) with, fora =0and b 20 (for instance),

ﬁJ+112 a f;,j+1/2 -ng+1/2
s iR«

fiap thjan N+ hjnn
n Ry i1

ff,j+1;2 = f1(4) ’f;,jﬂlz = foli;) ifa- bfl(“j) 20 and Jl;.,,‘mz

=f(d,y) ifa- bf, () < 0.

¥

12 T
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2.3. Second order scheme. In order to reduce the numerical
diffusion of the scheme described in 2.2, we now propose a "quasi" se-

cond order space discretization, associated with the usual Euler explicit
time discretization. This corresponds to (15) where

1
o @ an - Fiap)  B(G 1p-G )

does not contain time discretization (it does not depend on the time step)
and 1s a second order approximation of a (f (w)), +b (g (1)), except

eventually on the points (x,#) where u is not c {we need 4 in C’ for the
computation of the truncation error) or where (f (1) ).. J1 @), - (),

={. (This last condition is the sense of "quasi").

In fact the scheme we describe below has enough numerical diffu-
sion 1n the neighbourghood of the front of the exact sclution (this is due
to the slope limiter) in order to avoid numerical oscillations, and is an
antidiffusive scheme (due to the time discretization) elsewhere. Globally
(space and time) it is a first order scheme, but it appears numerically
that it gives results as good as that of quasi second order scheme
{space-time), in particular the fronts are not smeared (this is not the case
when we use an implicit scheme).

Remark 4. More precisely, when we use a second order space dis-
cretization, and the Euler explicit time discretization on the equation
u, + (f (u} ), = 0, we obtain a numerical scheme which can be viewed

as a second order scheme (space-time) on the equation u, + k /2 u,, +
(f()), = 0, or equivalently on the equation

k
+ (F () )+ ( (fF () Fu, ) =0.

On this Iast form we see that we have a numerical antidiffusion.
In this scheme we take the following choice for F and G in (15),

for je Z

ifa>0 Fip =151,

(22)

ifa<0 Fp=1oims
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-

. f?,'lZ,-f;‘ll
$ b>0 G = R 2
J+1/2 .
ﬁ¢+1/2,- +f;.j+1/2,+
(23) J
i f?,'m.-f’z‘wz,-
i bl G = At 2
j+1/2
. fiﬂlﬂ,— +ﬂ!j+l,’2,-

(we set (23) G}'H 1 = 0 if the denominator is zero).
With, for 1 = 0,1,2, setting f, =1,

Ron
f;J+1/2,- = fl(”;) 5 P

(24)
3 h i3
£z = WD+ 5D
7 : - 2 Fi n
Py = Sign (J;,] Min {‘ch,jl ' T ifl(uj.,.]) 'fl(uj)I )
2 £ n
2y K |
(25
if q’;J, fl(uj'ﬂ) —fl(u;’), fl(u;‘) -fl(u;'_l) have same sign
p’;‘j =0 1if not
(’ ) - f
26) ¢} = ik “J+1)2hf 1.0

Remark 5. The slope limiter is in the condition (25), in fact this
condition gives that, for 1 = 0,1,2, one has

Min (04, ,Co)) S5 jeroe S Max GLGE. £,

in particular, since f,are nonnegative funcdons, we have also
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f;,j-i-lﬁ,i 20

Remark 6. The scheme (15), with (22)-(26) is a finite volums
scheme using P, discontinous functions and slope limiters. The origin-

ality of this scheme is that use P, discontinous functions and slope limi-
ters on f, f, and f, instead of on the unknown u. This choice is su gges-
ted by reservoir simulation. '

In fact in reservoir simulation we use P, discontinous functions
(and slope limiters) on f1 and f,, associated with the upstream choice
described in Remark 3. The case b= (), P, discontinous functions and

slope limiters on fis more completely studied in Chalabi & al. 4], were
some implicit schemes are also described.

THEOREM 2. [ ez abcRu, ¢ L

(12)-(14). Then the scheme (15), with (22)-(26) is a consistent,
conservation-form scheme. It corresponds to quasi second order space

discretization (in the sense defined before). Furthermore let o,fe R
such that o < Uy =B ae, and A such that

(R) N BV (R), and 1.8 satisfy

2A [lal Sup {f(s), & < <B} + bl (Sup {fi'6), a <5 <B})
(27)

+ Sup {(£'(), o <5 <BHI<1

The one hag
(28) asu"<B VneN

(29 TV(u) <TV(u J VY € IN(TVD scheme)

and for every sequence (h,, Ko N Withk =2Xh o A (fixed) satis-

fying (27), and h, — 0 asm — +eo, there exists a subsquence, still

denoted (h,, k) such that Uyokm — ¥ In L! (R), as m — +eo, uni-

formly for bounded 1> 0, where i is a weak solution of (10)-(11).
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Remark 7. Let ¢ > 0 and o ¢ 10,1 If we add in the "Min" of the '

first frmula of (25) a fourth argument, cha'l, then the conclusions of -

Theorem 2 are still true and we can proved that all the sequence is going

to u (as m — o) and that u is the weak entorpic solution of (10)-(11).
This can be proved as it is done in Vila [15] for similar schemes. Nu-
merically it is not necessary to use this modification of (25).

