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Abstract

We prove in this paper the convergence of the marker-and-cell (MAC) scheme for the discretization of the semi-

stationary compressible Navier-Stokes equations on two or three dimensional Cartesian grids. Existence of a solution

to the scheme is stated, followed by estimates on approximate solutions, which yields the convergence of the approx-

imate solutions, up to a subsequence, and in an appropriate sense. We then prove that the limit of the approximate

solutions satisfy the mass balance and mass momentum equations, as well as the equation of state, which is the main

difficulty of this study.
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1. Introduction

The aim of this paper is to prove the convergence of the marker-and-cell (MAC) scheme for the discretization of

the semi-stationary (barotropic) compressible Stokes system, introduced in [41]. These equations are posed on the

time-space domain QT = (0,T )×Ω, where Ω is a bounded domain of Rd adapted to the MAC scheme (see section 3),
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d = 2, 3 is the space dimension and (0,T ) > 0 is the time interval, and read:

∂t% + div(%u) = 0, (1.1a)

− µ∆u − (µ + λ)∇ div u + ∇p = 0, (1.1b)

p = %γ, % ≥ 0, (1.1c)

supplemented with the initial condition

%(0, x) = %0(x), (1.2)

where %0 is a given function from Ω to R∗+, and the homogeneous Dirichlet boundary condition

u|(0,T )×∂Ω = 0. (1.3)

In the above equations, the unknown functions are the pressure p(t, x), the scalar density field %(t, x) ≥ 0 and vector

velocity field u = (u1, . . . , ud)(t, x), where t ∈ (0,T ) denotes the time variable and x ∈ Ω the space variable. The

viscosity coefficients µ and λ are such that

µ > 0, λ + µ ≥ 0. (1.4)

In the compressible barotropic Navier-Stokes equations, the pressure and the density are linked through a constitutive

law. Here we assume that the fluid is a perfect gas obeying Boyle’s law, given by (1.1c). Typical values of γ range

from a maximum value of 5
3 for monoatomic gases or 7

5 for diatomic gases including air, to a minimum value close

to 1 for polyatomic gases at high temperature. For the sake of simplicity the constant a will be taken equal to 1. The

convergence result that we prove in this paper is valid for γ ≥ 3
2 (if d = 3).

There are several motivations for the study of the model (1.1). First of all, the solutions of this system of equations

is used to build solutions of the compressible Navier-Stokes equations which exhibit persistent oscillations (see [41]).

Next, this model is derived for the dynamics of vortices in the Ginzburg-Landau theories in superconductivity. Finally,

it is the simplest system derived from a model existing for biological flows in a compressible tissue (see [4] and [9])

or in compressible porous media in petroleum engineering (see [19]). We refer to [45, 3] and [41, 13, 42] for further

development and tools for the analysis of the incompressible and compressible Navier-Stokes equations.

The mathematical analysis of numerical schemes for the discretization of the steady and/or non steady compress-

ible Navier-Stokes and/or compressible Stokes equations has been the object of some recent work. The convergence

of the discrete solutions to the weak solutions of the compressible stationary Stokes was shown for a finite volume–

non conforming P1 finite element [23, 12, 18], for the wellknown MAC scheme [11] and for a more complicated fi-

nite volume - Nedelec finite element scheme [39] (for a Navier slip boundary condition in this latter work); The finite

volume– non conforming P1 finite element was adapted in [40] to deal with the unsteady barotropic Navier-Stokes

equations albeit only in the case γ > 3 (there is a real difficulty in the realistic case γ ≤ 3 arising from the treatment

of the non linear convection term). Let us also mention the works [14] and [15] where the study of the mixed scheme

is extended to regular domains and to the Navier-Stokes-Fourier equations.
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Problem (1.1) with a Navier boundary condition was discretized in [37] with a Nedelec finite element scheme,

discretizing the weak form of the momentum equation with the bilinear form
∫

rotu · rotv +
∫

divu divv instead of∫
∇u : ∇v, the authors of Ref. 30 discretize the term

∫
rotu · rotv +

∫
divu divv. Because of this, the resulting scheme

is not coercive, and a stabilizing term must be introduced. In the present work, we deal with the same set of equations,

but discretized with the MAC scheme and with Dirichlet boundary conditions. The resulting scheme is naturally

coercive and is easier to generalize to other boundary conditions.

Since the very beginning of the introduction of the marker-and-cell (MAC) scheme [30], it is claimed that this

discretization is suitable for both the incompressible and compressible flow problems (see [28, 29] for the seminal

papers, [5, 34, 35, 36, 1, 8, 31, 32, 46, 47, 48] for subsequent developments and [49] for a review). The proof of

convergence for the MAC scheme in primitive variables has been recently been completed [25]. Here we give a

convergence proof of the MAC scheme for the system (1.1). To our knowledge the proof of convergence of the MAC

scheme for this system is new; it is also a preliminary work to a proof of convergence of the MAC scheme for the

compressible barotropic Navier-Stokes equations. It relies on some recents time compactness results obtained in [7]

and [27], in which the famous Aubin-Simon theorem is generalized to piewewise constant functions.

The paper is organized as follows. The fundamental setting of the problem in the continuous case is recalled in

Section 2, and its discretization in Section 3: the discrete functional spaces and the numerical scheme are defined;

the convergence of the scheme, which is the main result of the paper, is stated in Theorem 1. The remaining sections

are devoted to the proof of Theorem 1. In Section 4 we derive some a priori estimates from the scheme along with

the existence of a discrete solution. In Section 5, we prove the convergence of the numerical scheme in the sense of

Theorem 1 toward a weak solution of Problem 1.1. Finally, In Section 8, we list some functional analysis results used

to prove Theorem 1.

2. The continuous problem

A weak solution of Problem (1.1)–(1.4) is defined as follows.

Definition 1 (Weak solutions). Let %0 : Ω → R∗+ ∈ Lγ(Ω). Let γ > 1. We shall say that the triplet (u, p, %) is a weak

solution to the problem (1.1)–(1.4) emanating from the initial data %0 if:

1. % ∈ L∞(0,T ; Lγ(Ω)) ∩ L2γ((0,T ) ×Ω), % ≥ 0 a.e in (0,T ) ×Ω, p ∈ L2((0,T ) ×Ω) and u ∈ L2(0,T ; H1
0(Ω)d).

2. The continuity equation (1.1a) is satisfied in the following weak sense,∫ T

0

∫
Ω

%∂tϕ + %u · ∇ϕ dx dt = −

∫
Ω

%0ϕ(0, ·) dx, ∀ϕ ∈ C∞([0,T ] ×Ω), ϕ(T, ·) = 0. (2.1)

3. The momentum equation (1.1b) is satisfied in the weak sense, that is for any ψ ∈ C∞c ((0,T ) ×Ω)d,∫ T

0

∫
Ω

µ∇u : ∇ψ + (µ + λ)divu divψ − pdivψ dx dt = 0, (2.2)
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4. p = %γ a.e in (0,T ) ×Ω,

5. The following energy inequality is satisfied a.e in (0,T ),∫
Ω

1
γ − 1

%γ(τ) dx +

∫ τ

0

∫
Ω

(
µ|∇u|2 + (µ + λ)| div u|2

)
dx dt ≤ E0, (2.3)

where E0 =
∫

Ω

1
γ−1%

γ
0 dx stands for the initial energy.

Remark 1. 1. Note that the existence of weak solutions emanating from the finite energy initial data is wellknown

on bounded Lipschitz domains provided γ > 1, see [41, Theorem 8.6].

2. The natural functional spaces for the unknows which are introduced in the above definition are obtained when

looking for some a priori estimates (see for instance [41]).

3. The numerical scheme

3.1. Space discretization

Let Ω be a connected subset of Rd consisting in a union of rectangles (d = 2) or orthogonal parallelepipeds

(d = 3); without loss of generality, the edges (or faces) of these rectangles (or parallelepipeds) are assumed to be

orthogonal to the canonical basis vectors, denoted by (e1, . . . , ed).

Definition 2 (MAC grid). A discretization of Ω with a MAC grid, denoted byD, is defined byD = (M,E), where:

– M stands for the primal grid, and consists in a conforming structured partition of Ω in possibly non uniform

rectangles (d = 2) or rectangular parallelepipeds (d = 3). A generic cell of this grid is denoted by K, and

its mass center by xK . The pressure is associated to this mesh, and M is also sometimes referred to as "the

pressure mesh".

– The set of all faces of the mesh is denoted by E; we have E = Eint ∪ Eext, where Eint (resp. Eext) are the edges

of E that lie in the interior (resp. on the boundary) of the domain. The set of faces that are orthogonal to ei is

denoted by E(i), for i = 1, . . . , d. We then have E(i) = E
(i)
int ∪E

(i)
ext, where E(i)

int (resp. E(i)
ext) are the edges of E(i) that

lie in the interior (resp. on the boundary) of the domain.

For σ ∈ Eint, we write σ = K|L if σ = ∂K∩∂L. A dual cell Dσ associated to a face σ ∈ E is defined as follows:

- if σ = K|L ∈ Eint then Dσ = DK,σ ∪ DL,σ, where DK,σ (resp. DL,σ) is the half-part of K (resp. L)

adjacent to σ (see Fig. 1 for the two-dimensional case);

- if σ ∈ Eext is adjacent to the cell K, then Dσ = DK,σ.

We obtain d partitions of the computational domain Ω as follows:

Ω = ∪σ∈E(i) Dσ, i ∈ ~1, d�,
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and the ith of these partitions is called ith dual mesh, and is associated to the ith velocity component, in a sense

which is precised below. The set of the faces of the ith dual mesh is denoted by Ẽ(i) (note that these faces may be

orthogonal to any vector of the basis of Rd and not only ei) and is decomposed into the internal and boundary

edges: Ẽ(i) = Ẽ
(i)
int ∪ Ẽ

(i)
ext. The dual face separating two duals cells Dσ and Dσ′ is denoted by ε = σ|σ′.

