
SIAM J. NUMER. ANAL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 43, No. 6, pp. 2344–2370

ANALYTICAL AND NUMERICAL STUDY OF A MODEL OF
EROSION AND SEDIMENTATION∗
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Abstract. We consider the following problem, arising within a geological model of sedimentation-
erosion: For a given vector field g and a given nonnegative function F defined on a one- or two-
dimensional domain Ω, find a vector field under the form g̃ = ug, with 0 ≤ u(x) ≤ 1 for a.e. x ∈ Ω,
such that divg̃ + F ≥ 0 and (u − 1)(divg̃ + F ) = 0 in Ω. We first give a weak formulation of this
problem, and we prove a comparison principle on a weak solution of the problem. Thanks to this
property, we get the proof of the uniqueness of the weak solution. The existence of a solution results
from the proof of the convergence of an original scheme. Numerical examples show the efficiency of
this scheme and illustrate its convergence properties.
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1. Introduction. In the framework of the petroleum industry, geological sim-
ulations are used more and more in order to get a better knowledge of the history
of the sedimentary basins. Among them, the computation of the sedimentation and
erosion processes leads to a better knowledge of the geometry of the layers and of
their lithological nature (see, for example, [15], [11], or [5]). An unknown of such
models is the thickness H(x, t) of the sediments at a point (x, t) ∈ Ω × (0, T ), where
Ω describes the horizontal extension of the basin (the magnitude of the diameter of Ω
can be about several hundreds of kilometers) and T is the age of the basin (between
0 and 107 years for example). The simplest model is a diffusion equation

Ht(x, t) − div[Λ(x)∇H(x, t)] = 0 for a.e. (x, t) ∈ Ω × (0, T ),(1)

where Λ(x) is a matrix in the general case, reducing in most of the cases to a scalar
function. But the model (1) is not sufficient for actual applications, in particular,
because it does not account for the assymetry between the erosion process (due to
the action of the weather) and the sedimentation process. Indeed, more realistic
models (see [1] or [6] and references therein) are based on the introduction in (1) of a
multiplier u(x, t) on the fluxes of sediments:

Ht(x, t) − div[Λ(x)u(x, t)∇H(x, t)] = 0 for a.e. (x, t) ∈ Ω × (0, T ),(2)

in order to satisfy the following constraints on (u,H),

Ht(x, t) ≥ −F (x) for a.e. (x, t) ∈ Ω × (0, T ),(3)

0 ≤ u(x, t) ≤ 1 for a.e. (x, t) ∈ Ω × (0, T ),(4)
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and

(u(x, t) − 1) (Ht(x, t) + F (x)) = 0 for a.e. (x, t) ∈ Ω × (0, T ).(5)

In (3) and (5), we denote by F (x) ≥ 0 the maximum erosion rate at point x.
In practical situations, F is estimated by the geological study of the sedimental

history, and may be improved by solving an inverse problem (which is quite com-
plicated, by the way), using (2)–(5) as the direct problem. In large parts of the
simulation domain, the transport of sediments is due mainly to gravity effects, taken
into account by a scalar value for the matrix Λ(x). In a same way as above, this scalar
value can be estimated by some geological studies or by solving an inverse problem.
However, the main mechanism for the transport of sediments is the action of surface
water flows. These flows, located in river basins, can be represented by introducing
anisotropic values for this matrix Λ(x). The determination of realistic values for these
parameters is not an easy task and is still a challenging subject of research for the
simulation of the sedimentary basins. The function u is a complete unknown factor,
reducing the flux of sediments in order to respect the constraint (3). Despite these
difficulties of data identification, this model is considered interesting enough to be
actually implemented in an industrial simulator (see [11], [6]).

Existence and uniqueness for the full problem (2)–(5) is an open problem (some
partial results can be found in [10] or [2]). Thus we consider a semidiscretization in
time of this system of equations. We define a time step δt > 0, and for an integer n such
that nδt < T , we assume that the function H(n) is an approximation of H(·, nδt). We
then look for the functions H(n+1) and u(n+1), respective approximations of H(·, (n+
1)δt) and u(·, (n + 1)δt), which are solutions of the system of equations

1

δt
(H(n+1)(x) −H(n)(x)) − div[Λ(x)u(n+1)(x)∇H(n)(x)] = 0 for a.e. x ∈ Ω,(6)

under the constraints

1

δt
(H(n+1)(x) −H(n)(x)) ≥ −F (x) for a.e. x ∈ Ω,(7)

0 ≤ u(n+1)(x) ≤ 1 for a.e. x ∈ Ω,(8)

and

(u(n+1)(x) − 1)

(
1

δt
(H(n+1)(x) −H(n)(x)) + F (x)

)
= 0 for a.e. x ∈ Ω.(9)

Denoting by g(x) = Λ(x)∇H(n)(x) and reporting in (7)–(9) the expression of 1
δt (H

(n+1)−
H(n)) taken from (6), the unknown function u(n+1) is then a solution u of the following
system of equations:

div[u(x)g(x)] + F (x) ≥ 0 for a.e. x ∈ Ω,

0 ≤ u(x) ≤ 1 for a.e. x ∈ Ω,
(10)

and

(u(x) − 1) (div[u(x)g(x)] + F (x)) = 0 for a.e. x ∈ Ω.(11)
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Hence, if we are able to prove that problem (10)–(11) has one and only one solution
g̃ = u(·)g(·), the function H(n+1) is then given by the relation H(n+1)(x) = H(n)(x)+
δt divg̃(x) for a.e. x ∈ Ω.