Proof of Theorem 2. As for Theorem 1, we prove Theorem 2 in
particular case a > 0 and £ > 0 (all the case similar). The scheme (15),
(22)-(26) cans be written

30 nel _ on
(30) u; =k~ MH 1 - Hj"-uz)
with

13 "l n n
GD Hip =y, % W) =aFian+ bG’}mz’
and

Fl Gjuypp 8iven by (22)-(26).

Then the scheme (15),(22)-(26) is a five point conservation-form
scheme. Its numerical flux is H. The scheme is consistent because we

obviously have H(u,u.uu) = af(u) + bg(u).
The function H is locally Lipschitz continous. Indeed we see that
the functions p, J(l = 0,1,2) are locally Lipschitz continous with respect

to their arguments

n n n
Ujq, Ujs Uiy

Then the function F;-lﬂ 12 1s also locally Lipschitz continous. The same
gument works for Gy 1o except eventually if fliin. = Faicims
ar 1 Jr1/2, JTL2,

= (0 (we recall that we always havefTJ+1/2,, 20 and]l;‘j+1/2'+ 20, ses

" remark 5). In this case we prove continuity and local Lipschitz continui-

ty of G;-‘H 12 With respect to its arguments
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n 71 n n
Ui Yo Yipgs My
by using the fact that
I ’ s 2
1.j+1/2,- 2,j+1/2,+
<land J <1
frll J+1/2.- +f21‘j+1/2,+ f JH+1/2,- +f;4’+1/2.+

(as in the proof of local Lipschitz continuity of # in Theorem 1). Thus
we have proved that H is locally Lipschitz continious).

We now prove that the scheme (15), (22)-(26) corresponds to a
quasi second order space discretization. Let 4 be C” function in the
neighbourhood of a given point (x,7) and such that (f; (&), (x,r) = 0 for
1 =0,1,2 (we recall that f, = f).

We denote by U the value u(x,f) and by Uy the u(x+ih,t), we
have prove that, with

He = Hugy, i, uy, Ug), one has

i
o Hiap - Hiyp) = a0, (60 + g, &0 + K¢

where C is bounded independently of , as h — 0.
In the following we denote by C variocus functions of 4, bounded

_as h — 0. These functions depend on the Cl, ¢ , and C? derivatives
of u.

By (25)-(26) one has, for 1= 0,1,2 (we remove the upper index
n). '

gy, = a(fw), + K°C

2
7 1) - ) = 27, @), (p) + hC

2
5 (@) - £ ) =20/, w), (x1) + hC

© Since (f,(u)), # 0, we the

Pi;i=

for h small enough. Simil

P11
thus
P =

Then one has (see (24)),

f1 = 0‘.1(14)) (x,0),

Hijnp.- =5
(32)
T =f
and
fijps=1
f 14-1/2,- = f
thus,
figrna
(33)
fHrjan,. =
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2

2.+

‘heorem 1). Thus

corresponds to a
3 function in the
1)), (o) # 0 for

the u(x+ih,), we
S

0+ hZC

ions of 4, bounded

ind C3 derivatives

e the upper index

- hC

hC
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pyy= 4y ;= ), D + n:c

for h small enough. Similary we have

Pyjn

thus

= (f,(u), (x £ h, D+ KC

" Since (f,(w)), # 0, we then deduce (from (25)), that

Prj = (OD), G T[N b+ W'C

Then one has (see (24)), setting (for simiplicity)

fi= @) D, f = (), &0, fi" =

h
fijmp-=h+ 7f1' +kC,

(32)

h
f]_j_]_/’z’..p :fl - Tflr “+ h3C,

and

2

(f‘l (u))xx (x, f)

h h
f1J+1’Q‘+ = fl('u') (x+‘h,l) - _z_f]_‘ - '"2"_f1" + h3c,

2

h h
flux‘_ln', = fi(u) (x-h,t) + "Z"fl' - —z-fl" + h3C,

thus,

—

(33)

h
\fu_uz'_ =f - "j"fI' + h3C,

h
f;-J+1/2,+ =f + ~j-f1' + h3C,
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From (22) and (32)-(33) we deduce

Fiop =fo% (W2 fy +H°C

and then,

34y (k) Fjpypp - Fryp) = ), (1) + h°C
From (23) and (32)-(33) we deduce

(f, £ (BI2)f, + K ONfE (W2)f) +4°C)
(F+fy) + (W2, +fy) + BC

Gjil/’l =

Then easy computation (and a continuity argument for the cases where
the denominator of Gj:tl 2 is zero) show that

(35) (UR) Gy - Gy = @), ) + H°C.

By (34) and (35) we have

(U/h) (Hypy - Hygp) = 6 50 + b)), (x.0) + el

and we have proved that the scheme (135), (22)-(26) corresponds to a
quasi second order space discretization.