The set of faces of a primal cell K and a dual cell Dσ are denoted by E(K) and Ẽ(Dσ) respectively. For σ ∈ E, we

denote by xσ the mass center of σ. The vector nK,σ stands for the unit normal vector to σ outward K. In some cases,

we need to specify the orientation of a geometrical quantity with respect to the axis:

- a primal cell K is denoted K = [
−−−→
σσ′] if σ,σ′ ∈ E(i) ∩E(K) for some i ∈ ~1, d� are such that (xσ′ − xσ) · ei > 0;

- we write σ =
−−→
K|L if σ ∈ E(i) and −−−−→xK xL · ei > 0 for some i ∈ ~1, d�;

- the dual face ε separating Dσ and Dσ′ is written ε =
−−−→
σ|σ′ if −−−−→xσxσ′ · ei > 0 for some i ∈ ~1, d�.

The definition of the discrete momentum diffusion operator involves a distance dε associated to a face ε as sketched

on Figure 1.

dε =


d(xσ, xσ′ ) if ε = σ|σ′ ∈ Ẽ(i)

int,

d(xσ, ε) if ε ∈ Ẽ(i)
ext ∩ Ẽ(Dσ),

, for ε ∈ Ẽ(Dσ), σ ∈ E(i), i ∈ ~1, d�. (3.1)

where d(·, ·) denotes the Euclidean distance in Rd.

Dσ

K

L

σ = K|L σ′′
×

×

×

xσ′

xσ xσ′′

ε2 ε3

σ′

ε1 = σ|σ′

∂Ω

dε3dε2

dε1

Figure 1: Notations for control volumes and dual cells (for the second component of the velocity).
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The size hM and the regularity ηM of the meshM are defined by:

hM = max
{
diam(K),K ∈ M

}
, (3.2)

ηM = min
{ |σ|
|σ′|

, σ ∈ E(i), σ′ ∈ E( j), i, j ∈ ~1, d�, i , j
}
, (3.3)

where | · | stands for the (d − 1)-dimensional measure of a subset of Rd−1 (in the sequel, it is also used to denote the

d-dimensional measure of a subset of Rd).

The spatially discrete velocity unknowns are associated to the velocity cells and are denoted by (uσ)σ∈E(i) , i ∈

~1, d�, while the discrete pressure unknowns are associated to the primal cells and are denoted by (pK)K∈M. The

spatially discrete pressure space LM is defined as the set of piecewise constant functions over each of the grid cells

K ofM, and the discrete ith velocity space H(i)
E

as the set of piecewise constant functions over each of the grid cells

Dσ, σ ∈ E
(i). As in the continuous case, the Dirichlet boundary conditions are (partly) incorporated into the definition

of the velocity spaces, by means of the spaces H(i)
E,0 ⊂ H(i)

E
, i ∈ ~1, d�, defined as follows:

H(i)
E,0 =

{
u ∈ H(i)

E
, u(x) = 0 ∀x ∈ Dσ, σ ∈ Ẽ

(i)
ext

}
.

We then set HE,0 =
∏d

i=1 H(i)
E,0. Note that if u ∈ HE,0 then uσ = 0 for any σ ∈ Ẽ(i)

ext for i ∈ ~1, d�. Defining the

characteristic function 11A of any subset A ⊂ Ω by 11A(x) = 1 if x ∈ A and 11A(x) = 0 otherwise, the d components of

a function u ∈ HE,0 and a function p ∈ LM may then be written:

ui =
∑
σ∈E(i)

uσ11Dσ
, i ∈ ~1, d� and p =

∑
K∈M

pK11K .

3.2. Time discretization

Consider a partition 0 = t0 < t1 < · · · < tN = T of the time interval (0,T ), with constant time step δt = tm − tm−1;

hence tm = mδt for m ∈ {0, · · · ,N}. Let D = (M,E) of Ω be a MAC grid in the sense of Definition 2, then the

sets {um
σ , σ ∈ E

(i)
int, i ∈ {1, · · · , d},m ∈ {0, · · · ,N}}, {p

m
K ,K ∈ M,m ∈ {1, · · · ,N}) and {%m

K ,K ∈ M,m ∈ {1, · · · ,N})

are respectively the sets of discrete velocity, pressure and density unknowns; we define the corresponding piecewise

constant functions u = (u1, . . . , ud), p and %. The approximate velocity u is thus of the form:

ui(t, x) =

N∑
m=1

∑
σ∈E(i)

int

um
σ 11Dσ

(x) 11(tm−1,tm)(t),

where 11(tm−1,tm) is the characteristic function of the interval (tm−1, tm). We denote by Xi,E,δt the set of such piecewise

constant functions on time intervals and dual cells, and we set XE,δt =
∏d

i=1 Xi,E,δt. The approximate pressure and the

density functions are thus respectively of the form:

p(t, x) =

N∑
m=1

∑
K∈M

pm
K11K(x) 11(tm−1,tm)(t), and %(t, x) =

N∑
m=1

∑
K∈M

%m
K11K(x) 11(tm−1,tm)(t).
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and we denote by YM,δt the space of such piecewise constant functions.

The initial approximation for % is the average of the initial condition %0 ∈ Lγ(Ω,R∗+) on the primal cells:

%0(x) = PM%0 =
∑
K∈M

%0
K11K(x), with ∀K ∈ M, %0

K =
1
|K|

∫
K
%0(x) dx. (3.4)

In particular, by virtue of the convexity of t → tγ, the discrete initial energy E0,M = 1
γ−1

∫
Ω

(%0)γ dx is bounded from

above by E0.

We then define the discrete time derivative ðt% ∈ YM,δt by ðt% =

N∑
m=1

1
δt

(%m − %m−1)11(tm−1,tm)(t).

3.3. The fully discrete scheme

The implicit-in-time scheme reads in its fully discrete form, for 1 ≤ m ≤ N :

1
δt

(%m − %m−1) + divup
M

(%mum) = 0, (3.5a)

− µ∆Eum − (µ + λ)∇E divM um + ∇Epm = 0, (3.5b)

pm = p(%m) = (%m)γ. (3.5c)

where the discrete operators introduced for each discrete equation are defined hereafter.

3.3.1. Mass balance equation

Equation (3.5a) is a finite volume discretization of the mass balance (1.1a) over the primal mesh. Given (%,u) ∈

LM ×HE,0, the discrete function divup
M

(%u) ∈ LM is defined by

divup
M

(%u)(x) =
1
|K|

∑
σ∈E(K)

FK,σ, ∀x ∈ K, ∀K ∈ M,

where FK,σ = FKσ(%,u) stands for the mass flux across σ outward K, which, because of the Dirichlet boundary

conditions, vanishes on external faces and is given on the internal faces by:

∀σ = K|L ∈ Eint, FK,σ = |σ| %
up
σ uK,σ, (3.6)

where uK,σ is an approximation of the normal velocity to the face σ outward K, defined by:

uK,σ = uσ ei · nK,σ for σ ∈ E(i) ∩ E(K). (3.7)

Thanks to the boundary conditions, uK,σ vanishes for any external face σ. The density at the internal face σ = K|L is

obtained by an upwind technique:

%
up
σ =

∣∣∣∣∣∣∣∣∣∣
%K if uK,σ ≥ 0,

%L otherwise.
(3.8)
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Note that thanks to the upwind choice, any solution (%m,um) ∈ LM × HE,0 to (3.5a) satisfies %m
K > 0, ∀K ∈ M

provided %m−1
K > 0, ∀K ∈ M and in particular p(%m) makes sense. For fixed u, the convergence of the upwind scheme

(3.6) is shown in [6] in the case u ∈ C1, and in [17, chapter 2] and [2] under the minimal regularity assumption

u ∈ L1(0,T,W1,1(Ω)), divu ∈ L1(0,T ; L∞(Ω)). This latter assumption, which is needed to obtain an estimate on

ρ, is unfortunately not attainable in the framework of the compressible Stokes or Navier-Stokes equations: another

technique, relying on the coupling between mass and momentum equation is used to obtained this estimate, see

Lemma 2 below. Note that the upwind choice in the scheme ensures the positivity of the density %m in (3.5a) is not

enforced in the scheme but results from the above upwind choice. Indeed, for a given velocity field, the discrete mass

balance (3.5a) is a linear system for %m whose matrix is an invertible matrix with a non negative inverse [18, Lemma

C.3].

Note also that, with this definition, we have the usual finite volume property of local conservativity of the flux

through a primal face σ = K|L (i.e. FK,σ = −FL,σ), and that the flux through a dual face included in the boundary still

vanishes. Consequently, summing (3.5a) over K ∈ M immediately yields the total conservation of mass, which reads:

∀m = 1, ...N,
∫

Ω

%m dx =

∫
Ω

%0 dx. (3.9)

3.3.2. The momentum equation

Discrete divergence and gradient - The discrete divergence operator divM is defined by:

divM : HE −→ LM

u 7−→ divMu =
∑
K∈M

1
|K|

∑
σ∈E(K)

|σ|uK,σ 11K ,
(3.10)

where uK,σ is defined in (3.7). The discrete divergence of u = (u1, . . . , ud) ∈ HE,0 may also be written as divM(u) =
d∑

i=1

∑
K∈M

(ðiui)K11K , where the discrete derivative (ðiui)K of ui on K is defined by

(ðiui)K =
|σ|

|K|
(uσ′ − uσ) with K = [

−−−→
σσ′], σ, σ′ ∈ E(i). (3.11)

The gradient in the discrete momentum balance equation is defined as follows:

∇E : LM −→ HE,0

p 7−→ ∇Ep,
(3.12)

where for x ∈ Ω, ∇Ep(x) = (ð1 p(x), . . . ,ðd p(x))t, and ði p ∈ H(i)
E,0 is the discrete derivative of p in the i-th direction,

defined by:

ði p(x) =
|σ|

|Dσ|
(pL − pK) ∀x ∈ Dσ, for σ =

−−→
K|L ∈ E(i)

int, i = 1, . . . , d. (3.13)

Note that in fact, the discrete gradient of a function of LM should only defined on the internal faces, and does not need

to be defined on the external faces; we set it here in HE,0 (that is zero on the external faces) for the sake of simplicity.
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The gradient in the discrete momentum balance equation is built as the dual operator of the discrete divergence which

means:

Lemma 1 (Discrete div − ∇ duality). Let q ∈ LM and v ∈ HE,0 then we have:∫
Ω

q divMv dx +

∫
Ω

∇Eq · v dx = 0. (3.14)

Discrete Laplace operator - For i = 1 . . . , d, we classically define the discrete Laplace operator on the i-th

velocity grid by:

−∆
(i)
E

: H(i)
E,0 −→ H(i)

E,0

ui 7−→ −∆
(i)
E

ui

− ∆
(i)
E

ui(x) =
1
|Dσ|

∑
ε∈Ẽ(Dσ)

φσ,ε(ui), ∀x ∈ Dσ, for σ ∈ E(i)
int, (3.15)

where Ẽ(Dσ) denotes the set of faces of Dσ, and

φσ,ε(ui) =



|ε|

dε
(uσ − uσ′ ) if ε = σ|σ′ ∈ Ẽ(i)

int,

|ε|

dε
uσ if ε ∈ Ẽ(i)

ext ∩ Ẽ(Dσ)

(3.16)

where dε is defined by (3.1). Note that we have the usual finite volume property of local conservativity of the flux

through an interface ε = σ |σ′:

φσ,ε(ui) = −φσ′,ε(ui), ∀ε = σ|σ′ ∈ Ẽ(i)
int. (3.17)

Then the discrete Laplace operator of the full velocity vector is defined by

−∆E : HE,0 −→ HE,0

u 7→ −∆Eu = (−∆
(1)
E

u1, . . . ,−∆
(d)
E

ud)t.
(3.18)

3.4. The main result

In the following we denote

q(d) =

 any real number greater than 1 if d = 2,

6 if d = 3.