Remark 1.1. If there exist some regions where g = 0 and F = 0 simultaneously,
it is clear that any value in [0, 1] is possible for u. Nevertheless, g̃ is uniquely defined
by the value 0 in such a region.

A fully implicit version of this method (namely ∇H(n)(x) is replaced by ∇H(n+1)(x)
in (6)) in addition to a finite volume space discretization are used in an industrial sim-
ulator (see [11], [6]).

The aim of this paper is to focus on both the analytical and the numerical aspects
of the subproblem (10)–(11). Although it is not clear that the resolution of this
subproblem yields the complete theoretical resolution of the fully coupled problem (2)–
(5), we emphasize that it leads to the key points of a correct numerical implementation.

In this paper, the following hypotheses, denoted Hypotheses (H), are assumed.
Hypotheses (H).
1. Ω is a bounded open subset of R

d, d ∈ N
� = N \ {0} (in applications, d = 2),

with a Lipschitz continuous boundary ∂Ω (this gives the existence, for a.e.
x ∈ ∂Ω, of the unit outward vector n(x) normal to the boundary).

2. There exist two functions, h ∈ C1(Ω) and Λ : Ω −→ Md (the set of bounded,
symmetric, definite positive, d× d matrices) such that the function g : Ω →
R

d, defined by g(x) = Λ(x)∇h(x) for all x ∈ Ω, is Lipschitz continuous on Ω
and satisfies g(x) · n(x) = 0 for a.e. x ∈ ∂Ω.

3. F ∈ L∞(Ω) is such that F (x) ≥ 0 for a.e. x ∈ Ω.
As we see below in section 2, there does not always exist a continuous function

u : Ω → R such that (10)–(11) are satisfied, and the regularity of g̃ = ug in the
general case is an open problem. Therefore we first look for a weak formulation of
problem (10)–(11). For this purpose, let ϕ ∈ C1(Ω,R+), and let ξ ∈ C1(R) be such
that ξ′(1) ≥ 0. We multiply the first inequality of (10) by ξ′(u(x))ϕ(x), and we
integrate on Ω. We get

(12)∫
Ω

ξ′(u(x))ϕ(x)(div[u(x)g(x)] + F (x))dx =

∫
Ω

ξ′(1)ϕ(x)(div[u(x)g(x)] + F (x))dx

+

∫
Ω

(ξ′(u(x)) − ξ′(1))ϕ(x)(div[u(x)g(x)] + F (x))dx.

The second term of the right-hand side vanishes, using (11), and the first one is
nonnegative. This leads to∫

Ω

ξ′(u(x))ϕ(x)(div[u(x)g(x)] + F (x))dx ≥ 0.(13)

We remark that, for any function ξ which is such that ξ′(1) ≥ 0 and ξ′ is decreasing,
we can get (13) from (12) for any function u which only verifies (10). For this reason,
we now assume that ξ is convex (in the sense that ξ′ is nondecreasing, this terminology
is used in the sequel of this paper), and we develop equation (13), integrating by parts.
We then derive the following weak sense for a solution to problem (10)–(11).

Definition 1.1 (weak solution to problem (10)–(11)). Under Hypotheses (H),
we say that a function g̃ ∈ L∞(Ω)d is a weak solution to problem (10)–(11) if there
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exists u ∈ L∞(Ω) such that g̃(x) = u(x)g(x) for a.e. x ∈ Ω, and u satisfies the
following inequalities: 0 ≤ u(x) ≤ 1 for a.e. x ∈ Ω and

∫
Ω

(
ξ(u(x))(−g(x) · ∇ϕ(x)) + [ξ′(u(x))u(x) − ξ(u(x))]ϕ(x)divg(x)

+ ξ′(u(x))ϕ(x)F (x)
)
dx ≥ 0

∀ξ ∈ C1(R) convex such that ξ′(1) ≥ 0 ∀ϕ ∈ C1(Ω,R+).

(14)

The following proposition expresses that any weak solution in the above sense
satisfies (10) in a weak sense, and the next one shows that any regular weak solution
satisfies (10)–(11), thus completing the justification of Definition 1.1.

Proposition 1.2. Under Hypotheses (H), let g̃ : Ω → R
d be a weak solution to

problem (10)–(11) in the sense of Definition 1.1. Then

∫
Ω

(−g̃(x) · ∇ϕ(x)dx + F (x)ϕ(x))dx ≥ 0 ∀ϕ ∈ C1(Ω,R+).(15)

Proof. Let us assume that u ∈ L∞(Ω) is such that g̃(x) = u(x)g(x) and 0 ≤
u(x) ≤ 1 for a.e. x ∈ Ω, and (14) is satisfied. Let us take ξ : s �→ s in (14). We then
obtain (15).

Proposition 1.3. Under Hypotheses (H), let g̃ : Ω → R
d be a Lipschitz

continuous function. Then g̃ is a weak solution to problem (10)–(11) in the sense of
Definition 1.1 if and only if there exists a function u ∈ L∞(Ω) with g̃(x) = u(x)g(x)
and 0 ≤ u(x) ≤ 1 for a.e. x ∈ Ω such that (10) and (11) are satisfied by the function
u.