To prove Theorem 2 it only remains to prove (28)-(29), since we
know that a consistent conservation-form scheme, wich satisfies (28)-
(29) and with a locally Lipschitz continous numerical flux is convergent
in the sense of Theorern 2. (This is essentially due to Harten, see [10]).
We now prove (28)-(29).

From o Suy<p a.e., we deduce o < uy <B.
Thus we only have to show that « <u_ <Bimpliesa<u < pand
TV(u,,)sTV(u,) foralln € [N. Let, a <u, <B.

From (15) and (22)-(26) we have (forj € 2).

n+1 n
u,  =u; - A a(f:]J+1/2.- 'f?),j—lﬂ--)

6D A=

B8 B =
S 12 A

T. Galiouét, A. Pfertez]

| N (ﬁjﬂ/?
f?.m/z

This can be written, wil

n+l n n

with (set‘tingf{;l JE2t"

bf
A+u;(j

o
+ 7j-1

. ‘We first remark that A
: _'..':.1-_"_..;.1’2’ and

f2++“f2-+ )
n B
A+uj

_ " Indeed one has, for in:

f1+-‘f1__

By (25),p}; and p],
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9!

W2y +h*C)
5') + h3C

iment for the cases where

C.

(W), (6.0 + h°C,

2)-(26) corresponds to a

rove (28)-(29), since we
:me, wich satisfies (28)-
ierical flux is convergent
lue to Harten, see [10]).

lesasu,  <Pand

ZB.

12,2

e - v
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fll‘j+1/2,-f;j+1/2,+ i f?J-l/Z,-f;.j*IIZ,+

f’ll,j+1/2,~+ ﬁJ+1/2,+ f?J-l/Z,- +)!:;.J-1l2,+

. . - - n n n
- This can be written, with Apuy = Uy =Y

o 1
(36) U =1+ h Ay Bl -NBp b, 7

with (setting /] jp1/2,4 =frx2 )

bfl— -fl + - (fz++ 'f2- +)
A+ u;'l (fl+ - +f2 + +) (fl- - +f2- +)

37 Alpp=" fA, i #0

38} BY, = ——— - +
( ) J_1/2 . ;-1 (fO'*"— f -..) A+ u?‘l
f2-+f2++(fl+-'f1--) n
ifA U, 0.
PGt Tt

We first remark that A}I_'_lm >0 and B;‘_m 20 , sincef'l‘ - 20, for,
1=1,2, and

f2++'f2-+ >0 f0+,'f0_, 0 f1+-'f1—-

20, =0, 20,

n n
A Al A

Indeed one has, for instance,
h h
fl - 'f1 - :fl(“?) + —Z—p’;J - (u?.l) - ‘“2"P’;J_1 .

By (25), p ; and pl;q have the same sign and
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n 2 4] |
‘PlJ,llr lp’;‘jl < - " |A+fi(uj_1)' . o < 2 (- KA?_'_
ez
f - ‘fl . |
We then conlude that ———— > ( (since £ 20
A, “'11

j.-::(wc have used the first p:
s (29) :

o The sccond part of {
the convcx huli of

A similar argument works for the two other terms.
We now make use of (27) in order to prove that

Jl A A A Bl p20

(39)
,\1 A'AJH/?. }\‘B_’;lll
FovsJa.
onehasA+”2<b _2.1_3_*"
A+u;1

<20 Sup {f,/(s), a<s<B}
jH/z_ZaSup s, a<s<B}

+2b Sup {£,(s), a<s<P}

This prove (39) if (27) is satisfied.
The first part of (39) show (29). Indeed on has

TV(unH) _ Z Wi {:+1

. " eme is then
Je 2 :
101T 30). The val
-2 the time 1, + k
= (1 - A M. +A.A A u
a z( JHQ Jﬂlz) J e nt correction fr¢
n 7
+ABL AL iy

i Y
donein Cha]abl &al [4
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.fl(u;l_l)[ .

e f,' 2 0).

r terms.
prove that

+ AA" p
7LAJ+3/2 A, Yin

n
TABj A i

it A. Plertezi

: : ; n n " n n
S X - M- AB A 2 Al A, ]
je 2 e Z

F 2 AAT A
ez

" (we have used the first part of (39)), and then TV < TV("). This
s (29).

The second part of (39) show (28). Indeed (36) show that W s

" the convex hull of

n n n
Wig U Uiy

- : .
- Then one naso <u™t <Bsincea<u B

* The proof of Theorem 2 is complete.