Theorem 1 (Convergence of the MAC scheme). Let Ω be an open bounded subset of Rd, d = 2 or d = 3, adapted to

the MAC-scheme (that is any finite union of rectangles in 2D or rectangular in 3D). Let γ ≥ 3
2 if d = 3 and γ > 1 if

d = 2 and %0 ∈ Lγ(Ω) such that %0 > 0 a.e in Ω.

Consider a partition In of the time interval [0,T ], which, for the sake of simplicity, we suppose uniform. Let δtn be

the constant time step going to 0 as n→ ∞.
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Consider a sequence of MAC grids (Dn = (Mn,En))n∈N, with step size hMn (as defined by (3.2)) going to zero

as n→ ∞ and satisfying η ≤ ηMn for η > 0 uniformly with respect to n and where the regularity of the mesh ηMn is

defined by (3.3).

Let, for any n ∈ N, (un, pn, %n) ∈ XEn,δtn × YMn,δtn × YMn,δtn be a discrete solution of (3.5) (with respect to the mesh

Mn and the partition In) emanating form the initial data PMn%0 where PMn is defined in (3.4). Then there exists

(u, p, %) ∈ L2(0,T ; H1
0(Ω)d) × L2((0,T ) × Ω) ×

(
L∞(0,T ; Lγ(Ω)) ∩ L2γ((0,T ) × Ω)

)
, % ≥ 0 a.e in (0,T ) × Ω, such that

up to a subsequence, the following limits hold

%n → % strongly in Lq((0,T ) ×Ω), for any q ∈ [1, 2γ), and weakly in L2γ((0,T ) ×Ω).

pn → p strongly in Lq((0,T ) ×Ω), for any q ∈ [1, 2), and weakly in L2((0,T ) ×Ω).

un → u weakly in L2(0,T ; Lq(d)(Ω)d),

∇En un → ∇u weakly in L2(0,T ; L2(Ω)d×d).

and such that (u, p, %) is a weak solution of Problem 1.1 emanating from %0 in the sense of Definition 1.

Remark 2. In the case of the compressible Stokes system, one can prove the convergence of the MAC scheme up

to γ > 1 (see [11]). For the steady compressible Navier-Stokes system, we need to assume γ > 3 to prove the

convergence of the MAC scheme (this is ongoing work). Here we are restricted to γ ≥ 3
2 if d = 3 and γ > 1 if d = 2.

Remark 3. In both two and three space dimensions, we can also include a non-zero external force on the right-hand

side of the momentum equation, i.e. we have additionally the term %g + f on the right-hand side of (1.1b). For

(g, f ) ∈ L∞((0,T ) ×Ω)3 × L2((0,T ) ×Ω)3 we would get the same result as in Theorem 1.

3.5. Weak form of the momentum equation

For the analysis of the scheme, it is convenient to work with a weak form of the momentum equation. To this

purpose, we first recall the definition of the discrete H1
0 inner product [10, Chapter III], which is obtained by mul-

tiplying the discrete Laplace operator scalarly by a test function v ∈ HE,0 and integrating over the computational

domain. A simple reordering of the sums (which may be seen as a discrete integration by parts) yields, thanks to the

conservativity of the diffusion flux (3.17):

∀(u, v) ∈ HE,02,

∫
Ω

−∆Eu · v dx = [u, v]1,E,0 =

d∑
i=1

[ui, vi]1,E(i),0,

with [ui, vi]1,E(i),0 =
∑
ε∈Ẽ(i)

int
ε=σ|σ′

|ε|

dε
(uσ − uσ′ ) (vσ − vσ′ ) +

∑
ε∈Ẽ(i)

ext
ε⊂∂(Dσ)

|ε |

dε
uσ vσ.

(3.20)
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The bilinear forms

∣∣∣∣∣∣∣∣∣
H(i)
E,0 × H(i)

E,0 → R

(u, v) 7→ [ui, vi]1,E(i),0

and

∣∣∣∣∣∣∣∣∣
HE,0 ×HE,0 → R

(u, v) 7→ [u, v]1,E,0

are inner products on H(i)
E,0 and HE,0 respectively,

which induce the following discrete H1
0 norms:

‖ui‖
2
1,E(i),0 = [ui, ui]1,E(i),0 =

∑
ε∈Ẽ(i)

int

ε=
−−−→
σ|σ′

|ε |

dε
(uσ − uσ′ )2 +

∑
ε∈Ẽ(i)

ext
ε⊂∂(Dσ)

|ε|

dε
u2
σ (3.21a)

‖u‖21,E,0 = [u,u]1,E,0 =

d∑
i=1

‖ui‖
2
1,E(i),0. (3.21b)

Since we are working on Cartesian grids, this inner product may be formulated as the L2 inner product of discrete

K L

σ
=

K
|L

Dσ

Dε

σ′

ε = σ|σ′

M N

Figure 2: Full grid for definition of the derivative of the velocity.

gradients. Indeed, consider the following discrete gradient of each velocity component ui.

∇E(i) ui = (ð1ui, . . . ,ðdui) with ð jui =
∑
ε∈Ẽ(i)

ε⊥e j

(ð jui)Dε
11Dε

, (3.22)

(ð jui)Dε
=



uσ′ − uσ
dε

with ε =
−−−→
σ|σ′, and Dε = ε × xσxσ′

−
uσ
dε

e j · nDσ,ε with ε ∈ Ẽ(i)
ext ∩ Ẽ(Dσ), and Dε = ε × xσxε

(3.23)

where nDσ,ε stands for the unit normal vector to ε outward Dσ and xε stands for the mas center of ε (see Figure 2).

This definition is compatible with the definition of the discrete derivative (ðiui)K given by (3.11), since, if ε ⊂ K

then Dε = K. With this definition, it is easily seen that∫
Ω

∇E(i) u · ∇E(i) v dx = [u, v]1,E(i),0,∀u, v ∈ H(i)
E,0,∀i = 1, . . . , d. (3.24)

where [u, v]1,E(i),0 is the discrete H1
0 inner product defined by (3.20). We may then define

∇Eu = (∇E(1) u1, . . . ,∇E(d) ud), so that
∫

Ω

∇Eu : ∇Ev dx = [u, v]1,E,0.

Thanks to the previous definition, we then introduce the following discrete dual norms on HE,0.

v ∈ HE,0 7→ ‖v‖−1,E,0 = max{
∣∣∣∣∣∫

Ω

v · ϕ dx
∣∣∣∣∣ ; ϕ ∈ HE,0 and ‖ϕ‖1,E,0 ≤ 1}, (3.25)
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With these notations, a weak formulation of the momentum equation reads for any t ∈ (0,T ) and v ∈ HE,0:

µ[u(t), v]1,E,0 + (µ + λ)
∫

Ω

divM[u(t)]divMv dx −
∫

Ω

p(t) divMv dx = 0. (3.26)

4. Mesh independent estimates

For the sake of clarity, we shall perform the proofs only in the most interesting three dimensional case. The two

dimensional case is simpler and mostly requires modifications due to the different Sobolev embeddings.. Assume

that there exists η > 0 such that all the considered meshes considered satisfy η ≤ ηM, where ηM is defined by (3.3).

From now on, the letter c denotes a positive number which may depend on |Ω|, diam(Ω), γ, λ, µ, η, ρ0 and on other

parameters; the dependency on these other parameters (if any) is always explicitly indicated.

4.1. Existence and estimates

Lemma 2 (Existence of approximate solutions and estimates). There exists at least a solution (u, p, %) ∈ XM,δt ×

YM,δt × YM,δt satisfying (3.5). Any solution is such that % > 0 a.e in Ω. Furthermore, there exists c(γ, µ, ρ0) and

c(γ, µ, ρ0,Ω) such that:

‖%‖L∞(0,T ;Lγ(Ω)) + ‖u‖L2(0,T ;HE,0) ≤ c(γ, µ, ρ0), (4.1a)

‖u‖L2(0,T ;L6(Ω)3) ≤ c(γ, µ, ρ0,Ω). (4.1b)

Proof. The existence follows by the Brower fixed point theorem: for fixed m, assume that the existence of a solution

to the scheme (3.5) with ρk ≥ 0 is known for k = 0, . . .m − 1. Let M =
∫

Ω
ρm−1 dx, and let C = {ρ ∈ LM : ρ ≥

0,
∫

Ω
ρm−1 dx ≤ M. Let ρ ∈ C, p = ργ, and let u ∈ HE be the unique solution to −µ∆Eu − (µ + λ)∇E divM u + ∇Ep = 0

(which is an invertible linear system); finally, let %̄ be the solution to 1
δt (%̄ − %) + divup

M
(%̄u) = 0, which is also an

invertible linear system; by conservativity we have
∫

Ω
ρ̄ dx =

∫
Ω
ρ dx = M and by the upwind choice %̄ ≥ 0 so that

%̄ ∈ C. It is clear that p depends continuously on %, that u depends continuously on p and thus on %, and that %̄ depends

also continously on u and %, and therefore on %. Hence we have constructed a continuous mapping T : % ∈ C 7→ %̄ ∈ C,

which admits a fixed point by Brower’s theorem. This concludes to the existence of a solution to (3.5).

