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Abstract — This work is devoted to the discretisation of non linear elliptic problems on general
polyhedral meshes in several space dimensions. The SUSHI scheme which was recently studied for
anisotropic heterogeneous problems is applied in its full barycentric version, thus resulting into a cell
centred scheme written under variational form, also known as ’SUCCES’. We prove the existence of
the approximate solution and its convergence to the weak solution of the continuous solution as the
mesh size tends to 0. Numerical examples are shown for the p-Laplacian.
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1. Introduction

We study the following problem: find an approximation of u, weak solution to the
following equation:

−divaaa(xxx,∇u) = f in Ω,
u = 0 on ∂Ω,

(1.1)

where we denote by ∂Ω = Ω \Ω the boundary of Ω, under the following assump-
tions:

Ω is an open bounded connected polyhedral subset of Rd , d ∈ N?, (1.2a)

aaa : Ω×Rd → Rd is a Caratheodory function, (1.2b)
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(e.g. a function such that for a.e. xxx ∈ Ω, ξξξ 7→ aaa(xxx,ξξξ ) is continuous, and for any
ξξξ ∈ Rd the function xxx 7→ aaa(xxx,ξξξ ) is measurable)

∃a ∈ (0,+∞), p ∈ (1,+∞) ; aaa(xxx,ξξξ ) ·ξξξ > a|ξξξ |p, for a.e. xxx ∈Ω, ∀ξξξ ∈ Rd , (1.2c)

(aaa(xxx,ξξξ )−aaa(xxx,χχχ)) · (ξξξ −χχχ) > 0, for a.e. xxx ∈Ω, ∀ξξξ ,χχχ ∈ Rd with ξξξ 6= χχχ, (1.2d)

∃a ∈ Lp′(Ω), Λ ∈ (0,+∞) ; |aaa(xxx,ξξξ )|6 a(xxx)+Λ|ξξξ |p−1, for a.e. xxx ∈Ω, ∀ξξξ ∈ Rd ,
(1.2e)

and

f ∈ Lp′(Ω) where p′ =
p

p−1
. (1.2f)

If the function aaa satisfies (1.2b)-(1.2e), then the mapping u 7→ −divaaa(·,∇u) is
a Leray-Lions operator, a classical example of which is the p-Laplacian operator,
obtained by setting

aaa(xxx,ξξξ ) = |ξξξ |p−2ξξξ , ∀ξξξ ∈ Rd \{0}, for a.e. xxx ∈Ω,
aaa(xxx,0) = 0, for a.e. xxx ∈Ω.

(1.3)

It is well-known [27] that under hypotheses (1.2), there exists a unique weak solu-
tion (1.1), that is a function u satisfying: u ∈W 1,p

0 (Ω),∫
Ω

aaa(xxx,∇u(xxx)) ·∇v(xxx)dxxx =
∫

Ω

f (xxx)v(xxx)dxxx, ∀v ∈W 1,p
0 (Ω).

(1.4)

The numerical approximation of (1.4) has been the subject of numerous works:
finite element methods have been extensively studied [23,24,22,11,28,9,25,16].
Finite volume schemes have also been addressed, first on Cartesian grids [5,6];
more recent works [10,8,7] are concerned with the DDFV (Discrete Duality Fi-
nite Volume) scheme for general two-dimensional grids, introduced in [26] and first
analysed in [12] for linear problems; these schemes require the use of two dual grids
and sets of unknowns. In [13] the mixed finite volume scheme involving unknowns
at the faces of the mesh, first introduced and analysed in [14] is shown to converge
for general multidimensional grids.

In this paper, we study a numerical scheme which satisfies the following prop-
erties:

• It is a cell centred scheme, that is there is only one unknown associated to
each grid cell. The advantage of such method is that it can be more easily
extended to nonlinear coupled problems.

• It is defined for general, possibly non-conforming, polyhedral meshes in any
space dimension.
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• The approximate problem has one and only one solution, so that the result-
ing nonlinear system of equations may be solved by an adequate (iterative)
method.

• The convergence of the approximate solution and gradient to the exact solu-
tion and gradient when the mesh size goes to 0 are proven.

The scheme ”SUCCES” (Scheme Using Conservativity and Consistency error
Stabilisation) that we use here was first introduced in [21] for the discretisation
of the Laplace operator in the incompressible Navier-Stokes equations on general
multidimensional grids. Its numerical performance for the numerical simulation of
flow in heterogeneous porous media is demonstrated in [3]. Its convergence analysis
for linear problems is carried out in [19] in the more general framework of the
SUSHI (Scheme Using Stabilisation and Hybrid Interfaces) scheme, for which edge
unknowns may be present or not, according to the user’s choice.

The contents of this paper is the following. In Section 2, we present the discret-
isation scheme and a few basic properties. Some estimates (using discrete Sobolev
embeddings) are presented in Section 3, along with the proof of the existence and
uniqueness of the approximate solution. In Section 4, we prove the convergence
results, which are based on some “discrete functional analysis” tools, mimicking
classical functional analysis tools: the Kolmogorov theorem is used to get some
compactness results (strong convergence for the approximate solution, weak con-
vergence for the approximate gradient). Then the well-known ’Minty trick’ [27]
is used to overcome the problem of passing to the limit in a nonlinear monotone
problem under only weak convergence properties for the approximate gradient of
the solution. Finally, the Leray-Lions trick of [27] allows us to recover the strong
convergence of this approximate gradient. The numerical behaviour of the scheme
is shown on an example in Section 5.