Remark 8. We recall that the scheme we have described here
(scheme (15), (22)-(26) is only a first order scheme (in space-time). It
is also possible to construct 2 "quasi” second order scheme (in space-
time) which satisfy (28)-(19) under a convenient CFL condition similar
to (27). (Then the scheme is convergent in the since of Theorem 2.) We

let f;-'+1 o and Gj,l .1 defined by (22)-(26) but with a more restrictive
slope limiter (for instante 1 instead of 2 in (25)). This define

n
Hiip by H?+1/2 =arjgpt b F;HIZ

The new scheme is then obtained by setting H;’Ll“,’g instead H' L in

formula (30). The value H}‘:ilg is an approximation of a(f(u)) +

b(g(w)) at the time 1, + k/2 (and point (j + 1/2)h) and is obtained with a
convenient correction from g7 " (using equation (10)). The obtained
Jt

scheme is more complicate and, numerically, give results similar to that
obtained by the scheme (13), (22)-(26). A more complete description 18
done in Chalabi & al. [4] in the case b=0.
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Our method to obtain "quasi” second order scheme (in space or in
space-time) works also with the classical upstreamn weighting scheme
used in reservoir simulation briefly described in Remark 3 {see Pferizel

[12]).

3. The two dimensional case.
3.1. Preliminaries. Let N = 2. The equation to solve is

(40) (u), + div flu) Q + div gu)g=0,in (R x [0,00
4D u ()= Uy in R

Q and g are some given constant vectors, We set Q = (g,0) and

g = (c,d)‘. We assume that Uy, the initial datum, lies in the space
LY(RY» nL”(RY.
The hypotheses on fand g are (12)-(14) (as in Section 2).

For simplicity we take the same space step, say A, in the two directions
(denoted by x and y), and & is the time step. We set

h=kiby M= Ghjh), My ooy = (G5 1Dk, (i 120), je Z
and ¢, = nk, n ¢ N,

The desired approximate solution of (40)-(41) is defined by
- [u’f,j, ije Z,n N} ¢ R
As in Section 2 we have, by definition,

o 1

U, . =-—
i
J h2
k.

i

u,(x.y) dxdy

where &, ; is the square of vertice Misinjz1p Wesetfor M e Ki,

@43 Y
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i
Uy,
The schemes we descr:

& al. [5], Harten & al.
form

1
(42) - (u':;_l . “’:,j) +-

with

1]
Hi+1/2

i |
Hi,j+1/

where p is a positive 1

‘variables.

- To obtain the sc
Volums discretization
tization in time. This §

n+1 [

k

where 9K, ; denotes

i andnu is the
The schemes in

| fwyand g on 3K

3.2, Case g =

‘g =10, and describe 0
- Z. We have to descr
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order scheme (in space or in
upstream weighting scheme
red in Remark 3 (see Pfertzel

equation to solve is

(R x[0,e<]

5. We set Q = (2,6 and
1m, lies in the space

2).

in Section 2).
say 4, in the two directions
Ve set

123k, (£ 1/2R)), je Z¢

-(41) is defined by

= R

ay

We set for M‘iKiJ i

. Gallouét, A. Pfertezl -

ijezft<rsl™ n <N

wy, (M) = iy, (M) = iy

_'; 'The schemes we describe below have conservation form (see Crandall
- & al. [5], Harten & al. {11]), they can be written under the following

- form

. with

l. 1 n+l 7 1 1
“42) — @y -+ Hiop) + 5 Hijap - Hijap =0
1 _ n n
Hi+],"2,_] - Hl(ui-p“*'l,_]"P, ey ui+p‘j+p) b
17 n n
Hi,j+1/2j = Hl(ui~pj—p+i’ “.’+p,j+p) >

where p is a positive integer and Hy, H, are functions of 2p(2p+1) real

variables.
To obtain the schemes of the following sections, we use a Finite
Volums discretization in space combined with an Explicite Euler discre-

tization in time. This gives

TR Y
@3 B fw) Qn;;do+

3 ; K

g(u)gnudG:O

where 0K J denotes the boundary of K , do the length element on

Ki‘i , and n; is the normal to chl-J- , exterior to KEJ
The schemes in the following section are given by the choice of

f(u) and g(u) on @K; T

3.2. Case g = 0, first order scheme. In this section we let
g =0, and describe our "vertex upstream weighting scheme”. Let Ij <
Z We have to describe in (43) the choice f(i) on oK i The four ver-
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tice ofK are M, k f; p with L = {12, j+1/2), (i+1/2,4-1/2), (-
1/2,;+1/2) (i-172, 1-1/2)}

Fork [ j let ok, ; (M) be the part of oK;; composed of thc two half-
edges of oK, . contammg M,

The one has
8K, .= U 3K, MY
kel; .
i
We take in (43)
(44) J f) Qn,; do= 2, f) Q n;;do
ké‘]‘J
SKR'J' . SKi,j(Mk)

with

rf(u) = f(u; ) on 'M(I.J(Mk) if Qn,;do=0

OK. j(Mk)

(45} J ‘

fu) = fp, On 5K;.J(Mk) if Qn;;do <0

L.

K jak)

We now describe the choice of f, . 1n (45). This choice is made
in order to obtain, with (43)-(45), a scheme which has conservation
form. Indeed let Mi+1/2J+1/2’ (ij e 2), be a vertex of the a mesh.

M 1100172 18 @ vertex of the four squares Koo jp (@Bled with J =
{ 0,0, (O,1), (1,0), (1,1)}. We set

= {{a,B)e J,
I,'fJ =N} ;

2

f¥i+;(2d+1f2 .p) &

is is the case when W
ation of (5)-(6) made in
< We first prove that
“and is consistent with (4

. PROPOSITION 1. The




ij composed of the two half.