Let us then prove (4.1a). Testing (3.26) by u(t) we infer that for a.e. s ∈ (0,T ):

µ‖u‖2L2(0,s;HE,0) + (µ + λ)‖ divM u‖2L2(0,s;L2(Ω)) −

∫ s

0

∫
Ω

p divM u dx dt ≤ 0. (4.2)

Multiplying (3.5a) by γ
γ−1 (%m)γ−1 and following [20] one has for a.a s ∈ (0,T ):

1
γ − 1

∫
Ω

%(s)γ dx +

∫ s

0

∫
Ω

p divM u dx dt ≤ E0 (4.3)

Summing (4.2) and (4.3) we infer that

1
γ − 1

∫
Ω

%(s)γ dx + µ‖u‖2L2(0,s;HE,0) + (µ + λ)‖ divM u‖2L2(0,s;L2(Ω)) ≤ E0 . (4.4)

12



which gives (4.1a).

The estimate (4.1b) follows by the discrete Sobolev inequality (see Theorem 2 in the appendix).

The following Lemma can be seen as a discrete version of [16, Lemma NN] OU AUTRE ?

Lemma 3 (Discrete renormalized continuity equation). Let (u, p, %) ∈ XM,δt × YM,δt × YM,δt satisfying (3.5). Then for

any B ∈ C2(R∗+) ∩C(R+) such that B is convex on R∗+ we have, for a.a t ∈ (0,T ),∫
Ω

B(%(t)) dx −
∫

Ω

B(%0) dx +

∫ t

0

∫
Ω

(%B′(%) − B(%)) divM u dx dt ≤ 0. (4.5)

4.2. Higher integrability of the pressure

Up to now, the only avaible estimates on the pressure p have been deduced from Lemma 2 and it gives

‖p‖L1((0,T )×Ω) ≤ C(γ, µ,E0).

The non-reflexive Banach space L1 is not very convenient as bounded sequences are not necessarily weakly precom-

pact. We need more integrability of the pressure to pass to the limit in the pressure term. We shall prove that the

discrete pressure is in fact bounded (with respect to hM and δt) in L2((0,T ) ×Ω), using the two following lemmas.

Lemma 4 (Nečas, [16, see e.g. Lemma 10.10]). Let Ω be a bounded Lipschitz domain of Rd where d ≥ 2. Let q ∈

L2(Ω) such that
∫

Ω
q dx = 0. Then, there exists v ∈ (H1

0(Ω))d such that div(v) = q a.e. in Ω and ||v||(H1
0 (Ω))d ≤ C ||q||Lr(Ω)

where C only depends on Ω.

To adapt the proof of the continuous case, we introduce a so-called Fortin interpolation operator, which preserves

the divergence.

Lemma 5 (Fortin interpolation operator, [24, Theorem 1]). Let D = (M,E) be a MAC grid of Ω. For v ∈ C∞c (Ω)d,

we define P̃Ev by

P̃Ev =

(
P̃

(1)
E

v1, · · · , P̃
(1)
E

vd

)
∈ HE,0, where for i = 1, . . . d,

P̃
(i)
E

: C∞c (Ω) −→ H(i)
E,0

vi 7−→ P̃Evi ; i = 1, · · · , d,

P̃
(i)
E

vi(x) =
1
|σ|

∫
σ

vi(x) dγ(x), ∀x ∈ Dσ, σ ∈ E
(i).

(4.6)

Let ηM > 0 be defined by (3.3). Let ϕ ∈ (C∞c (Ω))d, then

‖P̃Eϕ − ϕ‖L∞(Ω) ≤ CϕhM, (4.7a)

divM(P̃Eϕ) = PM(divϕ), (4.7b)

‖∇EP̃Eϕ‖(L2(Ω))d ≤ CηM‖∇ϕ‖(L2(Ω))d , (4.7c)

where CηM depends only on ηM in a decreasing way, on Ω and where PM is defined in (3.4).
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Let us now prove that the pressure is bounded in L2((0,T ) ×Ω) with respect to the size of the discretizations.

Proposition 1. Any solution (u, p, %) ∈ XM,δt × YM,δ × YM,δt of (3.5) satisfy

‖p‖L2((0,T )×Ω) ≤ C, (4.8)

and in particular

‖%‖L2γ((0,T )×Ω) ≤ C, (4.9)

where the constant C depends on T,Ω, µ, λ, γ, η,E0.

Proof. Let us introduce the quantity

P(%m,um) = pm − (µ + λ)divMum.

Let vm ∈ H1
0(Ω)d (see Lemma 4) such that

divvm = P(%m,um) −
1
|Ω|

∫
Ω

P(%m,um) dx. (4.10)

Testing (3.26) by P̃E(vm) and using Lemma 5 we get

‖P(%m,um)‖2L2(Ω) = µ[um, P̃E(vm)]1,E,0 +
1
|Ω|

( ∫
Ω

P(%m,u) dx
)2
.

Consequently,

‖P(%m,um) −
1
|Ω|

∫
Ω

P(%m,um) dx‖2L2(Ω) =µ[um, P̃E(vm)]1,E,0

≤ c(Ω, µ, ε, η)‖um‖21,E,0 + ε‖P(%m,um) −
1
|Ω|

∫
Ω

P(%m,um) dx‖2L2(Ω)

for any ε > 0. Since
∫

Ω
P(%m,um) dx =

∫
Ω

pm dx ≤ c(γ,E0) we obtain

‖P(%m,um)‖2L2(Ω) ≤ c(E0, µ, γ,Ω, ηM)(1 + ‖um‖21,E,0)

Consequently,

‖pm‖2L2(Ω) ≤ c(E0, µ, λ,Ω, ηM)(1 + ‖um‖21,E,0 + ‖divMum‖2L2(Ω))

which gives

‖p‖2L2((0,T )×Ω) ≤ c(E0, µ, λ,Ω, ηM)(T + ‖u‖2L2(0,T ;HE,0)).

We conclude by using Lemma 2.

Remark 4. From estimates (4.1b) and (4.9) we infer that

‖%u‖
L

2γ
γ+1 (0,T ;L

6γ
γ+3 (Ω)3)

≤ C. (4.11)

In particular, since γ ≥ 3
2 ,

‖%u‖
L

2γ
γ+1 (0,T ;L2(Ω)3)

≤ C. (4.12)
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The following estimate (4.13) is obtained thanks to the numerical diffusion due to the upwinding, as is classical in

the framework of hyperbolic conservation laws, see e.g. [10, Chapter V]. We refer the reader to [26, Lemma 4.2] for

a proof. This estimate is useful to pass to the limit in the continuity equation.

Lemma 6. Let (u, p, %) ∈ XM,δt × YM,δt × YM,δt satisfying (3.5). Then there exists C only depending on the data such

that

δt
N∑

m=1

∑
σ∈Eint,σ=K|L

|σ|
(%m

K − %
m
L )2

max(%m
K , %

m
L )
|um

K,σ| ≤ C. (4.13)

The following Lemma deals with an estimate discrete time derivative of the density, which is crucial to pass to the

limit in the equation of state (3.5c).

Lemma 7 (Estimates on the dual norm of the discrete time derivative of the density). Let (u, p, %) ∈ XE,δt×YM,δt×YM,δt

be a solution to (3.5). Then there exists C > 0 depending only on the data such that:

‖ðt%‖L1(0,T ;W−1,1(Ω)) ≤ C, (4.14)

‖ðt%‖L1(0,T ;(LM)′) ≤ C. (4.15)

In particular the solution of −∆M[w(t)] = %(t) in the sense of Proposition 3, where t ∈ (0,T ), satisfies

‖ðtw‖L1(0,T ;L2(Ω)) ≤ C. (4.16)

Proof. In the sake of brievity we only prove (4.15). The inequality (4.14) comes from a trivial adaption of the

following proof. The inequality (4.16) is a consequence of (5.15).

Let φ ∈ LM such that ‖φ‖1,M ≤ 1. Multiplying (3.5a) by φ we obtain for any n ∈ {1, ...,N} and t ∈ (tm−1, tm):∫
Ω

ðt%(t)φ dx = −
∑

σ∈Eint,σ=K|L

Fm
K,σ(φK − φL) = −

∑
σ∈Eint,σ=K|L

|σ|%
m,up
σ um

K,σ(φK − φL).

By virtue of Holder’s inequality we infer that∣∣∣∣ ∑
σ∈Eint,σ=K|L

|σ|%
m,up
σ um

K,σ(φK − φL)
∣∣∣∣ ≤[ ∑

σ∈Eint,σ=K|L

|σ|dKL(%m
K + %m

L )2|um
K,σ|

2
]1/2
×

[ ∑
σ∈Eint,σ=K|L

|σ|

dKL
(φK − φL)2

]1/2

≤ C‖%(t)u(t)‖L2(Ω)3‖φ‖1,M

where C depends only on the data. Using (4.12) gives (4.15).

5. Convergence analysis

The aim of this section is to prove Theorem 1. We begin with the introduction of an interpolate operator used in

convergence analysis of the discrete continuity equation (3.5a).
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Lemma 8 (Full grid velocity interpolate). For a given MAC mesh (M,E), we define, for i = 1, 2, 3:

R
(i)
M

: H(i)
E,0 −→ LM

u 7−→
∑
K∈M

(R(i)
M

u)K χK ,

where

(R(i)
M

u)K =
1
2

∑
σ∈E(i)(K)

uσ. (5.1)

We also define

RM : HE,0 −→ L3
M

u = (u1, ..., ud) 7−→ (R(1)
M

(u1), ...,R(d)
M

(ud)).