2. The finite volume scheme

Let us first begin with the detailed description of the mesh under consideration in
this paper.

Definition 2.1 Space discretisation. Let Ω be a polyhedral open bounded con-
nected subset of Rd , with d ∈N\{0}, and ∂Ω = Ω\Ω its boundary. A discretisation
of Ω, denoted by D , is defined as the triplet D = (M ,E ,P), where:

1. M is a finite family of non empty connected open disjoint subsets of Ω (the
“control volumes”) such that Ω = ∪K∈M K. For any K ∈M , let ∂K = K \K
be the boundary of K; let |K|> 0 denote the measure of K and hK denote the
diameter of K.

2. E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such
that, for all σ ∈ E , σ is a non empty open subset of a hyperplane of Rd , whose
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(d-1)-dimensional measure |σ | is strictly positive. We also assume that, for
all K ∈M , there exists a subset EK of E such that ∂K = ∪σ∈EK σ . For any
σ ∈ E , we denote by Mσ = {K ∈M ,σ ∈ EK}. We then assume that, for all
σ ∈ E , either Mσ has exactly one element and then σ ⊂ ∂Ω (the set of these
interfaces, called boundary interfaces, is denoted by Eext) or Mσ has exactly
two elements (the set of these interfaces, called interior interfaces, is denoted
by Eint). For all σ ∈ E , we denote by xxxσ the barycentre of σ . For all K ∈M
and σ ∈ EK , we denote by nnnK,σ the unit vector normal to σ outward to K.

3. P is a family of points of Ω indexed by M , denoted by P = (xxxK)K∈M , such
that for all K ∈M , xxxK ∈ K and K is assumed to be xxxK-star-shaped, which
means that for all xxx ∈ K, the property [xxxK ,xxx]⊂ K holds. Denoting by dK,σ the
Euclidean distance between xxxK and the hyperplane including σ , one assumes
that dK,σ > 0. We then denote by DK,σ the cone with vertex xxxK and basis σ .

Remark 2.1 Non convex generalized hexahedra.
The above definition applies to a large variety of meshes. Note that no hypo-

thesis is made on the convexity of the control volumes; in fact, generalised hexa-
hedra, i.e. with faces which may be composed of several planar sub-faces may be
used. Often encountered in underground flow simulations, such hexahedra may have
up to 12 faces (resp. 24 faces) if each non planar face is composed of two triangles
(resp. four triangles), but only 6 neighbouring control volumes.

Let D = (M ,E ,P) be a discretisation of Ω in the sense of Definition 2.1. The
size of the discretisation D is defined by:

hD = sup{hK ,K ∈M }.

Let HD ⊂ L2(Ω) be the set of piece-wise constant functions on the control
volumes of the mesh and let uK denote the (constant) value of u on K.

A first simple idea to find a scheme that will approximate (1.1) is to use the
usual non conforming Galerkin method: assuming that for v ∈ HD we know how
to construct an adequate discrete gradient ∇Dv (expected to be an approximation of
the gradient of the exact solution), we then seek uD ∈ HD such that∫

Ω

aaa(xxx,∇DuD(xxx)) ·∇Dv(xxx)dxxx =
∫

f (xxx)v(xxx)dxxx, ∀v ∈ HD . (2.1)

The construction of the discrete gradient is obtained from the values of the discrete
function on the cell and from its reconstructed values on the edges. These are con-
structed in the following way. For K ∈M , one chooses xxxK ∈M (this choice is
possible for any set K which is “xxxK star shaped”). For any interior edge (interface)
σ of M , choose some points xxxM of the mesh close to σ and write xxxσ (recall that
xxxσ is the barycentre of σ ) as a combination of these points: xxxσ = ∑M∈M β M

σ xxxM.
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Note that there is no need for this combination to be convex. The coefficients of the
combination, however, should be bounded.

Then, for any v ∈ HD , one sets:

Πσ u =


∑

M∈M
β

M
σ uM if σ ∈ Eint,

0 if σ ∈ Eext.

(2.2)

Next, denoting by Id the d×d identity matrix, we use the following geometrical
relationship

1
|K| ∑

σ∈EK

|σ |nnnK,σ (xxxσ − xxxK)t = Id, ∀K ∈M , (2.3)

which is an easy consequence of the Stokes formula, to define a consistent discrete
gradient ∇Dv ∈ HD of a function v ∈ HD as the piece-wise constant function equal
to its constant value ∇Ku a.e. in K:

∇Du(xxx) = ∇Ku for a.e. xxx ∈ K, ∀K ∈M . (2.4a)

∇Ku =
1
|K| ∑

σ∈EK

|σ |(Πσ u−uK)nnnK,σ . (2.4b)

We may then try to find uD ∈ HD solution of (2.1); however, it is easily seen
that the problem lacks coercivity because of the definition of the discrete gradient.
Take for instance d = 1, Ω = (0,1) and a uniform mesh with step size h = 1/N.
For each cell Ki = ((i−1)h, ih) (i = 1, . . . ,N), take xKi = xi = (i−1)h+ h

2 . A natural
combination to compute the interface values is xi+1/2 = 1

2(xi +xi+1), i = 1, . . . ,N−1
(and the boundary conditions give x 1

2
= xN+ 1

2
= 0). Then, the discrete gradient of

v = (vi)i=1,N has the value 1
2h(vi+1− vi−1) on cell Ki for i = 2, . . . ,N−1, the value

1
2h(v1 + v2) on cell K1 and the value −1

2h (vN−1 + vN) on cell KN . Taking vi = (−1)i

for all i leads to a discrete gradient equal 0 in all cells. This problem must be cured
to obtain the coercivity of the discrete problem and the uniqueness of its solution.