M)
‘H) Q niJ do
Qn;;do>0
J(Mk)
Qn;do<0
.

45). This choice 18 made

which has conservation
2 vertex of the a mesh.

roj+pe (wBles with J =

8K'+aJ+[3(Mf+1/2J+1/2)

3

d fi, is defined by My =M, 5012

YA E Q.m, . _do)=
£ H+1/2,4+1/2 (@B) ﬁji,j +o,j+B
8K[+GJ+B(MI.+1,QJ+1/2)
n
DI O Qg do

u,BE

It is easy to verify that the scheme (43)-(47) has conservation form, be-

" cause one has, for all i,j

2 Qn,, gd0 =0
(B ej
Ko jrpMin 12

(This is the case when we use the velocities (@ obtained by the-discret-

ization of (5)-(6) made in Eymard & al. [8]).
We first prove that the scheme (43)-(47) has conservation form

and is consistent with (40) (with g = Q).

PROPOSITION 1. The scheme (43)-(47) is a consistent, conservation-
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Jorm approximation of (40) (when g =0). Furthermore the numericai : i
fluxes of this scheme are C* functions. - (50) % flu) Q.
Proof of Proposition 1. We prove the proposition 1 in the particu- ::._ ' oK} j
lar case a = b > 0 (the other cases are similar). In this case (47) gives = :
forallij ¢ Z (@-b
(-

48) Qalfyy, | o= @B + @-BGL,,).

Then (44) 1

s - "Then we see that sct
... scheme (43)-(47) is t
) Quny, do = 2a 2y - (@) s
TRy 80 = 2a fu ) - (a-b)s, Mirp 12
aK '

)

h
) (a+b)—2—f Mi1pv1/2

this gives, with (48),

2
az-b

a

2
O F | fwQndo=2aful) -~ il )-
aK;

2,2 2 oof of propc
(a"-b°) (a-b)"
“Tf(”i,]_j)"‘_z‘?‘“f(u;,]’j) S
-/ THEOREM 3.
“and \ such that

which can also be written

(51) A Max (al,

.r:. _':l‘h'cn"t'l.lc scheme
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). Furthermore the numerical

€ proposition 1 in the particy- |
nilar). In this case (47) gives

)f(u?jﬂ) .

f .
M1/

h

- {a+b)
2'Mitp v

r f(‘[fl,u) -

i) n (a“b)z
_f(u,'J,j)“ 3 f(u".'J'J.)

| flu) Qn,; do =[2a ful; ) - 2a fidi 1 ) )+

3k,
-b 2 n b 2 n +b ? n
+[(- Siﬁ?)—f(“i-uﬂ) + Eﬂl’%)_ﬂ”i‘l\iﬂ) * (GZa) fing) -

-b2 n b2 n 4
-(- %“)'—f(u;,hj) + %lf(uili‘j-]))]

'f['-hén we see that scheme (43)-(47) has conservation form. Indeed the

“scheme (43)-(47) is the scheme (42) with

Hipj= H, ;) = af(ud; )

. (a-b)* (a+b)’

Hijp= HyWy jur Hia ) =+ Tamf(u?-wﬂ) g iy -

The numerical fluxes of the scheme, which are the functions H,and H,,

are C' functions by hypothesis (13). The scheme is consistent since
Ho(u,u) = bf(u).

The proof of proposition 1 is complete. We can now prove a conver-
gence result.

THEOREM 3. Let @ = (a,b)‘ e R% g=0,u, L ([Fiz) L™

(R?), and fg satisfy (12)-(14). Let o,p € R such that o Sug <p a.e,
and X such that

(51) » Max (lal, 1bl) Sup {f(s),a<s< B} s 1

Then the scheme (43)-(47) is a consistent, conservation-form, mono-
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tone (on [o,B] scheme. Furthermore when A -> 0, and k/k = & (fixed)
satisfy (51), u, , converges toward the weak entropic solution of (40)-

(41), in L'(IR? uniformly for bounded 1 > 0.

FProof of Theorem 3. By proposition 1 and classical results on
monotone schemes (see Crandall & al. [5]) we have only to prove that
the scheme is monotone on [ B]. As in proposition 1 weleta > b > (.
(The other cases are similar.) Then we have 1o prove that ¥ is a nonde-
creasing function of each arguement. u,v,w,z < [o,B], with

W @yw.2) =u - MH ) - H () - Mhy(z,v) - Hy(v,w))

by by
Hy @) = aft), Hytu) = - gy + 0 g

[see the proof of proposition 1].
An easy computation gives
a- (a—b)2 (czz+1‘))2

2
H (wvwz)=u-Aaflu) + A Zabf(v) + A i f(z) + 1 VY f(w)

Then we see that 3{ is nondecreasin g with respect to v,w and z, since f

is nondecreasing (we don't make use of (51)). The condition (51) gives

that 3§ is nondecreasing with respect to u, foru & [op]
The proof of Theorem 3 is complete.