Then we have for i = 1, 2, 3 and 1 ≤ p < +∞:

‖ R
(i)
M

(ui)‖Lp(Ω) ≤ ‖ui‖Lp(Ω), ∀ui ∈ H(i)
E,0.

and

‖ui − R
(i)
M

(ui)‖Lp(Ω) ≤ hM‖ðiui‖Lp(Ω), ∀ui ∈ H(i)
E,0. (5.2)

Proposition 2. Let η > 0 and (Dn = (Mn,En))n∈N be a sequence of MAC grids with step size hMn tending to zero as

n→ ∞. Assume that η ≤ ηMn , ∀n ∈ N where ηMn is defined by (3.3). Consider for any n ∈ N a partition In of the

time interval [0,T ], which, for the sake of simplicity, we suppose uniform. Let δtn be the constant time step going to 0

as n→ ∞. Consider for any n ∈ N a solution (un, pn, %n) ∈ XEn,δtn × YMn,δtn × YMn,δtn to problem (3.5) (with respect to

the meshDn and the partition In). Then, up to the extraction of a subsequence:

1. the sequence (un)n∈N converges weakly in L2(0,T ; (L6(Ω))3) to a function u ∈ L2(0,T ; (H1
0(Ω))3) and the se-

quence (∇En un)n∈N converges weakly in (L2((0,T ) ×Ω))3×3 to ∇u.

2. the sequence (%n)n∈N weakly converges to a function % in L2γ((0,T ) ×Ω),

3. the sequence (pn)n∈N weakly converges to a function p in L2((0,T ) ×Ω),

4. the sequence (%nun)n∈N weakly converges to the function %u in L
2γ
γ+1 (0,T ; L

6γ
γ+3 (Ω)3),

5. u and % satisfy the continuous mass equation (1.1a) in the weak sense that is (2.1).

6. u and p satisfy the momentum balance equation (1.1b) in the weak sense that is (2.2).

7. % ≥ 0 a.e in (0,T ) ×Ω.

Proof. The stated convergences (i.e. points 1. to 3.) are straightforward consequences of the uniform bounds for the

sequence of solutions, together, for the velocity, with the compactness theorem 3. Point 4. comes from Lemma 13
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combined with Proposition 5, estimates ( (4.11) and (4.14). Point 7. is an easy consequence of point 2.. Let us then

prove point 5. i.e. that u, % satisfy (2.1).

Let ϕ ∈ C∞([0,T ] ×Ω) such that ϕ(T, ·) = 0. Multiplying (3.5a) by ϕ and integrating over (0,T ) ×Ω gives∫ T

0

∫
Ω

ðt%nϕ + divup
Mn

(%nun)ϕ dx dt = Ttime + Tspace = 0. (5.3)

A discrete summation by parts gives

Ttime =

∫ T

0

∫
Ω

ðt%nϕ dx dt = −

∫ T

0

∫
Ω

%n(t, x)
1
δtn

(ϕ(t + δtn, x) − ϕ(t, x)) dx dt

+
1
δtn

∫ T

T−δtn

∫
Ω

%n(t, x)ϕ(t, x) dx dt−
1
δtn

∫ δtn

0

∫
Ω

PMn (%0)ϕ(t, x) dx dt .

By virtue of max[T−δtn,T ]×Ω
|ϕ| ≤ Cϕδtn we obtain

1
δtn

∫ T

T−δtn

∫
Ω

%n(t, x)ϕ(t, x) dx dt→ 0 as n→ ∞.

Since PMn (%0)→n→∞ %0 in L1(Ω) we infer that

1
δtn

∫ δtn

0

∫
Ω

PMn (%0)ϕ(t, x) dx→
∫

Ω

%0ϕ(0, x) dx as n→ ∞.

Clearly, since ϕ is smooth, we observe that 1
δtn

(ϕ(t + δtn, x) − ϕ(t, x)) → ∂tϕ in L∞((0,T ) × Ω) as n→ ∞. Using the

weak convergence of the sequence (%n)n∈N we get

lim
n→∞

∫ T

0

∫
Ω

%n(t, x)
1
δtn

(ϕ(t + δtn, x) − ϕ(t, x)) dx dt→
∫ T

0

∫
Ω

%∂tϕ dx dt .

Consequently

Ttime → −

∫ T

0

∫
Ω

%∂tϕ dx dt−
∫

Ω

%0ϕ(0, x) dx as n→ ∞. (5.4)

For the study the term Tspace, for the sake of readability, the dependency of the discrete function on n is omitted. The

partition of [0,T ] is denoted 0 = t0 < t1 < ... < tN = T . In the following we denote ϕm
K = 1

δt

∫ tm

tm−1
1
|K|

∫
K ϕ(t, x) dx dt,

ϕm
σ = 1

δt

∫ tm

tm−1
1
|σ|

∫
σ
ϕ(t, x) dx dt.

Tspace = δt
N∑

m=1

∑
K∈M

∑
σ∈E(K)

|σ|(%m,up
σ − %n

K)(um
σ · nK,σ)(ϕm

K − ϕ
m
σ) + δt

N∑
m=1

∑
K∈M

∑
σ∈E(K)

|σ|%m
K(um

σ · nK,σ)(ϕm
K − ϕ

m
σ)

= R1 − δt
N∑

m=1

∑
K∈M

∑
σ∈E(K)

|σ|%m
K(um

σ · nK,σ)(ϕm
σ − ϕ

m
K).

Using Holder’s inequality we infer that

|R1| ≤ Cϕ

√
hM

(
δt

N∑
m=1

∑
σ∈Eint,σ=K|L

|σ|
(%m

K − %
m
L )2

max(%m
K , %

m
L )
|um

K,σ|
)1/2
×

(
‖%u‖L1((0,T )×Ω)

)1/2
.
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Consequently, by virtue of (4.13) and (4.12), one has R1 → 0 as n→ ∞. Now we can write

δt
N∑

m=1

∑
K∈M

∑
σ∈E(K)

|σ|%m
K(um

σ · nK,σ)(ϕm
σ − ϕ

m
K)

= δt
N∑

m=1

∑
K∈T

∑
σ∈E(K)

|σ|%m
K(um

σ · nK,σ)ϕm
σ −

∫ T

0

∫
Ω

%ϕ divM[u(t)] dx dt

= δt
N∑

m=1

∑
K∈M

%m
K

3∑
j=1,

σ,σ′∈E( j)(K),

K=[
−−−→
σσ′]

|σ|(um
σ′ϕ

m
σ′ − um

σϕ
m
σ) −

∫ T

0

∫
Ω

%ϕ divM[u(t)] dx dt

= δt
N∑

m=1

∑
K∈M

|K|%m
K

3∑
j=1,

σ,σ′∈E( j)(K),

K=[
−−−→
σσ′]

( |σ|
|K|

(um
σ′ − um

σ)ϕm
σ′ +

|σ|

|K|
um
σ(ϕm

σ′ − ϕ
m
σ)

)
−

∫ T

0

∫
Ω

%ϕ divM[u(t)] dx dt

= δt
N∑

m=1

∑
K∈M

|K|%m
K

3∑
j=1

(
(ð jum

j )Kϕ
m
σ′ + um

σ(ð jP̃
( j)
E

(ϕm))K

)
−

∫ T

0

∫
Ω

%ϕ divM[u(t)] dx dt

= δt
N∑

m=1

∑
K∈M

|K|%m
K

3∑
j=1

(
R

( j)
M

(um
j )K(ð jP̃

( j)
E

(ϕm))K + (ð jum
j )KP̃

( j)
E

(ϕm)K

)
−

∫ T

0

∫
Ω

%ϕ divM[u(t)] dx dt

=

∫ T

0

∫
Ω

%n RMn (un) · ∇ϕ dx dt +R1 + R2

where the remainder R1 and R2 are given by

< R1, ϕ >= δt
N∑

m=1

3∑
j=1

∫
Ω

%mð j(um
j )(R( j)

M
(P̃( j)
E

(ϕm)) − ϕm) dx,

< R2, ϕ >= δt
N∑

m=1

3∑
j=1

∫
Ω

%m R
( j)
M

(um
j )(ð jP̃

( j)
E

(ϕm) − ∂ jϕ
m) dx.

A straightforward computation gives

|R1| ≤ CϕhM‖%‖L2((0,T )×Ω)‖u‖L2((0,T )×Ω)3

and

|R2| ≤ CϕhM‖%‖L2((0,T )×Ω)‖ RM u‖L2((0,T )×Ω)3 .

Using (4.1b) and (4.9) we get R1,R2 → 0 as n→ ∞.

By virtue (4.1b), (4.8) and (5.2) we have

%n(un − RMn (un))→ 0 in L1((0,T ) ×Ω) as n→ ∞.
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Consequently, by virtue of the weak convergence of %nun towards %u in , we obtain∫ T

0

∫
Ω

%n RMn (un) · ∇ϕ dx dt→
∫ T

0

∫
Ω

%u · ∇ϕ dx dt as n→ ∞.

Summing up the previous limits and passing to the limit in (5.3) we obtain that u, % satisfy (2.1) for ϕ ∈ C∞c ([0,T )×Ω).

Let us then prove point 6. i.e. that u, p satisfy (1.1b) in the weak sense.

Let ψ be a function of C∞c ((0,T ) ×Ω)3.

Taking P̃En (ψ(t)) as a test function in (3.26) and integrating over (0,T ) we infer:

µ

∫ T

0

∫
Ω

∇En un : ∇En [P̃En (ψ(t))] dx dt +(µ + λ)
∫ T

0

∫
Ω

divMn un divMn [P̃En (ψ(t))] dx dt

−

∫ T

0

∫
Ω

pn divMn [P̃En (ψ(t))] dx dt = 0.

The convergence of the first term may be proven by slight modifications of a classical result [10, Chapter III]:

lim
n→∞

∫ T

0

∫
Ω

∇En un : ∇En [P̃En (ψ(t))] dx dt =

∫ T

0

∫
Ω

∇u : ∇ψ dx dt .

From the definition of ϕn and thanks to the L2 weak convergence of the pressure, we have:∫ T

0

∫
Ω

pn divMn [P̃En (ψ(t))] dx dt =

∫ T

0

∫
Ω

pn divψ dx

and therefore

lim
n→∞

∫ T

0

∫
Ω

pn divMn [P̃En (ψ)(t))] dx dt =

∫ T

0

∫
Ω

p divψ dx dt .