A remedy to this problem was found by using a stabilisation which uses a con-
sistency estimate [18,21,19]. Let us introduce, for any v ∈ HD , for any K ∈M and
σ ∈ EK , the value RK,σ v defined by:

RK,σ v =
1

dK,σ
(Πσ v− vK−∇Ku · (xxxσ − xxxK)). (2.5)

Using this value, we define the function RDv by the constant value RK,σ v in the cone
DK,σ :

RDv(xxx) = RK,σ v for a.e. xxx ∈ DK,σ , ∀K ∈M , ∀σ ∈ EK . (2.6)
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We now consider the following approximate problem:

find u ∈ HD such that

〈u,v〉D =
∫

Ω

aaa(xxx,∇Du(xxx)) ·∇Dv(xxx)dxxx+b(u,v) =
∫

f (xxx)v(xxx)dxxx, ∀v ∈ HD .

(2.7)

with
b(u,v) =

∫
Ω

|RDu(xxx)|p−1 sgn(RDu(xxx))RDv(xxx)dxxx, (2.8)

introducing the function sgn(x) = 1 for all x ∈]0,+∞[, sgn(x) = −1 for all x ∈
]−∞,0[ and sgn(0) = 0. We now define, for all K ∈M , the function

aaaK : Rd → Rd

∀ξξξ ∈ Rd ,aaaK(ξξξ ) = 1
|K|
∫

K aaa(xxx,ξξξ )dxxx, (2.9)

we can then write that

〈u,v〉D = ∑
K∈M

(
|K|aaaK(∇Ku) ·∇Kv+ ∑

σ∈EK

|σ |dK,σ

d
|RK,σ u|p−1sgn(RK,σ u)RK,σ v

)
.

Remark 2.2 An alternate scheme. We could also proceed as in [19]: define
∇K,σ v in the cone DK,σ :

∇K,σ v = ∇Kv+RK,σ vnnnK,σ ,

then define ∇Dv by the constant value ∇K,σ v in the cone DK,σ , and then define the
scheme by (2.1). This scheme presents similar properties of convergence to the one
which is studied here, under conditions of regularity on the mesh which ensure that
there exist two positive reals α,β independent of the mesh such that

α‖v‖p,Π 6 ‖∇Dv‖Lp(Ω) 6 β‖v‖p,Π,

where ‖ · ‖p,Π is defined by (3.5). This can be shown under more restrictive hypo-
theses than those used here.

3. Estimates, existence and uniqueness of the approximate solution

We define the following discrete W 1,p
0 norm on HD :

‖u‖p
1,p,D = ∑

K∈M
∑

σ∈EK

|σ |dK,σ

(
Dσ u
dσ

)p

, (3.1)

where dσ = dK,σ +dL,σ , if Mσ = {K,L}, and dσ = dK,σ , if Mσ = {K} and Dσ u =
|uK−uL| if Mσ = {K,L} and Dσ u = |uK−0| if Mσ = {K}.

Let us first recall the following results, which are proven in [19].
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Lemma 3.1 Discrete Sobolev inequality. Let d > 1, 1 6 p < ∞ and let Ω be a
polyhedral open bounded connected subset of Rd . Let D be a mesh of Ω in the sense
of Definition 2.1. Let η > 0 be such that η 6 dK,σ/dL,σ 6 1/η for all σ ∈ E , where
Mσ = {K,L}. Then, there exists q > p only depending on p (q = pd

d−p , for instance,
in the case 1 < p < d, and q is any value in ]p,∞[ in the case d 6 p) and there exists
C1, only depending on d, Ω, p and η such that

‖u‖Lq(Ω) 6 C1‖u‖1,p,D ∀u ∈ HD , (3.2)

where ‖u‖p
1,p,D is defined by (3.1).

Lemma 3.2 Compactness in Lp. Let d > 1, 1 6 p < ∞ and Ω be a polyhedral
open bounded connected subset of Rd . Let F be a family of meshes of Ω in the sense
of Definition 2.1. Let η > 0 be such that, for all D ∈F , one has η 6 dK,σ/dL,σ 6
1/η for all σ ∈ E , where Mσ = {K,L}. For D ∈F , let uD ∈ HD and assume that
there exists C ∈ R such, for all D ∈F , ‖uD‖1,p,D 6 C. Then, the family (uD)D∈F
is relatively compact in Lp(Ω) and also in Lp(Rd) taking uD = 0 outside Ω.