Proof. Let us assume that g̃ is a weak solution to problem (10)–(11) in the sense
of Definition 1.1. Then there exists u ∈ L∞(Ω) such that g̃(x) = u(x)g(x) and
0 ≤ u(x) ≤ 1 for a.e. x ∈ Ω, and (14) is satisfied. Proposition 1.2 shows that (10) is
satisfied by the function u for a.e. x ∈ Ω. In order to prove that (11) is satisfied for
a.e. x ∈ Ω by the function u, we shall separate the cases x ∈ Ω0 := {x ∈ Ω, g(x) = 0}
and x ∈ Ω \Ω0. Let us take in (14) a test function ϕ whose support is included in the
open set Ω \Ω0. Since the function u verifies u(x) = |g̃(x)|/|g(x)| for a.e. x ∈ Ω \Ω0,
u is Lipschitz continuous on the support of ϕ; we can thus integrate by parts, which
produces, from (14), that (13) is satisfied by u. Let us now prove that u verifies (11).

Choosing ξ : s �→ (s−1)2, we get that
∫
Ω
(u(x)−1)ϕ(x)(div[u(x)g(x)]+F (x))dx ≥

0 holds. This implies that (u(x) − 1)(div[u(x)g(x)] + F (x)) ≥ 0 for a.e. x ∈ Ω such
that g(x) 	= 0. But on one hand, u(x) ≤ 1 for a.e. x ∈ Ω, and on the other hand, (10)
is satisfied for a.e. x ∈ Ω. Therefore, u verifies (11) for a.e. x ∈ Ω \ Ω0.

Let us now obtain the same conclusion for a.e. x ∈ Ω0. Let η ∈ C1(R) be a
function such that 0 ≤ η(x) ≤ 1 for all x ∈ R, η(0) = 1 and support(η) ⊂ [−1, 1].
For all n ∈ N

�, let us define the Lipschitz continuous function ϕn : x �→ η(n|g(x)|).
On one hand, we have that for a.e. x ∈ Ω0, g(x) · ∇ϕn(x) = 0 holds. On the other
hand, for all x ∈ Ω \Ω0, we get that g(x) · ∇ϕn(x) tends to 0 as n → ∞ and remains
bounded (indeed, it suffices to consider the cases |g(x)| ≤ 1/n and |g(x)| ≥ 1/n and
to use the property ∇gi ∈ L∞(Ω)d, where gi, i = 1, . . . , d are the components of g).

We then introduce ξ : s → (s− 1)2 and ϕ = ϕn in (14) (this is possible, taking
regularizations in C1(Ω,R+) of ϕn). We then get

T
(n)
1 + T

(n)
2 + T

(n)
3 ≥ 0,(16)
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with T
(n)
1 =

∫
Ω
(u(x) − 1)2(−g(x) · ∇ϕn(x))dx, T

(n)
2 =

∫
Ω
(u(x)2 − 1)ϕn(x)divg(x)dx,

and T
(n)
3 = 2

∫
Ω
(u(x) − 1)F (x)ϕn(x)dx. Thus, thanks to the convergence properties

of g · ∇ϕn and to the dominated convergence theorem, we get that T
(n)
1 tends to 0 as

n → ∞.
Since ϕn(x) tends to 0 for all x ∈ Ω \Ω0 and to 1 for all x ∈ Ω0, we get that T

(n)
2

tends to
∫
Ω0

(u(x)2 − 1)divg(x)dx. Since g(x) = 0 for all x ∈ Ω0, then ∂ig(x) = 0 for

a.e. x ∈ Ω0 and all i = 1, . . . , d (this classical property has been shown, for example,
in [17]), which produces

∫
Ω0

(u(x)2 − 1)divg(x)dx = 0.

We finally get that T
(n)
3 tends to 2

∫
Ω0

(u(x) − 1)F (x)dx as n → ∞.

We thus get, passing to the limit n → ∞ in (16),
∫
Ω0

(u(x)−1)F (x)dx ≥ 0, which

proves that u(x) = 1 for a.e. x ∈ Ω0 such that F (x) > 0.
Therefore, for a.e. x ∈ Ω0, either F (x) > 0 and u(x) = 1, or F (x) = 0 and

div(g̃(x)) + F (x) = 0, since g̃(x) = 0 for a.e. x ∈ Ω0. Thus (11) is satisfied for a.e.
x ∈ Ω0.

Reciprocally, let us assume that (10) and (11) are satisfied a.e. by the function u.
We then get that (13) is satisfied, and therefore equation (14) is satisfied. This proves
that g̃ is a weak solution to problem (10)–(11) in the sense of Definition 1.1.

This paper is organized as follows. We first give, in section 2, the analytical
expression of the weak solution in the one-dimensional case (the uniqueness result,
proved in section 3, indeed holds in this case). In section 3, we first give a char-
acterization of the set C(g, F ) of functions which weakly satisfy (10). We prove a
comparison result between a weak process solution to problem (10)–(11) (defined in
Definition 3.3) and any element of C(g, F ). This result suffices to prove the unique-
ness of the weak solution to problem (10)–(11) in the sense of Definition 1.1. We then
present a numerical scheme in section 4. The existence and uniqueness of a discrete
solution is itself a nontrivial problem, which we solve by proving the convergence of an
iterative method. This scheme is then proven to converge to a weak process solution
to problem (10)–(11) in the sense of Definition 3.3. Thanks to the uniqueness result
of the weak solution, we deduce the strong convergence result of the numerical scheme
to this weak solution. We then give some numerical results in section 5 and conclude
with some open problems.

2. Weak solutions in the one-dimensional case. We have the following
result.

Proposition 2.1 (expression of the weak solution in the one-dimensional case).
Let (a, b) ∈ R

2 be such that a < b, let F ∈ L∞((a, b)) be a nonnegative function, and
let g ∈ C0([a, b]) be a Lipschitz continuous function with g(a) = g(b) = 0.