By virtue of the L2 weak convergence of divMn un , we have also:

lim
n→∞

∫ T

0

∫
Ω

divMn [un(t)] divMn [P̃En (ψ(t))] dx dt =

∫ T

0

∫
Ω

div u divψ dx dt .

Finally u, p satisfy point 6. and the proof of Proposition 2 is complete.

5.1. Passing to the limit in the equation of the state

The goal of this part is to pass to the limit in the nonlinearity (3.5c). The aim is to prove that sequence the (%n)n∈N

converges to % in L1((0,T ) ×Ω).

5.1.1. The effective viscous flux

To overtake this difficulty in the continuous case we introduce the quantity p(%) − (λ + 2µ) div u usually called

the effective viscous flux. The effective viscous flux enjoys many remarkable properties for which we refer to Hoff

[33], Lions [41], or Serre [43]. Note that this quantity is nothing other than the amplitude of the normal viscous stress

augmented by the hydrostatic pressure p, that is, the "real" pressure acting on a volume element of the fluid. The

passage to the limit on the effective flux is stated in Proposition 4 below; it is a discrete version of [13, Proposition

6.1], which necessitates some preliminary lemmas which we now state.
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5.1.2. On the discrete Laplace equation

First of all, we introduce a modification of the discrete gradient which, contrary to ∇E, takes account the value of

a function w ∈ LM at the external faces. It reads:

∇E : LM −→ HE

w 7−→ ∇Ew

∇Ew(x) = (ð1w(x), . . . ,ðdw(x))t,

(5.5)

where ðiw ∈ H(i)
E

is the discrete derivative of w in the i-th direction, defined by:

ðiw(x) =


|σ|
|Dσ |

(wL − wK) ∀x ∈ Dσ, for σ =
−−→
K|L ∈ E(i)

int,

−
|σ|
|Dσ |

wK nK,σ · ei ∀x ∈ Dσ, for σ ∈ E(K) ∩ E(i)
ext.

(5.6)

The discrete curl operator of a function v = (v1, ..., vd) ∈ HE is defined as follows :

curl
M

v =


ð1v2 − ð2v1 if d = 2,

(
ð2v3 − ð3v2,ð3v1 − ð1v3,ð1v2 − ð2v1

)
if d = 3,

(5.7)

where the functions (ð jvi)1≤i, j≤d are introduced in (3.22). More precisely, in (3.22), the quantities (ð jvi)1≤i, j≤d are

defined for v ∈ HE,0; they are naturally extended here to the case v ∈ HE.

Lemma 9. LetD = (M,E) be a MAC grid, (v,w) ∈ (HE,0)2. Then the following discrete identity holds:∫
Ω

∇Ev : ∇Ew dx =

∫
Ω

div
M

v div
M

w dx +

∫
Ω

curl
M

v · curl
M

w dx. (5.8)

We define the discrete Laplace operator on the primal mesh by:

−∆M : LM −→ LM

w 7−→ −∆Mw

− ∆Mw(x) =
1
|K|

∑
σ∈E(K)

φK,σ(w), ∀x ∈ K, ∀K ∈ M, (5.9)

where

φK,σ(w) =



|σ|

dKL
(wK − wL) if σ = K|L ∈ Eint,

|σ|

dK,σ
wK if σ ∈ Eext ∩ E(K)

(5.10)
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where dKL = d(xK , xL) and dK,σ = d(xK , σ). We then introduce the following bilinear form on LM:

∀(p, q) ∈ L2
M
,

∫
Ω

(−∆Mp) q dx = [p, q]1,M,

with [p, q]1,M =
∑

σ∈Eint,σ=K|L

|σ|

dKL
(pK − pL) (qK − qL) +

∑
σ∈Eint,σ⊂K

|σ|

dK,σ
pK qK .

(5.11)

The bilinear form

∣∣∣∣∣∣∣∣∣
LM × LM → R

(p, q) 7→ [p, q]1,M

is an inner product on LM which induces the following norms:

‖q‖21,M = [q, q]1,M =
∑

σ∈Eint,σ=K|L

|σ|

dKL
(qK − qL)2 +

∑
σ∈Eint,σ⊂K

|σ|

dK,σ
q2

K . (5.12)

Similarly to (3.25) we introduce the following norm

q ∈ LM 7→ ‖q‖−1,M = max{
∣∣∣∣∣∫

Ω

qw dx
∣∣∣∣∣ ; w ∈ LM and ‖w‖1,M ≤ 1}. (5.13)

The following Proposition states the existence of a solution of the discrete Laplace equation supplemented with

the discrete Dirichlet boundary condition.

Proposition 3. LetD = (M,E) be a MAC grid. Then for any % ∈ LM there exists only one w ∈ LM such that

− ∆Mw = %. (5.14)

Moreover

‖w‖1,M ≤ ‖%‖−1,M. (5.15)

The following Lemma is used to pass to the limit in the nonlinearity (3.5c).

Lemma 10. Let w ∈ LM. Let v = −∇Ew ∈ HE be defined by (5.5). Then, with the discrete curl operator denoted curl
M

defined by (5.7), we have curl
M

v = 0.

Furthermore, if w satisfies −∆Mw = % then div
M

v = %.

In the following we define an approximation ϕM ∈ LM of a function ϕ ∈ C∞c (Ω) defined by:

ϕM(x) = ϕ(xK) for all x ∈ K, (5.16)

and consider for w ∈ LM, the gradient of the function wϕM ∈ LM as defined in (5.5), that is ∇E(wϕM) =

(ð1(wϕM), ...,ðd(wϕM))t.

The following Lemma deals with the discrete H2
loc estimates of the solution of (5.14).

Lemma 11. Let D = (M,E) be a MAC grid. Let η > 0 such that η ≤ ηM where ηM is defined by (3.3). let % ∈ LM

and let w ∈ LM be the finite volume solution of −∆Mw = %, with an homogeneous Dirichlet boundary condition, i.e.

let w be the solution to (5.14). Let ϕ ∈ C∞c (Ω). Then, there exists Cϕ only depending on ϕ, ηM and Ω, such that

‖∇E(wϕM))‖1,E,0 ≤ Cϕ‖%‖L2(Ω) where ‖ · ‖1,E,0 is defined in (3.21b).
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Proposition 4 (Weak convergence of the effective viscous flux). Under the assumptions of Proposition 2, we have for

any (ϕ, ψ) ∈ C∞c (Ω) × C∞c (0,T ),

lim
n→∞

∫ T

0

∫
Ω

(pn − (2µ + λ)div
Mn

un)%nϕψ dx dt =

∫ T

0

∫
Ω

(p − (2µ + λ)div u)%ϕψ dx dt, (5.17)

up to a subsequence, if necessary.

Proof. To prove Proposition 4 we proceed in several steps.

Let ϕ ∈ C∞c (Ω). For a MAC gridD = (M,E), we define ϕM ∈ LM, ϕ(i)
E
∈ H(i)

E,0 by:
ϕM(x) = ϕ(xK),∀x ∈ K, ∀K ∈ M,

ϕ(i)
E

(x) = ϕ(xσ),∀x ∈ Dσ, ∀σ ∈ E
(i)
int .

For a sequence of gridsMn, for short we shall denote ϕn = ϕMn . We define wn(t) with (5.14) (withMn and %n(t)

instead ofM and %) and vn(t) with vn(t) = −∇En (wn(t)).

Step 1 : vn → v in L2(0,T ; L2
loc(Ω)3) where v ∈ L2(0,T ; H1

loc(Ω)3).

Denoting vn = (vn,1, vn,2, vn,3) and setting Vϕ
n = (vn,1ϕ

(1)
En
, vn,2ϕ

(2)
En
, vn,3ϕ

(3)
En

) ∈ XEn,δtn , it is sufficient to prove that

the sequence (Vϕ
n )n∈N converges in L2(0,T ; L2(Ω)3) for any ϕ ∈ C∞c (Ω). We will use Theorem 5 with B = L2(Ω)3,

Xn = HEn,0 and Yn = L2(Ω)3. Clearly, thanks to (5.15) and the fact that %n is bounded in L2((0,T ) × Ω), the sequence

(Vϕ
n )n∈N is bounded in L2(0,T ; L2(Ω)3). From Lemma 11 we infer that the sequence (‖Vϕ

n ‖L2(0,T ;HEn ,0))n∈N is bounded.

Now we can write ðtV
ϕ
n = (ϕ(1)

En
ðtvn,1, ϕ

(2)
En
ðtvn,2, ϕ

(3)
En
ðtvn,3). Consequently

‖ðVϕ
n (t)‖Yn ≤ Cϕ ‖ðtvn(t)‖Yn ≤ Cϕ‖∇En (ðwn(t))‖Yn

Finally by virtue of (5.15) and (4.15) we obtain the existence of C only depending on such that, for any n ∈ N,

‖ðtV
ϕ
n ‖L1(0,T ;Yn) ≤ C. (5.18)

Noting that the sequence (HEn,0)n∈N is L2(Ω)d-limit included in H1
0(Ω)d in the sense of Definition 5, thanks to the

discrete Aubin-Simon theorem 5 and to the regularity of the limit, Theorem 6, there exists v ∈ L2(0,T ; H1
loc(Ω)3) such

that vn → v in L2(0,T ; L2
loc(Ω)3).

Step 2 : Conclusion of the proof of Proposition 4.