Remark 9. The scheme (43)-(47) is a first order scheme and it in-
troduces some numerical diffusion. In fact, let @ 2 b > 0, the space-
discretization is second-order discretization of

a22

h -b
div Q) - =5 (@ (F)) + 2b (L), + == (), ).

(Recall that f 2 0.) In the case of the classical upstream weightin g
scheme, one has a second-order discretization of

h
div Q ) - = (@ (), + b (Fu)),,, ).

T. Gallovét, A. Pfertez

We can nofice
—(h/fla)(f(u),QQ whe
for the classical sck

We can also 1¢
more restrictive for

this condition is A
scheme, and is (51)

The scheme (:
"pressure equation”
not the case of the ¢
Eymard & al. [8]. T
to other mesh, that
mesh composed of

3.3. Gravity
here that g=0. Th

)| swgn

aK;_j

- To do this, we will

~ edges of K, and v
" edge of the mesh (
- and Remark 2). Nc

- not satisfy  g'2

" Remark I0.
-(5)-(6), the vector
~(5)-(6) is discretize

_"Cl"*‘_inite Element M
~associated to the f
..-._--;1',2“,3,4, letiy, j &
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1h-0,and k/h = A (fixed)
ik entropic solution of (405-

0.

1 and classical results on
we ‘h_ave only to prove that
‘posttion T weleta>p > (.
to prove that 3 is a nonde-
z < [o,B), with

Mhy(2,v) - Hay(v,wy)

oy (@)’
) + a:a)f(v)

(a-b)° b2
@ +1 (a:a) Aw)

Spect to v,w and z, since f
The condirion (51) gives
Ue [op]

't order scheme and ir in-
let az b 20, the space-

a-b?
M 7al UCH NN

;ai upstream weighting

).

.o.be.'a't, A. Pfertez]

We can notice that this (spacial) numerical diffusion is exactly
#/2a)(fu)qq When a = b for the scheme (43)-(47), and when b =0

“for the classical scheme, with ()g = a(), + b()y)-

We can also remark that the stability condition (CFL~condition) is

“more restrictive for the classical upstream weigthing scheme. Indeed

.-.f_'ﬂﬁs condition is A (a+b) Sup {f(s), @ <s < B} <1 for the classical
“scheme, and is (51) for the scheme (43)-(47).

The scheme (43)-(47) is well adapted to the discretization of the

"pressure equation” (equation (5)-(6)) made in Eymard & al. [8], this is
" not the case of the classical upstream weighting scheme (for details, see
Eymard & al. [8]. It is also very easy (o generalize the scheme (43)-(47 )

. to other mesh, that is to mesh composed of quadrilaterals or even to
- mesh composed of triangles.

3.3. Gravity terms, first order scheme. We de not assume
here that g = 0. Then one has to discretize in (43) the term

(52) g(u) g m;; do

aKiJ

To do this, we will decompose (52) in four parts, associated to the four
edges of K; 7 and we will use on approximated Riemann solver on each
edge of the mesh (this is natural generalization of case N =1, see (17)
and Remark 2). Note that, as for N = 1, the function g, generally, does
not satisfy  g'=0.

Remark 10. Even when equation (7) is coupled with equations
(5)-(6), the vector g is constant (this is not true for Q). Then, even if
(5)-(6) is discretized as it is done in Eymard & al. [8] (using an Hybrid
Finite Element Method), it is possible to decompose (52) in four parts
associated to the four edges of K ;

Let E;;j,k Lk =1,2,3,4, be the four edges of Ki.j ,and, for k =

1,2,3,4, letiy, j & Z such that

KNk = Eiix
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Then, for the discretization of (52), we take

4

(53) lﬂ g(u) g-n;; do= > g(u) g.n, . do
k=1

SKI-J. Ef,j,k

with

[ FACAPRACE
glu) = il M onk,;. ik if 2(u) g-n, ; doc =20
fl(uz;) +f2(u

i
m Eijk

(54 4

IRCARY A
glu)= L ek ! on £y, if g(uj gn;; do <0
fl(u ) fz(uu)

ol Eijk

(In (54) we set g(uj = 0 if the denominator is equaI 1o zero. We recall
that f; 2 0 and f, 2 0.) We can now proceed as in the previous section.

PROPOSITION 2. The scheme (43)-(47), (53)-(54) is a consistent,
conservation-form approximation of (40). Furthermore the numerical

fluxes of this scheme are locally Lipschitz continuous.
The proof of proposition 2 is very easy, we do not give it. We just

remark that the locally Lipschitz continuity of the numerical fluxes is
done as in the proof of Theorem 1.

THEOREM 4. Let Q = (a,b) = RZ, g=(cd e ’Rz, Uy Ll( Rz) N

(56) £
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L=(IR?), and f.g sati
a.e., and ) such that

(55)  * Sup {Max

Then the scheme (4:
form, monotone (on |

= A (fixed) satisfy (5
tion, u, of (40)-(41), i

lim sup
h— 0 0t<T
F

- Proof of Theor

- to prove that the sch
o '.'d > 0 (the other case |

n+1 (ur:‘ji ;

% (u,v.w

The ”\i._v'e'arc that
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if g(u) g'ni,j do >0

Eiik

if[ gluj gm; do <0
Eijk

s equal to zero. We recall
$1n the previous section.