Then, the function g̃ : [a, b] → R defined by

g̃(x) = min
y∈[x,b]

(
g+(y) +

∫ y

x

F (t)dt

)
− min

y∈[a,x]

(
g−(y) +

∫ x

y

F (t)dt

)
∀x ∈ [a, b],

(17)

where for all s ∈ R we denote s+ = max(s, 0) and s− = max(−s, 0), is the unique
weak solution to problem (10)–(11) in the sense of Definition 1.1.

Proof. Let us first remark that g̃ defined as such verifies that for all x ∈ [a, b],
g̃+(x) = miny∈[x,b]

(
g+(y) +

∫ y

x
F (t)dt

)
and g̃−(x) = miny∈[a,x](g

−(y) +
∫ x

y
F (t)dt)

with 0 ≤ g̃+(x) ≤ g+(x) and 0 ≤ g̃−(x) ≤ g−(x). Then the function g̃+ satisfies
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g̃+(x) = miny∈[a,b] Gp(x, y) for all x ∈ [a, b] with

Gp(x, y) = g+(max(x, y)) +

∫ max(x,y)

x

F (t)dt ∀(x, y) ∈ [a, b]2.

Similarly, we have g̃−(x) = miny∈[a,b] Gm(x, y) for all x ∈ [a, b] with

Gm(x, y) = g−(min(x, y)) +

∫ x

min(x,y)

F (t)dt ∀(x, y) ∈ [a, b]2.

It is then clear that the functions Gp and Gm are Lipschitz continuous on [a, b]2 with
any Lipschitz constant M such that M is a bound of F + |g′| in L∞((a, b)). Let
(x, x̄) ∈ [a, b]2 be given, and let (Y, Ȳ ) ∈ [a, b]2 be such that g̃+(x) = Gp(x, Y ) and
g̃+(x̄) = Gp(x̄, Ȳ ). Since we have

g̃+(x) − g̃+(x̄) ≤ Gp(x, Ȳ ) −Gp(x̄, Ȳ ) ≤ M |x− x̄|,

and, inverting the roles of x and x̄,

g̃+(x̄) − g̃+(x) ≤ Gp(x, Y ) −Gp(x̄, Y ) ≤ M |x− x̄|,

we thus get that g̃+ is Lipschitz continuous. Since the same proof holds for g̃−, we
thus get that g̃ = g̃+− g̃− is Lipschitz continuous as well. We thus define the function
u : [a, b] → [0, 1] by u(x) = 1 for all x ∈ Ω such that g(x) = 0 and u(x) = g̃(x)/g(x)
for all x ∈ [a, b] such that g(x) 	= 0. Let us prove that u satisfies (10)–(11) (from
Proposition 1.3, since Hypotheses (H) are satisfied, this is sufficient to conclude).
Since for all x ∈ [a, b] such that g(x) = 0, g̃(x) = 0 holds, g̃′(x) + F (x) ≥ 0 for a.e.
x ∈ [a, b] such that g(x) = 0 [17]. Let x ∈ [a, b] be such that g(x) > 0. Then there
exists α > 0 such that x+α ≤ b and g(y) > 0 for all y ∈ (x, x+α). For x̄ ∈ (x, x+α),
let Ȳ ∈ [x̄, b] be such that g̃(x̄) = Gp(x̄, Ȳ ). We have

g̃(x) − g̃(x̄) ≤ Gp(x, Ȳ ) −Gp(x̄, Ȳ ) =

∫ x̄

x

F (t)dt.(18)

The above inequality proves that g̃′(x)+F (x) ≥ 0 for a.e. x ∈ [a, b] such that g(x) > 0.
Similarly, we obtain that g̃′(x) + F (x) ≥ 0 for a.e. x ∈ [a, b] such that g(x) < 0. This
proves that (10) is satisfied. Let x ∈ (a, b) such that u(x) < 1. Let us assume
that g(x) > 0. Again, there exists α > 0 such that x + α ≤ b and g(y) > 0 for
all y ∈ (x, x + α), and again, for all x̄ ∈ (x, x + α), (18) holds. Since we have
0 ≤ g̃(x) < g(x), there exists Y ∈ (x, b) such that g̃(x) = Gp(x, Y ). Therefore, for all
x̄ ∈ (x, Y ), since Y > x̄, we get

g̃(x) − g̃(x̄) ≥ Gp(x, Y ) −Gp(x̄, Y ) =

∫ x̄

x

F (t)dt.

Thus, for all x̄ ∈ (x,min(Y, x+α)), we get g̃(x)− g̃(x̄) =
∫ x̄

x
F (t)dt, which implies that

g̃′(x) = −F (x) for a.e. x ∈ Ω such that u(x) < 1 and g(x) > 0. The case u(x) < 1 and
g(x) < 0 can be similarly handled. Therefore g̃ is Lipschitz continuous and (10)–(11)
are satisfied. Thanks to Proposition 1.3, this completes the proof that g̃ is a weak
solution to problem (10)–(11) in the sense of Definition 1.1.

Since, within the hypotheses of the above proposition, Hypotheses (H) are satisfied
(in particular, g = h′ with h : x �→

∫ x

a
g(t)dt), we can apply Proposition 3.5, which
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implies the uniqueness of the weak solution to problem (10)–(11) in the sense of
Definition 1.1.