Since Vϕ
n (t) ∈ HE,0, it is possible to take v = ψ(t)Vϕ

n (t) in (3.26):

(2µ + λ)
∫

Ω

ψ(t)divMn [un(t)] divMn [Vϕ
n (t)] dx + µ

∫
Ω

ψ(t)curlMn [un(t)] curlMn [Vϕ
n (t)] dx

−

∫
Ω

ψ(t)pn(t)div
M

[Vϕ
n (t)] dx = 0. (5.19)
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Since divMn [vn(t)] = %n(t), we first remark that:∫
Ω

ψ(t)divMn [un(t)] divMn [Vϕ
n (t)] dx =

∫
Ω

ψ(t)divMn [un(t)]%n(t)ϕ dx

+

∫
Ω

ψ(t)divMn [un(t)]vn(t) · ∇ϕ dx + R1,n(t), (5.20)

where limn→∞ ‖R1,n‖L1(0,T ) = 0, thanks to the discrete L2(0,T ; H1(Ω))-estimate on un and the L2(0,T ; L2
loc(Ω)) estimate

on vn. Replacing the quantity divMn [un(t)] by pn(t), the same computation gives:∫
Ω

ψ(t)pn(t) divMn [Vϕ
n (t)] dx =

∫
Ω

ψ(t)pn(t)ρn(t)ϕ dx +

∫
Ω

ψ(t)pn(t)vn(t) · ∇ϕ dx + R2,n(t), (5.21)

where limn→∞ ‖R2,n‖L1(0,T ) = 0. Following [11], the second term of (5.19) can be transformed as follows:∫
Ω

ψ(t)curlMn [un(t)] curlMn [Vϕ
n (t)] dx =

∫
Ω

ψ(t)curlMn [un(t)]curlMn [vn(t)]ϕ dx

+

∫
Ω

ψ(t)curlMn [un(t)] · L(ϕ)vn dx + R3,n(t)

where: .1cm

L(ϕ) is the same matrix involving the first order derivatives

vn is a convex combination of the values of vn and is such that vn → v in L2(0,T ; L2
loc(Ω)). Note that the

coefficients in the convex combination involve the ratios of cell diameters, and the proof of convergence requires

the assumption η ≤ ηMn , see [11, Proposition 7.4] for the complete expression and proof.

limn→∞ ‖R3,n‖L1(0,T ) = 0 (for the same reason as R1,n).

By Lemma 10, curlMn [vn(t)] = 0 we obtain∫
Ω

ψ(t)curlMn [un(t)] curlMn [ṽn(t)] dx =

∫
Ω

ψ(t)curlMn [un(t)] · L(ϕ)vn(t) dx + R3,n(t).

Note that the expression of vn can be found in [11] and the convergence of vn previously stated is a consequence of

the fact that η ≤ ηMn (see also [11]).

Combining the previous estimate and integrating over the time we obtain∫ T

0

∫
Ω

ψ(t)%n(t)ϕ
(
(2µ + λ)divMn [un(t)] − pn(t)

)
dx dt +

∫ T

0

∫
Ω

ψ(t)
(
(2µ + λ)divMn [un(t)] − pn(t)

)
vn(t) · ∇ϕ dx dt

+ µ

∫ T

0

∫
Ω

ψ(t)curlMn [un(t)]L(ϕ)vn(t) dx dt +Rn = 0, (5.22)

where limn→+∞ Rn = 0. Passing to the limit in (5.22) we obtain

lim
n→+∞

∫ T

0

∫
Ω

ψ(t)%n(t)ϕ
(
(2µ + λ)divMn [un(t)] − pn(t)

)
dx dt

=

∫ T

0

∫
Ω

ψ(t)
(
p(t) − (2µ + λ)div [u(t)]

)
v(t) · ∇ϕ dx dt

−

∫ T

0

∫
Ω

µψ(t)curl[u(t)] · L(ϕ)v(t) dx dt . (5.23)
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Since (u, p, %) satisfy the momentum equation (see Proposition 2) we infer, since (u, v) ∈ L2(0,T ; H1
0(Ω)3) ×

L2(0,T ; H1
loc(Ω)3),∫ T

0

∫
Ω

ψ
(
(2µ + λ)divu − p

)
div(ϕv) dx dt + µ

∫ T

0

∫
Ω

ψcurl(u) · curl(ϕv) dx dt = 0.

But thanks to the discrete L2(0,T ; H1
loc(Ω)3) on vn, it is quite easy to prove that divMn [vn] and curlMn [vn] converge

weakly in L2(0,T ; L2
loc(Ω)) towards divu and curlv. This gives div[v(t)] = %(t) and curl[v(t)] = 0 and therefore

∫ T

0

∫
Ω

ψ
(
p − (2µ + λ)divu

)
v · ∇ϕ dx dt

=

∫ T

0

∫
Ω

(
(2µ + λ)divu − p

)
ψϕ% dx dt +µ

∫ T

0

∫
Ω

ψcurl[u]L(ϕ)v dx dt . (5.24)

We obtain the expected result by combining (5.23) and (5.24).

5.1.3. A.e. and strong convergence of %n and pn

Let us now prove the a.e. convergence of %n and pn. First of all we respectively denote %γ+1, %γ, % ln % and % div u

the weak limits of the sequences (%γ+1
n )n∈N, (%γn)n∈N, (%n ln %n)n∈N and (%n divMn un)n∈N in a suitable Lp((0,T )×Ω) space

where p > 1, passing to subsequences if necessary. Using [12, Lemma 2.1], one has for any s ∈ (0,T ):

lim
n→∞

∫ s

0

∫
Ω

(pn − (2µ + λ) divMn un)%n dx dt =

∫ s

0

∫
Ω

(p − (2µ + λ) div u)% dx dt

More precisely, with the notation introduced above we have for any s ∈ (0,T )∫ s

0

∫
Ω

%γ+1 − (2µ + λ)% div u dx dt =

∫ s

0

∫
Ω

%γ% − (2µ + λ)% div u dx dt . (5.25)

As the result of the DiPerna-Lions theory (see [42, Lemma 6.9]), (%,u) extended by zero outside Ω satisfies

∂t(% ln(%)) + div(% ln(%)u) + % div u = 0 inD′((0,T ) × R3).

Consequently the function t → %(t) ln(%(t)) is continuous with values in some Lebesgue space equipped with the weak

topology and we can use the previous equation to obtain for almost all s ∈ (0,T ) :∫
Ω

(% ln(%))(s) dx −
∫

Ω

%0 ln(%0) dx +

∫ s

0

∫
Ω

% div u dx dt = 0 (5.26)

Moreover from (4.5) with B(t) = t ln(t) we obtain for almost all s ∈ (0,T ) :∫
Ω

(%n ln(%n))(s) dx −
∫

Ω

%0 ln(%0) dx +

∫ s

0

∫
Ω

%n divMn un dx dt ≤ 0.

Passing to the limit in the previous inequation we infer that∫
Ω

% ln(%)(s) dx −
∫

Ω

%0 ln(%0) dx +

∫ s

0

∫
Ω

% div u dx dt ≤ 0. (5.27)
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Substracting (5.26) from (5.27) gives∫
Ω

(% ln(%))(s) − % ln(%)(s) dx ≤ −
∫ s

0

∫
Ω

% div u − % div u dx dt (5.28)

But by virtue of 5.25 we have∫ s

0

∫
Ω

% div u − % div u dx dt =
1

2µ + λ

∫ s

0

∫
Ω

%γ+1 − %γ% dx dt (5.29)

where the last inequality follows as in [13], so the following relation holds:

% ln % = % ln % a.e in (0,T ) ×Ω.

From Lemma 12 we obtain %n → % a.e in {% > 0}. Consequently %n → % in L1((0,T ) × Ω) and the following

convergences hold

%n → % strongly in Lq((0,T ) ×Ω), for any q ∈ [1, 2γ),

pn = %
γ
n → %γ strongly in Lq((0,T ) ×Ω), for any q ∈ [1, 2),

which gives p = %γ a.e in (0,T )×Ω. We have thus proved that the pressure p and the density % satisfy the equation of

state (1.1c). To conclude the proof of Theorem 1, there only remains to prove the energy inequality.

5.2. Passing to the limit in the energy inequality

Since %n → % in Lγ((0,T ) ×Ω) we infer that∫
Ω

%
γ
n(t) dx→

∫
Ω

%γ(t) dx, a.e on (0,T ). (5.30)

Morover ∇En un tends to ∇u weakly in L2((0,T ) × Ω)3×3. Therefore (2.3) is obtained by passing to the limit in (4.4).

The proof of Theorem 1 is now complete.

6. Conclusion

In this paper, we considered the MAC scheme for the semi-stationary barotropic compressible Navier-Stokes

equations. This scheme, which is very popular in the computational fluid dynamics community, also proved to be quite

adapted to a convergence analysis. To our knowledge, the convergence analysis established in this article seems to be

the first for this problem (see [37] for an alternative discretization with different boundary conditions). Ongoing work

concerns the extension to the stationary and non stationary Navier-Stokes equations in two or three space dimensions.

7. Appendix: some functional and discrete-functional analysis results

The following discrete Sobolev inequality is a direct consequence of [10, Lemma 9.1].
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Theorem 2 (Discrete Sobolev inequality). Let Ω be an open bounded subset of Rd, d = 2 or d = 3, adapted to the

MAC-scheme (that is any finite union of rectangles in 2D or rectangular in 3D), and letD = (M,E) be a MAC scheme

of Ω. Let q < +∞ if d = 2 and q = 6 if d = 3.Then there exists C = C(q,Ω) such that, for all u ∈ HE,0,

‖u‖Lq(Ω) ≤ C‖u‖1,E,0.

The following estimate on the translates of a discrete function u as a function of ‖u‖1,E,0 is a consequence of [10,

Lemma 9.3].

Proposition 5 (Estimate on the translates). Let Ω be an open bounded subset of Rd, d = 2 or d = 3, adapted to the

MAC-scheme (that is any finite union of rectangles in 2D or rectangular in 3D), and let D = (M,E) be a MAC grid

of Ω of size hM. Let u ∈ HE,0. We denote by ũ the extension of u to Rd. Then the following estimate holds:

∀η ∈ Rd, ‖ũ(· + η) − ũ‖2L2(Rd)d ≤ C‖η‖
(
‖η‖ + hM

)
‖u‖21,E,0. (7.1)

where C ≥ 0 depends only on Ω.

8. Some functional analysis results

For the convenience of the reader we list some functional analysis results to be used throughout this article.

The first Lemma is a classical result on weak limits and convexity, see e.g. [16, Lemma 10.20].