We introduce a measure of the regularity of the discretisation by

ϑD = max
{

hK

dK,σ
,
dK,σ

dL,σ
,K ∈M ,σ ∈ EK ∩Eint,Mσ = {K,L}

}
. (3.3)

Note that if ϑD is bounded, the hypotheses of Lemmas 3.1 and 3.2 hold. We next
define:

ϑD ,Π = max
(

ϑD ,

{
∑M∈M |β M

σ ||xxxM− xxxσ |2

h2
K

,K ∈M ,σ ∈ EK ∩Eint

})
(3.4)

We then define the following discrete W 1,p
0 norms on HD , depending on the map-

pings Πσ :

‖u‖p
p,Π = ∑

K∈M
∑

σ∈EK

|σ |dK,σ

(
|Πσ u−uK |

dK,σ

)p

(3.5)

Let us remark that the following inequality holds:

‖u‖p
1,p,D 6 (1+ϑD)‖u‖p

p,Π, ∀u ∈ HD , (3.6)

using the following inequalities(
|uK−uL|

dσ

)p

6

((
dK,σ

dσ

)p′

+
(

dL,σ

dσ

)p′
)p/p′(

|Πσ u−uK |p

dp
K,σ

+
|Πσ u−uL|p

dp
L,σ

)
,

(
dK,σ

dσ

)p′

+
(

dL,σ

dσ

)p′

6
dK,σ

dσ

+
dL,σ

dσ

= 1,



8 R. Eymard, T. Gallouët, and R. Herbin

and dL,σ 6 ϑDdK,σ . We also have

‖∇Du‖p
Lp(Ω) 6 dp−1 ‖u‖p

p,Π, ∀u ∈ HD , (3.7)

using the inequality ∣∣∣∣∣ ∑
σ∈EK

|σ |dK,σ

|K|
Πσ u−uK

dK,σ
nnnK,σ

∣∣∣∣∣
p

6

(
∑

σ∈EK

|σ |dK,σ

|K|
1p′
)p/p′(

∑
σ∈EK

|σ |dK,σ

|K|
|Πσ u−uK |p

|dK,σ |p

)
.

Lemma 3.3 Coerciveness. Under hypotheses (1.2), let D be a discretisation in
the sense of Definition 2.1. Let ϑ > ϑD (defined by (3.3)). Then there exists C2, only
depending on d, Ω, p, a and ϑ such that

∀u ∈ HD , C2‖u‖p
p,Π 6 〈u,u〉D , (3.8)

where 〈u,u〉D is defined in (2.7).

Proof. Thanks to (1.2c), we have∫
Ω

aaa(xxx,∇Du(xxx)) ·∇Du(xxx)dxxx > a ∑
K∈M

|K||∇Ku|p.

We get, from (2.8),

b(u,u) = ∑
K∈M

∑
σ∈EK

|σ |dK,σ

d
|RK,σ u|p.

Using Hölder’s inequality, we have

∀x,y ∈ R, ∀µ > 0, |x+ y|6 |x|+ |y|6 (1+ µ
p′)1/p′(|x|p +

|y|p

µ p )1/p.

We apply the above inequality to x = RK,σ u and y = 1
dK,σ

∇Ku · (xxxσ −xxxK), for a value
µ which will be chosen later. We get(

|Πσ u−uK |
dK,σ

)p

6 (1+ µ
p′)p/p′

(
|RK,σ u|p +

(
|∇Ku · (xxxσ − xxxK)|

µdK,σ

)p)
.

We then choose µ =
ϑ

a1/p , which ensures

(
|xxxσ − xxxK |

µdK,σ

)p

6 a, ∀K ∈M , ∀σ ∈ EK .
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We then get, for this value of µ ,

(1+ µ
p′)−p/p′

∑
K∈M

∑
σ∈EK

|σ |dK,σ

d

(
|Πσ u−uK |

dK,σ

)p

6 〈u,u〉D ,

which concludes the proof of (3.8). 2

Lemma 3.4 Estimate, existence and uniqueness of the solution.
Under hypotheses (1.2), let D be a discretisation in the sense of Definition 2.1.

Let ϑ > ϑD (defined by (3.3)). Let u be a solution of (2.7). Then there exists C3 > 0,
only depending on d, Ω, p, a and ϑ such that

‖u‖p
p,Π 6 C3‖ f‖p′

Lp′ (Ω)
. (3.9)

Moreover, there exists one and only one solution u ∈ HD to (2.7).

Proof. Let v = u in (2.7); applying (3.8) in Lemma 3.3, we get

C2‖u‖p
p,Π 6

∫
f (xxx)u(xxx)dxxx.

We now apply Hölder’s inequality: we get∫
f (xxx)u(xxx)dxxx 6 ‖ f‖Lp′ (Ω)‖u‖Lp(Ω).

We then use (3.1) in Lemma 3.1 and (3.6) to obtain that there exists C4, only de-
pending on ϑ , p and Ω, such that

‖u‖Lp(Ω) 6 C4‖u‖p,Π.

The last three inequalities yield (3.9).
The existence of the discrete solution follows, for instance, by a topological

degree argument.
Let us now assume that u and û are two solutions of (2.7). Then, 〈u,u− û〉D +

〈û, û−u〉D = 0, which yields

∑
K∈M

|K|(aaaK(∇Ku)−aaaK(∇K û)) ·∇K(u− û)

+ ∑
K∈M

∑
σ∈EK

αK,σ |σ |dK,σ (sgn(RK,σ u)|RK,σ u|p−1

−sgn(RK,σ û)|RK,σ û|p−1) RK,σ (u− û) = 0.

Since

(sgn(RK,σ u)|RK,σ u|p−1− sgn(RK,σ û)|RK,σ û|p−1) (RK,σ u−RK,σ û) > 0,
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and
(aaaK(∇Ku)−aaaK(∇K û)) ·∇K(u− û) > 0,

we get that both terms vanish. Thus, ∇K(u− û) = 0 and RK,σ (u− û) = 0. We then
get from the inequality (3.8) that u− û = 0.