Let us take two simple examples (one can find some examples inspired by geolog-
ical problems in [6]). We consider a one-dimensional case (see Figure 1 below), with
Ω = (−1, 1), g : x �→ x3 − x, and F : x �→ 1/2. In this case, it is easy to verify that
the function g̃ defined by (17) is such that g̃ = ug, where the function u is such that
u : x �→ 1 for all x ∈ (−1,−

√
1/2) ∪ (

√
1/2, 1) and u : x �→ 1/(2(1 − x2)) for all

x ∈ (−
√

1/2,
√

1/2). We thus obtain that the function u is continuous over Ω, but
this is not always the case.

Indeed, let us consider the case Ω = (−1, 1), g : x �→ x3 − x for all x ∈ [−1, 0],
g : x �→ 1

2 (x3 − x) for all x ∈ [0, 1], and F : x �→ 1/2. In such a case, g is only
Lipschitz continuous, and the function g̃ = ug given by (17) is such that u : x �→ 1
for all x ∈ (−1,−

√
1/2) ∪ (0, 1) and u : x �→ 1/(2(1 − x2)) for all x ∈ (−

√
1/2, 0).

This function u is therefore discontinuous in 0, although the function g̃ = ug remains
Lipschitz continuous.

3. Uniqueness results.

3.1. Properties of the set of functions which satisfy (10). We consider in
this section the set C(g, F ) of functions which satisfy (10) in the sense of distributions.
We shall prove below that the weak solution g̃ to problem (10)–(11) in the sense of
Definition 1.1 is the projection of g in L2(Ω)d on C(g, F ), and it is an extremal point
of C(g, F ) in the sense that |g̃| ≥ |γ| for all γ ∈ C(g, F ) (see Proposition 3.5). The
proof of this property is obtained thanks to the characterization of C(g, F ) given by
Proposition 3.2.

Definition 3.1 (the set C(g, F )). Under Hypotheses (H), we define the set
C(g, F ) of functions γ ∈ L2(Ω)d such that there exists v ∈ L∞(Ω), with γ(x) =
v(x)g(x) and 0 ≤ v(x) ≤ 1, for a.e. x ∈ Ω and∫

R+

∫
Ω

([−γ(x) · ∇ϕ(x)] + ϕ(x)F (x)) dx ≥ 0 ∀ϕ ∈ C1(Ω,R+).(19)

Remark 3.1 (some properties of C(g, F )). The set C(g, F ) is nonempty (because
0 ∈ C(g, F )), convex (since the left-hand side of (19) is linear with respect to γ), and
closed (in L2(Ω)d).

Remark 3.2 (weak solutions and C(g, F )). Thanks to Proposition 1.2, any weak
solution to problem (10)–(11) in the sense of Definition 1.1 belongs to C(g, F ).

We have the following proposition, which gives a characterization of the functions
of C(g, F ).

Proposition 3.2 (characterization of C(g, F )). Under Hypotheses (H), let v ∈
L∞(Ω), such that 0 ≤ v(x) ≤ 1 for a.e. x ∈ Ω, and let γ(x) = v(x)g(x). Then
γ ∈ C(g, F ) (defined in Definition 3.1) holds if and only if the following property
holds: ∫

Ω

(
ξ(v(x))[−g(x) · ∇ϕ(x)] + [ξ′(v(x))v(x) − ξ(v(x))]ϕ(x) divg(x)

+ ξ′(v(x))ϕ(x)F (x)
)
dx ≥ 0

∀ϕ ∈ C1(Ω,R+), ∀ξ ∈ C1(R) s.t. ∀κ ∈ [0, 1], ξ′(κ) ≥ 0.

(20)

Proof. Under the hypotheses of the above proposition, let us assume that γ ∈
C(g, F ). We introduce a sequence of mollifiers in R

d. Let ρ ∈ C∞
c (Rd,R+) (the set of
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smooth functions with a compact support) be such that

{x ∈ R
d; ρ(x) 	= 0} ⊂ {x ∈ R

d; |x| ≤ 1}(21)

and ∫
Rd

ρ(x)dx = 1.(22)

For n ∈ N
�, we define

ρn(x) = ndρ(nx) ∀x ∈ R
d.(23)

We then define the functions vn(y) =
∫
Ω
v(x)ρn(x−y)dx. Let ψ ∈ C1(Ω,R+) be given.

For a given y ∈ Ω, we introduce the function ϕ : x → ξ′(vn(y))ψ(y)ρn(y − x) ∈
C1(Ω,R+) in (19), and we integrate with respect to y. We thus get T

(n)
4 + T

(n)
5 ≥ 0

with

T
(n)
4 = −

∫
Ω

∫
Ω

ξ′(vn(y))ψ(y)v(x)g(x) · ∇ρn(y − x)dxdy(24)

and

T
(n)
5 =

∫
Ω

∫
Ω

ξ′(vn(y))ψ(y)F (x)ρn(y − x)dxdy.(25)

The limit of the last term, as n → ∞, satisfies

lim
n→∞

T
(n)
5 =

∫
Ω

(ξ′(v(y))ψ(y)F (y)) dy.

We then turn to the study of T
(n)
4 as n → ∞. We have T

(n)
4 = T

(n)
6 + T

(n)
7 + T

(n)
8

with

T
(n)
6 =

∫
Ω

∫
Ω

ξ′(vn(y))ψ(y)v(x)g(y) · ∇ρn(y − x)dxdy,

T
(n)
7 =

∫
Ω

∫
Ω

ξ′(vn(y))ψ(y)v(y)(g(x) − g(y)) · ∇ρn(y − x)dxdy,

and

T
(n)
8 =

∫
Ω

∫
Ω

ξ′(vn(y))ψ(y)(v(x) − v(y))(g(x) − g(y)) · ∇ρn(y − x)dxdy.