(53)-(54) is a consistent,
irthermore the numerical

inuous.

ve do not give it. We just
[ the numerica] fluxes is

T)IE {RZ, uo Ll( R2) A

t:"t'; A, Prertezl

'.(-f_RZ),' and f.g satisfy (12)-(14). Ler ap such that a < uy S B
“and » such that

A Sup {Max (i, 1) £(s) + (icl + 1)(F '), s [awpl) <1

:':Tﬁén the scheme (43)-(47), (53)-(54) is a consistent, conservation-
“form, monotone (on [, B]) scheme. Furthermore, when h — 0, and k/h

A (fixed) satisfy {55}, u; , converges toward the weak entropic solu-

':_Etion, u, of (40)-(41), in Ll(fﬂz) uniformly for bounded ¢ 2 0. That is

lim sup iy Wfx2) - u(x,t dx =0 foreachT >0
h— 0 9<i<T
"2

- Proof of Theorem 4. As in the proof of Theorem 3, we have only

to prove that the scheme is monotone on [oB]. Weleta2bh>0,c20,
d > 0 (the other case are similar). Then the scheme can be written

(56) “’51 = Oyt Ui g1 B ey Ui Mijars Uiy )
with
r 2,2
% (w,v,w,z,r.st) =u-hafu) _, a; )
a-b)* by
e E o E p
(57) fiw) (1) fi(vhf(u)
- C -
< Hlu) + (0 £(v) + £50)

fl(u) + fz(s) ) f1(r) + fg(u)

(fl(“)fg(s) fﬂ”fg_(“) A

L

Then we are that % is nondecreasing with respect to v,wz,r,s, and f
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(here we only use that f, f; and (-f,) are nondecreasing). For proving
the monotonicity of  with respectto u, letu; 2 u (and &, 4, [o,p]),
one has

H (u,v,w,27,5,8) - #(u,y,w,z,r,s,8) = ) - u) - Aa (f(u) - )

Fo(u) (fyfuy) - F(u) PN Ffuy) - ()
R A O 2O O O X ACESAOR)

Fas) (fy () - Fi() ) fyluey) - Fy(u)
R F RS a0 0 + ) Gr(r) + Fpu,)

2 (uy) - u) - ha(f(u) - flw)) - Mc+a)((fi () - [,@) - (fa(wy) - f)))
Then, with (55}, we conclude

H (uy,v,w,z,r,5,0) - (@Wwv,wezrs)z0

The proof of Theorem 4 is complete.

3.4. Second order scheme. The scheme described in sections
3.2-3.3 has a wide numerical diffusion. In order to reduce 1t we can

proceed as in the case N = 1 (see section 2.3) for construct less diffu-
sive schemes. We described this procedure in the case g = O (The dis-
cretization of the gravity terms can be made with a similar method.)

With ", we first compute an affine approximation (1) in each ele-
ment K, at instant . Indeed we set, (for instance), for ij ¢ Z;

J (“?ﬂ ,j) -/ (“?.1,;‘)
P?,j = 2h

(38)
_f(u?+1J) "f(u?_l’j)

b 2h

i (60) J Min (i
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Then, with the notatior

(59 fije=fipd

In fact f;; is an appre

In (59) the choice of €

-

I 1 .
€ e [0,1] is

kik
where {K it
M B 1§ a verte

.: _* Then the scheme is (

[ ) =1,

flw) =fM

d for choice of f;
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* nondecreasing). For proving

u,letu; 2 u (and u, up [afl),

“ ) - Aa (flu) - fluy)

YN fyuy) - fylu))
+HWY F0) + )

1N fyfu) -fylw))
+ fo(u)) (;(r) +f2(u1))

) -f1() - (fz(ul) - fu)))

*me described in sections
order to reduce it we can
3) for construct lesg diffu-
In the case g = () (The dis-
1th a similar method.)

oximation fk) in each ele-
nee), forij ¢ Z;

' ’ m < Max (il
o (60) J Min {f(uf'ik’jk), (i) € T} $fijp < Max (f{u
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n. with the notations of 3.2, we set

£..€ [O 1] is as great as pOSSiblC in order to have forall k i
i ’ o

;ka); (Lndy) Ji
hich
Eod e the four elements w
where {ka-fk’ (ipfi)  J ) ar
M, is a vertex

Then the scheme is (43)-(44) with, instead of (43),

’ i doz(
f(t) =fu; ) on ‘?)Ki’j(Mk) if Qn,;

9K jeak)
(61) <

‘ i . do <0
fw) = ka on 'bK‘.J(M ) if Qun;

N~

oK iiMk)

and for choice of f,,, we teplace (47) by
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Prtiangen @ sz . Qo jup 990 =
td ld
(62) K, jrpMivijzgr1p2)
"
z + f(uimj-+ﬁ) Q'ni+m,j+ﬁ