2

4. Convergence of the scheme

The convergence of the scheme requires a compactness property which extends that
of [19] proven in the case where p = 2:

Lemma 4.1 Weak discrete W 1,p compactness. Under hypotheses (1.2), let F
be a family of discretisations in the sense of Definition 2.1. For any D ∈ F , let
(Πσ )σ∈E be a family of linear mappings from HD to R defined by (2.2). Assume
that there exists ϑ > 0 such that for all D ∈F , ϑD 6 ϑ , with ϑD defined by (3.3).
Let (uD)D∈F be a family of piecewise constant functions such that:

• uD ∈ HD for all D ∈F ,

• there exists C > 0 with ‖uD‖p,Π 6 C for all D ∈F ,

• there exists u ∈ Lp(Ω) with lim
hD→0

‖uD −u‖Lp(Ω) = 0.

Then, the limit u belongs to W 1,p
0 (Ω); moreover, defining ∇DuD by (2.4), the se-

quence (∇DuD)D∈F weakly converges in Lp(Ω)d to ∇u as hD → 0. Prolonging all
functions by 0 outside of Ω, the convergence also holds in Lp(Rd)d .

Proof. Thanks to (3.7), we get that, up to a sub-sequence, there exists some
function GGG ∈ Lp(Rd)d such that ∇DuD weakly converges in Lp(Rd)d to GGG as hD →
0. Let us show that GGG = ∇u. Let ψψψ ∈ C∞

c (Rd)d be given. Let us consider the term
T D

1 defined by

T D
1 =

∫
Rd

∇DuD(xxx) ·ψψψ(xxx)dxxx;

this term may also be written:

T D
1 = ∑

K∈M
∑

σ∈EK

|σ |(Πσ u−uK)nnnK,σ ·ψψψK , with ψψψK =
1
|K|

∫
K

ψψψ(xxx)dxxx.

Let us then compare T D
1 with

T D
2 = ∑

K∈M
∑

σ∈EK

|σ |(Πσ u−uK)nnnK,σ ·ψψψσ , where ψψψσ =
1
|σ |

∫
σ

ψψψ(xxx)dγ(xxx).
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We get that

|T D
1 −T D

2 |6(
∑

K∈M
∑

σ∈EK

|σ |dK,σ
|Πσ u−uK |p

dp
K,σ

)1/p(
∑

K∈M
∑

σ∈EK

|σ |dK,σ |ψψψK−ψψψσ |p
′

)1/p′

,

which leads to lim
hD→0

(T D
1 −T D

2 ) = 0.

Since

T D
2 =− ∑

K∈M
∑

σ∈EK

|σ |uKnnnK,σ ·ψψψσ =−
∫

Rd
ΠM uD(xxx)divψψψ(xxx)dxxx,

we deduce that lim
hD→0

T D
2 = −

∫
Rd u(xxx)divψψψ(xxx)dxxx. This proves that the function

GGG ∈ Lp(Rd)d is a.e. equal to ∇u in Rd . Since u = 0 outside of Ω, we get that
u ∈W 1,p

0 (Ω), and the uniqueness of the limit implies that the whole family ∇DuD

weakly converges in Lp(Rd)d to ∇u as hD → 0.
2

For any ϕ ∈C(Ω,R), we denote by PDϕ the element of HD defined by:

PDϕ = (ϕ(xxxK))K∈M , (4.1)

and we prove a consistency result of the discrete gradient, which was already used
in [19] in the more general setting of the SUSHI scheme.

Lemma 4.2 Discrete gradient consistency. Let D be a discretisation of Ω in
the sense of Definition 2.1. and let (Πσ )σ∈E be a family of linear mappings from
HD to R defined by (2.2). Assume that ϑ > ϑD ,Π (given by (3.4)). Then, for any
function ϕ ∈C2(Ω), there exists C5 only depending on d, ϑ and ϕ such that:

‖∇DPDϕ−∇ϕ‖(L∞(Ω))d 6 C5hD , (4.2)

where ∇D is defined by (2.4), and

‖RDPDϕ‖L∞(Ω) 6 C5hD , (4.3)

where RD is defined by (2.5)-(2.6) and PDϕ is defined by (4.1).

Proof. From (2.4b), we have, for any K ∈M ,

∇KPDϕ =
1
|K| ∑

σ∈EK

|σ |(Πσ PDϕ−ϕ(xxxK))nnnK,σ .
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Using definition (3.4), we can write, for σ ∈ EK ,

|Πσ PDϕ−ϕ(xxxσ )|6 Cϕϑh2
K ,

and on the other hand, we have

1
|K| ∑

σ∈EK

|σ |(ϕ(xxxσ )−ϕ(xxxK))nnnK,σ =

1
|K| ∑

σ∈EK

|σ |
(
∇ϕ(xxxK) · (xxxσ − xxxK)+h2

KρK,σ

)
nnnK,σ ,

where |ρK,σ | 6 Cϕ with Cϕ only depending on ϕ . Thanks to (2.3) and to the regu-
larity of the mesh, we get the existence of C6, only depending on ϑ , such that

|∇KPDϕ−∇ϕ(xxxK)|6 hKC6Cϕ .