We then have

T
(n)
6 =

∫
Ω

ξ′(vn(y))ψ(y)g(y) · ∇vn(y)dy =

∫
Ω

ψ(y)g(y) · ∇ξ(vn)(y)dy,

which delivers, thanks to an integration by parts with respect to y,

T
(n)
6 = −

∫
Ω
ξ(vn(y))div[ψ(y)g(y)]dy.

This leads to

lim
n→∞

T
(n)
6 =

∫
Ω

ξ(v(y))div[ψ(y)g(y)]dy.
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We also have, thanks to an integration by parts with respect to x,

T
(n)
7 = −

∫
Ω

∫
Ω

ξ′(vn(y))ψ(y)v(y)ρn(y − x)divg(x)dxdy,

which produces

lim
n→∞

T
(n)
7 =

∫
Ω

ξ′(v(y))v(y)ψ(y)divg(y)dy.

Finally, we get

lim
n→∞

T
(n)
8 = 0

thanks to the continuity in means of v and to the fact that x �→ (g(x)−g(y))·∇ρn(y−x)
belongs to L1(Ω). Then (20) is obtained by gathering all the results obtained above
by passing to the limit n → ∞.

Conversely, it suffices to choose the function ξ : s �→ s in (20), for obtaining
(19).

3.2. Weak process solutions. Since we consider below the convergence of nu-
merical schemes, on which the only estimate that we obtain in this case is an L∞(Ω)
estimate, we must therefore consider weaker solutions than that defined in Defini-
tion 1.1, namely, weak process solutions. This notion of a weak process solution, intro-
duced in [7], is related to the notion of Young measure first used by [3] in the nonlinear
scalar hyperbolic framework. Young measures are extensively used in optimal control,
nonconvex variational problems, phase transitions, microstructure problems, . . . (see,
e.g., [14], [16]).

The uniqueness result proven below leads to the uniqueness of such a weak process
solution and to the fact that any weak process solution is indeed a weak solution. We
then obtain the uniqueness of the weak solution to problem (10)–(11) in the sense
of Definition 1.1. Moreover, this result is mainly used in the study of the numerical
scheme in order to prove its strong convergence.

Definition 3.3 (weak process solutions to problem (10)–(11)). Under Hypothe-
ses (H), we say that a function ĝ is a weak process solution to problem (10)–(11)
if there exists u ∈ L∞(Ω × (0, 1)) such that ĝ : (x, α) �→ u(x, α)g(x) for a.e.
(x, α) ∈ Ω × (0, 1). And u satisfies the following inequalities: 0 ≤ u(x, α) ≤ 1 for
a.e. (x, α) ∈ Ω × (0, 1) and

(26)∫
Ω

∫ 1

0

(
ξ(u(x, α))(−g(x) · ∇ϕ(x)) + [ξ′(u(x, α))u(x, α) − ξ(u(x, α))]ϕ(x)divg(x)

+ ξ′(u(x, α))ϕ(x)F (x)
)
dαdx ≥ 0

∀ξ ∈ C1(R), convex s.t. ξ′(1) ≥ 0, ∀ϕ ∈ C1(Ω,R+).

We first prove the following property, which at the same time, gives some elements
to conclude to the uniqueness of the weak process solution but also helps to prove
that this solution is an extremal point of C(g, F ).

Proposition 3.4 (comparison of a weak process solution and an element of
C(g, F )). Under Hypotheses (H), let γ ∈ C(g, F ) be given, where C(g, F ) is defined
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in Definition 3.1, and let v ∈ L∞(Ω), such that γ(x) = v(x)g(x) and 0 ≤ v(x) ≤ 1
for a.e. x ∈ Ω. Let ĝ be a weak process solution to problem (10)–(11) in the sense of
Definition (3.3). Let u ∈ L∞(Ω×(0, 1)) be such that 0 ≤ u(x, α) ≤ 1 and ĝ : (x, α) �→
u(x, α)g(x) for a.e. (x, α) ∈ Ω×(0, 1) and such that u satisfies (27). Then the following
inequality holds:

∫
Ω

∫ 1

0

(v(x) − u(x, α))+ [−g(x) · ∇ϕ(x)] dαdx ≥ 0 ∀ϕ ∈ C1(Ω,R+).(27)

Proof. This proof uses the method of doubling variables (first introduced by
Krushkov [12]) adapted to weak process solutions [8].

Let us assume the hypotheses of the proposition. Let η ∈ C1(R2,R) be given such
that η(·, b) is convex for all b ∈ (−∞, 1]. We also assume that ∂1η, the derivative of η
with respect to its first argument, is such that ∂1η(1, b) ≥ 0 for all b ∈ [0, 1], and that
∂2η, the derivative of η with respect to its second argument, is such that ∂2η(a, b) ≥ 0
for all a, b ∈ [0, 1]. Let ψ ∈ C1(Rd × R

d,R+) be given.
Then, for all x ∈ Ω, we have ψ(x, ·) ∈ C1(Ω,R+) and for all y ∈ Ω, ψ(·, y) ∈

C1(Ω,R+). We introduce ξ(·) = η(·, v(y)) and ϕ = ψ(·, y) in (27) for y ∈ Ω, and we
integrate the result on Ω. This produces

∫
Ω

∫
Ω

∫ 1

0

(
η(u(x, α), v(y)) [−g(x) · ∇xψ(x, y)]

+ [∂1η(u(x, α), v(y))u(x, α) − η(u(x, α), v(y))]ψ(x, y)divg(x)

+ ∂1η(u(x, α), v(y))ψ(x, y)F (x)
)
dαdxdy ≥ 0.