@B Jij
K, o jepMir1/2j+172)

The scheme (43)-(44), (58)-(61), (46), (62) is a consistent,
conservation-form scheme. We omit the proof of these results. It is not
a monotone scheme. We can prove (under a stability condition, similar

to (27) in Theorem 2) a result of L™ stability but not of BV stability.
Therefore we do not have a convergence result. (In order to obtain a

convergence tesult we need L™ stability and BV stability, in particular a

monotone scheme is L™ stable and BV- stable.) In fact we suspect that
(in two dimensions) schemes of this kind are never BV-stables (see
Goodman & al. [9] in this direction). However the scheme (43)-(44),
(58)-(61), (46), (62) gives, numerically, good results (as the scheme
described in section 2.3, for the case N = 1).  Results can be seen in
Eymard & al. [8].

The schemes described can also be easily generalized to other
mesh, that is to mesh composed of quadrilaterals or to mesh composed
of triangles.

Acknowledgement. We thank for many discusions on this sub-
ject.

REFERENCES

[1] Bertiger W.1., Padmanabhan L. - "Finite difference solutions to grid orientation
problems using IMPES". SPE paper 12250 presented at the Seventh SPE Sympo-
sium on Reservoir Simulation, San Francisco, Novenber 15-18, 1983.

[2] Brenier Y. - Personal communication.

[3] Caracotsios M., Bertiger W1, Woo P.T. - "An effective method to reduce grid
orientation effects in steamflood simulations". SPE paper 13509 presented at the

T. Gallouét, A. Pfertez!

[4]
(5}
161

(7
[8]

191
[10]
f11]
(12]
[13]
(14]

[15]

SPE 1985 Symposiu
1985.

Chalabi A., Vila J.P.
for scalar conservaki
Crandall M.G., Majc
vation laws. Math. |
Engquist B., Osher .
vations laws. Math.
Eymard R. - These ¢
Eymard R., Galloug
simulation. Comp. !
Goodman J1B., Léve
vation laws. Math.

Harten A. - High
Phys., 1983, 49, 3
Harten A. Hyman I,
conditions for shoc
Pferizel A. - These

Rozen BJ. - "A ge1
lation". SPE paper

Siumulation, Housto
ImVan Leer B. - T
Phys., 1977, 23,
Vila J.P - High or
conserer vation la




Upstream weighting schemes

Q.n do) =

i+ j+B

+1/2j4+1/2)

Q.n do

o i+p

+1/2,j+1/2)

6), (62) is a consistent,
of of t_hese results. It is not
stability condition, similar

y but not of BV stability.
sult. (In order to obtain a

3V stability, in particular a

e.) In fact we suspect that
re never BV-stables (see
/er the scheme (43)-(44),
'd tesults (as the scheme

Results can be seen in

sily generalized to other
als or to mesh composed

r discusions on this sub-

+ solutions 10 grid orientation
:d at the Seventh SPE Sympo-
:nber 15-18, 1983,

ective method 1o reduce grid
paper 13509 presented at the

f
\
|

"uq;'z;%r, A. Pfertez! 6

-"SPE 1985 Symposium on Reservoir Simulation, Dallas (Texas), February 10-13,
1985,

Chalabi A., Vila J.P. - On a class of implicit and explicit schemes of Van Leer type

for scalar conservation laws. M2ZAN, 1989, 23, 261-282.

Crandall M.G., Majda A. - Monotone difference approximations for scalar conser-’
vation laws. Math. of Comp., 1980, 34, 149:1-21.

Engquist B., Osher S. - One-sided difference approximations for nonlinear conser.
vations laws, Math. of Comp., 1981, 36, 154,

Eymard R. - Thése de doctorat, Université de Chambéry (France), 1987.

Eymard R., Gallouét T., Joly P. - hy brid finite element technics for oil recovery
simulation. Comp. Math. in appl. Mech. and Ing., 1989, 74: 83.98.

Goodman I.B., Lévique R. - On the accuracy of stable schemes for 2D scalar conser
vation laws. Math. of Comp., 1985, 45, 15-21.

Harten A. - High resolution schemes for hyperbolic conservation laws. J. Comp.
Phys., 1983, 49, 357-393,

Harten A. Hyman M., Lax P.D. - On finite difference approximations and entropy
conditions for shocks. Comm. Pure Appl. Math., 1976, 29, 297-322,

Pferizel A. - Thése de doctorat, Université de Paris-VI, 1987.

Rozen B.J. - "A generalized finite volume discretization method for reservoir simu-
lation”. SPE paper 18414 presented at the Tenth SPE Symposium on Reservoir
Simulation, Houston, February 6-8, 1989.

ImVan Leer B. - Towards the ultimate conservative difference scheme. J. Comp.
Phys., 1977, 23, 263-29%; 1979, 32, 101-136.

Vila J.P - High order schemes and entropy conditien for nonlinear sysiems of
conserer vation laws. Math. of Comp., 1988, 5¢, 53.