From this last inequality, using Definition 2.5, we get the existence of C7, only
depending on ϑ , such that

|RK,σ PDϕ| =
1

dK,σ
|Πσ PDϕ−ϕ(xxxK)−∇KPDϕ · (xxxσ − xxxK)|

6 hKCϕC7

which concludes the proof. 2

Theorem 4.1 Convergence of the scheme. Under hypotheses (1.2), let F be a
family of discretisations in the sense of Definition 2.1. For any D ∈F , let (Πσ )σ∈E
be a family defined by (2.2). We assume that,there exists ϑ > 0 with, for all D ∈F ,
ϑ > ϑD ,Π (see (3.4)).

For all D ∈F , let uD ∈ HD be the unique solution of (2.7). Then, as hD → 0:

uD −→ u ∈W 1,p
0 (Ω) for the strong topology of Lp(Ω), (4.4a)

where u ∈W 1,p
0 (Ω) is the unique solution to (1.1); furthermore,

∇DuD −→ ∇u for the strong topology of Lp(Ω)d and (4.4b)

aaa(·,∇DuD)−→ aaa(·,∇u) for the strong topology of (Lp′(Ω))d . (4.4c)

Proof. Step 1. Convergence of the approximate solution (proof of (4.4a)).
Thanks to (3.9) in Lemma 3.4, the family (‖uD‖p,Π)D∈F is bounded independ-

ently of D . Therefore, thanks to inequality (3.6), we may apply Lemma 3.2. Thus,
for any sequence (Dn)n∈N of discretisations in the family F such that hDn tends to 0
as n→ ∞, there exist u ∈ Lp(Ω) such that, up to a sub-sequence, uDn → u in Lp(Ω)
as n→ ∞. For short, we replace the index Dn by n in the remainder of Step 1.
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We then apply Lemma 4.1 and deduce that u ∈W 1,p
0 (Ω) and that ∇nun → ∇u

weakly in (Lp(Ω))d as n→ ∞. Using Hypothesis (1.2e), we then get that the func-
tion xxx→ aaa(xxx,∇nun(xxx)) is bounded in (Lp′(Ω))d ; hence, there exists a sub-sequence
of (Dn)n∈N, again denoted (Dn)n∈N, and AAA ∈ (Lp′(Ω))d such that aaa(·,∇nun)→ AAA
weakly in (Lp′(Ω))d .

Let us now prove that prove that div(AAA− aaa(∇u)) = 0, and that u is the weak
solution of (1.1).

Let ψ ∈ C∞
c (Ω). We introduce Pnψ as a test function in (2.7) (with Pn = PDn

defined by (4.1)). We get∫
Ω

aaa(xxx,∇nun(xxx)) ·∇nPnψ(xxx)dxxx+b(un,Pnψ) =
∫

Ω

f (xxx)Pnψ(xxx)dxxx.

Thanks to the estimate (3.9) on un (in the ‖·‖1,p,D norm) and thanks to (3.7), the se-
quence (∇nun)n∈N is bounded in Lp(Ω)d . Hence, the sequence (Rnu)n∈N is bounded
in Lp(Ω), which implies, using (4.3) in Lemma 4.2, that

lim
n→∞

b(un,Pnψ) = 0. (4.5)

Hence, using (4.2) in Lemma 4.2 and passing to the limit as n→ +∞ in (2.7), we
get that ∫

Ω

AAA(xxx) ·∇ψ(xxx)dxxx =
∫

Ω

f (xxx)ψ(xxx)dxxx. (4.6)

By density, this also holds for all ψ ∈W 1,p
0 (Ω). It remains to prove that∫

Ω

AAA(xxx) ·∇ψ(xxx)dxxx =
∫

Ω

aaa(xxx,∇u(xxx)) ·∇ψ(xxx)dxxx.

This is the object of the famous “Minty trick” [27]. Indeed, for any ψ ∈ C∞
c (Ω),

since aaa satisfies (1.2d), the following inequality holds for any n ∈ N:∫
Ω

(aaa(xxx,∇nun(xxx))−aaa(xxx,∇nPnψ(xxx))) · (∇nun(xxx)−∇nPnψ(xxx))dxxx > 0, (4.7)

On the other hand, thanks to the positivity of b(un,un) and because un verifies (2.7),
we get∫

Ω

aaa(xxx,∇nun(xxx)) ·∇nun(xxx)dxxx 6
∫

Ω

aaa(xxx,∇nun(xxx)) ·∇nun(xxx)dxxx+b(un,un) =∫
Ω

f (xxx)un(xxx)dxxx.

Passing to the limit n→+∞ (up to the considered sub-sequence), we thus get

limsup
n→∞

∫
Ω

aaa(xxx,∇nun(xxx)) ·∇nun(xxx)dxxx 6
∫

Ω

f (xxx)u(xxx)dxxx =
∫

Ω

AAA(xxx) ·∇u(xxx)dxxx,
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thanks to (4.6) replacing ψ by u.
Now, thanks to the continuity on aaa with respect to its second argument (as-

sumption (1.2b)) and to assumption (1.2e) , we obtain by the Lebesgue dominated
convergence theorem that

aaa(·,∇nPnψ(xxx))→ aaa(·,∇ψ) in Lp′(Ω) as n→+∞. (4.8)

Hence, passing to the limit as n→ ∞ in (4.7) leads to∫
Ω

(AAA(xxx)−aaa(xxx,∇ψ(xxx))) · (∇u(xxx)−∇ψ(xxx))dxxx > 0.