(28)

We now consider (20) for v, with ξ(·) = η(u(x, α), ·) and ϕ = ψ(x, ·), and we integrate
the result on Ω × (0, 1). We thus get

∫
Ω

∫
Ω

∫ 1

0

(
η(u(x, α), v(y)) [−g(y) · ∇yψ(x, y)]

+ [∂2η(u(x, α), v(y))v(y) − η(u(x, α), v(y))]ψ(x, y)divg(y)

+ ∂2η(u(x, α), v(y))ψ(x, y)F (y)
)
dαdxdy ≥ 0.

(29)

We now add (28) and (29). This delivers

T9 + T10 + T11 ≥ 0,(30)

where

T9 = −
∫

Ω

∫
Ω

∫ 1

0

η(u(x, α), v(y))

×
(
g(x) · ∇xψ(x, y) + g(y) · ∇yψ(x, y)

)
dαdxdy,

(31)

T10 =

∫
Ω

∫
Ω

∫ 1

0

((
∂1η(u(x, α), v(y))u(x, α) − η(u(x, α), v(y))

)
ψ(x, y)divg(x)

+
(
∂2η(u(x, α), v(y))v(y, β) − η(u(x, α), v(y))

)
ψ(x, y)divg(y)

)
dαdxdy,

(32)
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and

T11 =

∫
Ω

∫
Ω

∫ 1

0

(
∂1η(u(x, α), v(y))F (x) + ∂2η(u(x, α), v(y))F (y)

)
ψ(x, y)dαdxdy.

(33)
We again use the sequence of mollifiers in R and R

d, defined by (21)–(23). Let
φ ∈ C1(Rd,R+) and n ∈ N

� be given. We then take ψ(x, y) = φ(x)ρn(x− y) in (28)
and (29), which gives ψ ∈ C1(Rd × R

d,R+). We thus get, from (30),

T
(n)
9 + T

(n)
10 + T

(n)
11 ≥ 0,(34)

with

T
(n)
9 = −

∫
Ω

∫
Ω

∫ 1

0

η(u(x, α), v(y))

×
(
ρn(x− y)g(x) · ∇φ(x) + φ(x)(g(x) − g(y)) · ∇ρn(x− y)

)
dαdxdy,

(35)

T
(n)
10 =

∫
Ω

∫
Ω

∫ 1

0

(
[∂1η(u(x, α), v(y))u(x, α) − η(u(x, α), v(y))] divg(x)

+ [∂2η(u(x, α), v(y))v(y) − η(u(x, α), v(y))] divg(y)
)
φ(x)ρn(x− y)dαdxdy,

(36)

T
(n)
11 =

∫
Ω

∫
Ω

∫ 1

0

(
∂1η(u(x, α), v(y))F (x) + ∂2η(u(x, α), v(y))F (y)

)
×φ(x)ρn(x− y)dαdxdy.

(37)

We have T
(n)
9 = T

(n)
12 + T

(n)
13 + T

(n)
14 , with

T
(n)
12 = −

∫
Ω

∫
Ω

∫ 1

0

η(u(x, α), v(y))ρn(x− y)g(x) · ∇φ(x)dαdxdy,(38)

T
(n)
13 = −

∫
Ω

∫
Ω

∫ 1

0

η(u(x, α), v(x))

×φ(x)(g(x) − g(y)) · ∇ρn(x− y)dαdxdy,

(39)

T
(n)
14 = −

∫
Ω

∫
Ω

∫ 1

0

(
η(u(x, α), v(y)) − η(u(x, α), v(x))

)
×φ(x)(g(x) − g(y)) · ∇ρn(x− y)dαdxdy.

(40)

The limit of T
(n)
12 as n −→ ∞ is given by

lim
n→∞

T
(n)
12 = −

∫
Ω

∫ 1

0

η(u(x, α), v(x))g(x) · ∇φ(x)dαdx.

Thanks to an integration by parts with respect to y and to Hypotheses (H), we get

T
(n)
13 = T

(n)
15 + T

(n)
16 , where

T
(n)
15 =

∫
Ω

∫
∂Ω

∫ 1

0

η(u(x, α), v(x))φ(x)ρn(x− y)g(x) · n(y)dαdydx(41)
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and

T
(n)
16 =

∫
Ω

∫
Ω

∫ 1

0

η(u(x, α), v(x))φ(x)ρn(x− y)divg(y)dαdxdy.(42)

We have, for a.e. y ∈ ∂Ω,

lim
n→∞

∫
Ω

∫ 1

0

η(u(x, α), v(x))φ(x)ρn(x− y)g(x) · n(y)dαdx = 0,

which produces

lim
n→∞

T
(n)
15 = 0,

and therefore

lim
n→∞

T
(n)
13 = lim

n→∞
T

(n)
16 =

∫
Ω

∫ 1

0

η(u(x, α), v(x))φ(x)divg(x)dαdx.

Thanks to the theorem of continuity in means applied to the function v and thanks
to the fact that (x, y) �→ (g(x) − g(y)) · ∇ρn(x − y) vanishes for |x − y| > 1/n and
belongs to L1(Ω) since g is regular, we get

lim
n→∞

T
(n)
14 = 0.