Lemma 12. ( Let O be a bounded open subset of RM ,M ≥ 1. Suppose g : R → (−∞,∞] is a lower semicontinuous

convex function and ( fn)n∈N is a sequence of functions on O for which fn → f weakly in L1(O), g( fn) ∈ L1(O) for each

n, g( fn)→ g( f ) weakly in L1(O). Then g( f ) ≤ g( f ) a.e in O, g( f ) ∈ L1(O) and
∫

O g( f ) dx ≤ lim infn→∞
∫

O g( fn) dx. If

in addition g is stricly convex on an open interval (a, b) ⊂ R and g( f ) = g( f ) a.e in O, then, passing to a subsequence

if necessary, fn(y)→ f (y) for a.e y ∈ {y ∈ O, f (y) ∈ (a, b)}.

The following lemma is used in the passage to the limit in the discrete continuity equation.

Lemma 13. For n ∈ N, consider a partition In of the time interval [0,T ], assumed to be uniform for the sake of

simplicity. Let the constant time step δtn be such that δtn → 0 as n → +∞. Let 1 < p1, q1 < +∞, 1 ≤ p2, q2 ≤ +∞

such that 1
p1

+ 1
p2

= 1
q1

+ 1
q2

= 1. For any n ∈ N, let ( fn, gn) ∈ Lp1 (0,T ; Lq1 (Ω)) × Lp2 (0,T ; Lq2 (Ω)). Assume that:

1. fn and gn are constant on each interval of the partition In.

2. The sequences ( fn)n∈N and (gn)n∈N converge weakly respectively to f and g in Lp1 (0,T ; Lq1 (Ω)) and

Lp2 (0,T ; Lq2 (Ω)d).

3. The sequence
(
t → f (t,·−δtn)− f (t)

δtn

)
n∈N

is bounded in L1(0,T ; W−1,1(Ω)).

Then fn gn → f g in the sense of distributions on (0,T ) ×Ω.
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Proof. We follow the proof of [38, Lemma 2.3]. Let

fn =

Nn∑
p=1

f p
n 11(tp−1,tp)(t), and gn =

Nn∑
p=1

gp
n11(tp−1,tp)(t), (8.1)

we notice that by virtue of item 3,

fn − f̃n → 0 inD′((0,T ) ×Ω), (8.2)

where f̃n is the piecewise affine function defined by

f̃n =

Nn∑
p=1

(
f p−1
n + ( f p

n − f p−1
h )

t − tp−1

δt

)
11(tp−1,tp)(t). (8.3)

Since the sequence of derivatives (∂t f̃n)n∈N is bounded in L1(0,T ; W−1,1(Ω)) and using item 4, an application of [41,

Lemma 5.1] gives

f̃n gn → f g inD′((0,T ) ×Ω)3. (8.4)

It only remains to prove that ( fn − f̃n)gn → 0 inD′((0,T ) ×Ω)3, statement for which we refer to the proof of Lemma

2.3 in [38].

We continue with a weak compactness result of the space XE,δt into L2(0,T ; H1
0(Ω)d).

Theorem 3. Consider, for any n ∈ N, a partition In of the time interval [0,T ], which, for the sake of simplicity, we

suppose uniform. Let δtn be the constant time step going to 0 as n→ ∞.

Consider a sequence of MAC grids (Dn = (Mn,En))n∈N of Ω with step size hMn going to zero as n→ ∞. Let us

consider for any n ∈ N a function un ∈ XEn,δtn such that the sequence (‖un‖L2(0,T ;HEn ,0))n∈N is bounded. Let 1 ≤ q < +∞

if d = 2 and q = 6 if d = 3.

Then, passing to subsequences if necessary, the sequence (un)n∈N converges weakly in L2(0,T ; Lq(Ω)d) to a limit

u and this limit satisfies u ∈ L2(0,T ; H1
0(Ω)d).

Furthermore, the sequence of functions t ∈ (0,T )→ ∇En (un(t)) ∈ L2(Ω)d×d converges weakly in L2((0,T ) ×Ω)d×d

to t → ∇[u(t)].

Proof. Let us denote by ũn (respectively ∇̃En un) the extension of un to (0,T ) × Rd by zero. By virtue of Theorem 2

there exits (u,V) ∈ L2(0,T ; Lq(Ω)d) × L2((0,T ) ×Ω)d×d such that up to a subsequence

ũn → ũ weakly in L2(0,T ; Lq(Ω)d), ∇̃En un → Ṽ weakly in L2((0,T ) ×Ω)d×d, (8.5)

where (ũ, Ṽ) stands for the extension of (u,V) to (0,T ) × Rd by zero. We obtain from Theorem 5(see Appendix)

applied to un after an integration over (0,T )

∀η ∈ Rd, ‖ũn(·, · + η) − ũn‖
2
L2(0,T ;L2(Rd)d) ≤ C‖η‖

(
‖η‖ + hM

)
. (8.6)
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Consequently passing to the limit in the previous inequality

∀η ∈ Rd, ‖ũ(·, · + η) − ũ‖2L2(0,T ;L2(Rd)d) ≤ C‖η‖2 (8.7)

and therefore the function u belongs to L2(0,T ; H1
0(Ω)d). Moreover for any ψ ∈ C∞c ((0,T ) × Ω)d×d there exists Rψ

such that ∫ T

0

∫
Ω

un · divψ dx dt = −

∫ T

0

∫
Ω

∇En un : ·∇ψ dx dt +Rψ (8.8)

where the remainder Rψ satisfies

|Rψ|CφhMn . (8.9)

Consequently passing to the limit in we obtain that∫ T

0

∫
Ω

u · divψ dx dt = −

∫ T

0

∫
Ω

V : ∇ψ dx dt (8.10)

which gives the expected result.

The famous Aubin-Simon lemma discusses the compactness in Lp(0,T ; B) (1 ≤ p ≤ ∞), which is widely used in

the study of nonlinear evolution partial differential equations. This theorem states as follows

Theorem 4. Let 1 ≤ p < ∞. Let X, B,Y be three Banach spaces such that

1. X ⊂ B with compact embedding,

2. B ⊂ Y with continuous embedding.

Let T > 0 and (un)n∈N be a sequence of Lp(0,T ; X) such that

1. (un)n∈N is bounded in Lp(0,T ; X).

2. ( d
dt un)n∈N is bounded in L1(0,T ; Y).

Then there exists u ∈ Lp(0,T ; B) such that, up to a subsequence, un → u dans Lp(0,T ; B).

In numerical analysis, the spaces X and Y depend on the discretization of the computational domain. Futhermore

we have deal with discrete derivatives. We then introduce a discrete version of the above theorem to take account

these two points.

We continue with two definitions useful to introduce a discrete version of the Aubin-Simon theorem Theorem 5

below, see [44] for the original result in the continuous setting. We follow here [21].

Definition 3 (Compactly embedded sequence). Let B be a Banach space and (Xn)n∈N be a sequence of Banach spaces

included in B. We say that the sequence (Xn)n∈N is compactly embedded in B if any sequence satisfying

1. un ∈ Xn for all n ∈ N.
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2. the sequence (‖un‖Xn )n∈N is bounded

is relatively compact in B.

Remark 5. Given a sequence (Dn = (Mn,En))n∈n∈N of MAC grid of the computational domain Ω, with step size hMn

going to 0 as n→ ∞, it is well known that the sequence (HEn,0)n∈n∈N is compactly embedded in L2(Ω)d.

Definition 4. Let B a Banach space, (Xn)n∈N be a sequence of Banach spaces included in B and (Yn)n∈N be a sequence

of Banach spaces. We say that the sequence (Xn,Yn)n∈N is compact-continuous in B if the following conditions are

satisfied

1. The sequence (Xn)n∈N is compactly embedded in B.

2. Xn ⊂ Yn (for all n ∈ N) and if the sequence (un)n∈N is such that un ∈ Xn (for all n ∈ N), (‖un‖Xn )n∈N bounded and

‖un‖Yn → 0 (as n→ +∞), then any subsequence converging in B converge (in B) to 0.

Remark 6. In agreement with Remark 5 the sequence (HEn,0,L
2(Ω)d)n∈N is compact-continuous is B = L2(Ω)d.

Let us now state the discrete version of the Aubin-Simon theorem. This theorem is proved in [7]. It is useful to

prove the so-called Effective viscous flux (see Proposition 4).

Theorem 5 (Aubin-Simon Theorem with a sequence of subspaces and a discrete derivative.). Let 1 ≤ p < ∞, let

B be a Banach space, and let (Xn)n∈N and (Yn)n∈N be sequences of Banach spaces such that Xn ⊂ B for n ∈ N. We

assume that the sequence (Xn,Yn)n∈N is compact-continuous in B. Let T > 0 and (un)n∈N be a sequence of Lp(0,T ; B)

satisfying the following conditions:

• (H1) the sequence (un)n∈N is bounded in Lp(0,T ; B).

• (H2) the sequence (‖un‖Lp(0,T ;Xn))n∈N is bounded.

• (H3) the sequence (‖ðtun‖L1(0,T ;Yn))n∈N is bounded.

Then there exists u ∈ Lp(0,T ; B) such that, up to a subsequence, un → u in Lp(0,T ; B).

With the hypotheses of Theorem 5, another interesting question is to prove an additional regularity for u, namely

u ∈ Lp(0,T ; B) where X is some space closely related to the Xn (and included in B). In definition 5 we precise the

meaning of the sentence "X closely related to the Xn" and we give in Theorem 6 a regularity result.

Definition 5 (B-limit-included). Let B be a Banach space, (Xn)n∈N be a sequence of Banach spaces included in B and

X be a Banach space included in B. The sequence (Xn)n∈N is B-limit-included in X if there exists C ∈ R such that if u

is the limit in B of a subsequence of a sequence (un)n∈N verifying un ∈ Xn and ‖un‖Xn ≤ 1, then u ∈ X and ‖u‖X ≤ C.
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The regularity of a possible limit of approximate solutions may be proved thanks to the theorem which we recall

below [22, Theorem B1].

Theorem 6 (Regularity of the limit). Let 1 ≤ p < ∞ and T > 0. Let B be a Banach space, (Xn)n∈N be a sequence of

Banach spaces included in B and B-limit-included in X (where X is a Banach space included in B). Let T > 0 and,

for m ∈ N, Let un ∈ Lp(0,T ; Xn). We assume that the sequence (‖un‖Lp(0,T ;Xn))n∈N is bounded and that un → u a.e. as

n→ ∞. Then u ∈ Lp(0,T ; X).
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