By density, this last inequality remains true for any ψ ∈W 1,p
0 (Ω). Taking ψ = u+tϕ

with ϕ ∈C∞
c (Ω) and t > 0, we get∫

Ω

(AAA(xxx)−aaa(xxx,∇u(xxx)+ t∇ϕ(xxx))) ·∇ϕ(xxx)dxxx > 0,

This gives, letting t→ 0,∫
Ω

(AAA(xxx)−aaa(xxx,∇u(xxx))) ·∇ϕ(xxx)dxxx > 0.

Changing ϕ in −ϕ , we get

−
∫

Ω

(AAA(xxx)−aaa(xxx,∇u(xxx))) ·∇ϕ(xxx)dxxx > 0.

This proves that
∫

Ω
(AAA(xxx)− aaa(xxx,∇u(xxx))) ·∇ϕ(xxx)dxxx = 0 and therefore, with (4.6),

that u is the weak solution of (1.1). Then, using the uniqueness of the solution of
(1.1), a classical argument gives that the whole sequence converges and therefore,
this convergence holds for the whole family F as hD → 0 which proves (4.4a).

Step 2. Strong convergence of the gradient (proof of (4.4b)).
We now prove the (strong) convergence of ∇DuD to ∇u in (Lp(Ω))d as hD → 0.

We already remarked (thanks to the positivity of b(uD ,uD) and using that uD verifies
(2.7)) that:

limsup
hD→0

∫
Ω

aaa(xxx,∇DuD(xxx)) ·∇DuD(xxx)dxxx 6
∫

Ω

f (xxx)u(xxx)dxxx =∫
Ω

aaa(xxx,∇u(xxx)) ·∇u(xxx)dxxx.

Hence we get

limsup
hD→0

∫
Ω

(aaa(xxx,∇DuD(xxx))−aaa(xxx,∇u(xxx))) · (∇DuD(xxx)−∇u(xxx))dxxx 6 0.
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Since (aaa(xxx,∇DuD)−aaa(xxx,∇u)) · (∇DuD −∇u) > 0 for a.e. xxx ∈Ω, we then have

(aaa(·,∇DuD)−aaa(·,∇u)) · (∇DuD −∇u)→ 0 in L1(Ω), (4.9)

and therefore a.e. for a sub-sequence. Then, Lemma 4.3, (which states the “Leray-
Lions trick” [27] and which we give below for the sake of completeness) shows that
∇DuD → ∇u a.e. as hD → 0, at least for the same sub-sequence. Since the family
(∇DuD)D∈F is bounded in Lp(Ω)d , this a.e. convergence implies the convergence
in Lq(Ω)d for any q ∈ [1, p). The convergence of the whole family (∇DuD)D∈F to
∇u in Lq(Ω)d classically follows, for any q ∈ [1, p), as hD → 0. The boundedness
of the family (∇DuD)D∈F Lp(Ω)d) also entails that:

∇DuD converges to ∇u weakly in Lp(Ω)d as hD → 0.

In order to obtain the strong convergence of ∇DuD in Lp(Ω)d (and not only in
Lq(Ω)d for q < p), we then remark that (4.9) gives:

lim
hD→0

∫
Ω

aaa(xxx,∇DuD(xxx)) ·∇DuD(xxx)dxxx =
∫

Ω

aaa(xxx,∇u(xxx)) ·∇u(xxx)dxxx. (4.10)

Next, we notice that, for any sequence of discretisations, we can assume, up to
a sub-sequence, the a.e. convergence of aaa(·,∇DuD) ·∇DuD to aaa(·,∇u) ·∇u; thus,
since aaa(·,∇DuD) ·∇DuD > 0 a.e., we also have by Lemma 4.4 (which is again
classical [27] and which we give below for the sake of completeness) aaa(·,∇DuD) ·
∇DuD → aaa(·,∇u) ·∇u in L1(Ω) as hD → 0 (see Lemma 4.4). This L1-convergence
gives the equi-integrability of the family of functions aaa(·,∇DuD) ·∇DuD , which, in
turn, gives, thanks to (1.2c), that the family of functions |∇DuD |p is equi-integrable.
Finally, we obtain (using Vitali’s theorem) the Lp(Ω)d convergence of ∇DuD to ∇u,
as hD → 0.

Note that in the case aaa(xxx,ξξξ ) = |ξ |p−2ξξξ , a simple proof is possible since (4.10)
gives the convergence of the Lp-norm of the approximate gradient to the Lp-norm of
∇u (which is sufficient, thanks to the a.e. convergence of “sub-sequences”, to obtain
the Lp(Ω)d convergence).

Step 3. Convergence of fluxes (proof of (4.4c)).
Since ∇DuD converges to ∇u in Lp(Ω)d as hD → 0, the convergence of the

vector field aaa(·,∇DuD) to aaa(·,∇u) in Lp′(Ω)d (namely assertion (4.4c)) follows
classically from hypotheses (1.2b) and (1.2e) on aaa.

2

Lemma 4.3 The ‘Leray-Lions trick”. Let bbb be a continuous function from Rd

to Rd such that (bbb(δ )− bbb(γ)) · (δ − γ) > 0 if δ ,γ ∈ Rd , δ 6= γ . Let (βn)n∈N be a
sequence in Rd and β ∈ Rd such that (bbb(βn)− bbb(β )) · (βn− β )→ 0 as n→ ∞.
Then, βn→ β as n→ ∞.
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Proof. We begin the proof with a preliminary remark. Let δ ∈ Rd , δ 6= 0. We
define the function hδ from R to R by hδ (s) = (bbb(β + sδ )− bbb(β )) · δ . The hypo-
thesis on bbb gives that hδ is an increasing function since, for s > s′, one has :

hδ (s)−hδ (s′) = (bbb(β + sδ )−bbb(β + s′δ )) ·δ > 0.

We prove now, by contradiction, that limn→∞ βn = β . If the sequence (βn)n∈N does
not converge to β , there exists ε > 0 and a subsequence, still denoted (βn)n∈N, such
that |βn− β | > ε , for all n ∈ N. Then, we set δn = βn−β

|βn−β | and we can assume, up
to a subsequence, that δn → δ as n→ ∞, for some δ ∈ Rd with |δ | = 1. Taking
sn = |βn−β |, we then have, since sn > ε :

(bbb(βn)−bbb(β )) · βn−β

sn
= hδn(sn) > hδn(ε) = (bbb(β + εδn)−bbb(β )) ·δn.

Then, passing to the limit as n→ ∞,

0 = lim
n→∞

1
sn

(bbb(βn)−bbb(β )) · (βn−β ) > (bbb(β + εδ )−bbb(β )) ·δ > 0.

which is impossible.
2

Lemma 4.4. Let (Fn)n∈N be a sequence non-negative functions in L1(Ω). Let
F ∈ L1(Ω) be such that Fn→ F a.e. in Ω and

∫
Ω

Fn(xxx)dxxx→
∫

Ω
F(xxx)dxxx, as n→ ∞.

Then, Fn→ F in L1(Ω) as n→ ∞.

Proof. The proof of this lemma is very classical. Applying the Dominated Con-
vergence Theorem to the sequence (F−Fn)+ leads to

∫
Ω
(F(xxx)−Fn(xxx))+dxxx→ 0 as

n→ ∞. Then, since |F−Fn|= 2(F−Fn)+− (F−Fn), we conclude that Fn→ F in
L1(Ω) as n→ ∞.

2

5. Numerical results

We consider the particular case Ω =]0,1[2, and f given by the following: f (xxx) = 1
for a.e. xxx in a sub-domain of Ω and 0 elsewhere, as shown in the right part of Figure
5, and aaa is given by (1.3) for p ∈]1,+∞[.

We then compute, for p = 1.3,1.6,2,3,6, an approximate solution of the solu-
tion of (2.7), using an under-relaxed fixed point method (consisting in computing
|∇Du|p−2 one iteration late). We then get the following results, on two meshes. On
one hand, we use the mesh shown in the left part of Figure 5, on the other hand, we
use a regular 80×80 square mesh. The results are provided in Figures 2, 3, 4, 5 and
6. We obtain the approximate solutions with a precision of 10−8 with a quite small
number of iterations (less than 60) thanks to the under-relaxed fixed point method
(we observed that without relaxation the method does not converge for p > 3).
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Figure 1. The mesh used (left), the function f ( f = 1 in the red part)

Figure 2. Results for p = 1.3 on the irregular mesh (left) and on the regular mesh (right)
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Figure 3. Results for p = 1.6 on the irregular mesh (left) and on the regular mesh (right)

Figure 4. Results for p = 2 on the irregular mesh (left) and on the regular mesh (right)
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Figure 5. Results for p = 3 on the irregular mesh (left) and on the regular mesh (right)

Figure 6. Results for p = 6 on the irregular mesh (left) and on the regular mesh (right)
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6. Conclusion and generalisations

We showed here the convergence of a cell centred scheme for the discretisation of
nonlinear elliptic equations of the Leray-Lions type and showed its numerical ef-
ficiency on an example. The convergence analysis is performed by mimicking the
functional analysis tools of [27] (such as the Minty-Browder trick and the Leray-
Lions trick) in the discrete setting. It may be generalised to the case of pseudo-
monotone operators, that is aaa of the form u 7→ aaa(·,u,∇u) with adequate assumptions
on aaa (see [27]). The convergence result can also be extended, using the discrete func-
tional tools which are introduced here and the results of [15], to handle right hand
sides f ∈W−1,p′ . Both of these extensions are presented in [13] in the framework
of the mixed finite volume scheme.

Let us also remark that the SUCCES scheme which we applied here to the dis-
cretisation of the Leray-Lions operator is closer, in its formulation, to a low order
non conforming finite element scheme than a to finite volume scheme: indeed, even
though global conservativity of the fluxes is ensured, the scheme may not in gen-
eral be written as a system of discrete balance laws over the discretisation cells,
such as for the “classical” finite volume schemes, such as the two point flux scheme
on admissible meshes, [17] (Chapter 3), the previously mentioned DDFV scheme
[12] and mixed finite volume scheme [14], and the SUSHI scheme in its hybrid
form [18,19]. A scheme adapted from SUCCES, localising the fluxes on half edges
as in the O scheme [1,2] was recently introduced [4]: this scheme is a classical
finite volume scheme in the sense that it may be written as a system of discrete
mass balances and that local numerical fluxes are conservative. Nevertheless, it pre-
serves the main properties of the SUCCES scheme (cell centred unknowns, consist-
ent gradient, compactness properties) and therefore, the convergence theory which
was presented here should also extend to this latter scheme (which, at the present
time, is only written in the two dimensional setting).

Finally, we again stress that the tools used here essentially mimic the functional
analysis tools of [27]. Since the obtained results include the strong convergence of
the approximate solution, gradient, and fluxes, they may also be used for nonlinear
evolution problems such as the level set equation [20].
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