We have, again using the Lebesgue dominated convergence theorem,

lim
n→∞

T
(n)
10 =

∫
Ω

∫ 1

0

(
∂1η(u(x, α), v(x))u(x, α) + ∂2η(u(x, α), v(x))v(x)

− 2η(u(x, α), v(x))
)
φ(x)divg(x)dαdx

and

lim
n→∞

T
(n)
11 =

∫
Ω

∫ 1

0

(∂1η(u(x, α), v(x)) + ∂2η(u(x, α), v(x)))F (x)φ(x)dαdx.

We thus get, passing to the limit n → ∞ in (34),

(43)∫
Ω

∫ 1

0

(
η(u(x, α), v(x)) [−g(x) · ∇φ(x)]

+
(
∂1η(u(x, α), v(x))u(x, α) + ∂2η(u(x, α), v(y))v(x) − η(u(x, α), v(x))

)
φ(x)divg(x)

+
(
∂1η(u(x, α), v(x)) + ∂2η(u(x, α), v(x))

)
F (x)φ(x)

)
dαdx ≥ 0.

We now consider, for a given ε > 0, the function Sε ∈ C1(R) defined by

Sε(s) = 0 ∀s ∈ (−∞, 0],
Sε(s) = s2(3ε− 2s)/ε3 ∀s ∈ [0, ε],
Sε(s) = 1 ∀s ∈ [ε,+∞).

(44)

We define ξε(s) =
∫ s

0
Sε(τ)dτ , and we set, for all (a, b) ∈ R

2, ηε(a, b) = ξε(b− a). We
then easily get that this function ηε satisfies ∂1ηε(1, b) = −Sε(b − 1) = 0 ≥ 0 for all
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b ≤ 1, ηε(·, b) is convex for all b ≤ 1, and ∂2ηε(a, b) = Sε(b− a) ≥ 0 for all (a, b) ∈ R
2.

We can then use this function in (44). We remark that, for all (a, b) ∈ R
2,

a∂1ηε(a, b) + b∂2ηε(a, b) − ηε(a, b) = (b− a)Sε(b− a) − ηε(a, b)

leads to

lim
ε→0

(a∂1ηε(a, b) + b∂2ηε(a, b) − ηε(a, b)) = 0,

and we also remark that

∂1ηε(a, b) + ∂2ηε(a, b) = 0.

Thus, using the Lebesgue dominated convergence theorem, we can let ε → 0 in (44)
which produces ∫

Ω

∫ 1

0

(v(x) − u(x, α))+ [−g(x) · ∇φ(x)] dαdx ≥ 0,(45)

which is (27) and thus concludes the proof of the proposition.
The above result is now used to yield the uniqueness of the weak process solution,

and thus to obtain that this weak process solution is in fact a weak solution. Note
that, in the proof of all the above propositions, the hypothesis that g can be written
under the form g(x) = Λ(x)∇h(x) for all x ∈ Ω is not used (g being Lipschitz
continuous is sufficient). A uniqueness result for the weak solution could then be
obtained assuming that F > 0 a.e. in addition to g being Lipschitz continuous, but
the uniqueness result for the weak process solution remains an open problem under
such hypotheses. The proof of the uniqueness result given below explicitly uses the
hypothesis g(x) = Λ(x)∇h(x) for all x ∈ Ω, which fortunately holds in the physical
problem.

Proposition 3.5 (uniqueness of the weak process solution). Under Hypothe-
ses (H), there exists at most one weak process solution ĝ to problem (10)–(11) in the
sense of Definition 3.3. Moreover, if û ∈ L∞(Ω × (0, 1)) is such that 0 ≤ u(x, α) ≤ 1
and ĝ : (x, α) �→ u(x, α)g(x) for a.e. (x, α) ∈ Ω × (0, 1) and if u satisfies (27),
then u(x, α) does not depend on α on a.e. x ∈ Ω such that g(x) 	= 0 (g(x) = 0 and
F (x) > 0). Then the function g̃ defined by g̃(x) = u(x, α)g(x) for a.e. x ∈ Ω and
α ∈ (0, 1) is the unique weak solution to problem (10)–(11) in the sense of Defini-
tion 1.1. Moreover, this function g̃ is an extremal point of C(g, F ) in the sense that
|g̃| ≥ |γ| for all γ ∈ C(g, F ) (the set C(g, F ) is defined in Definition 3.1), and it is
also the projection in L2(Ω)d of g on the convex set C(g, F ).

Proof. Let us assume that ĝ is a weak process solution to problem (10)–(11) in
the sense of Definition 3.3. Let u ∈ L∞(Ω × (0, 1)) correspond to ĝ in Definition 3.3.
We again denote Ω0 = {x ∈ Ω, g(x) = 0} and we remark that (27), proven in
Proposition 3.4, gives for all γ ∈ C(g, F ), letting v ∈ L∞(Ω) be such that γ(x) =
v(x)g(x) and 0 ≤ v(x) ≤ 1 for a.e. x ∈ Ω, that

∫
Ω\Ω0

∫ 1

0

(v(x) − u(x, α))+ [−g(x) · ∇ϕ(x)] dαdx ≥ 0.

Thanks to Hypotheses (H), we can define the nonnegative function ϕ by ϕ(x) = h(x)−
miny∈Ω h(y) for all x ∈ Ω, where h ∈ C1(Ω) is such that g(x) = Λ(x)∇h(x) for all
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x ∈ Ω. We then get that, for all x ∈ Ω\Ω0, −g(x) ·∇ϕ(x) = −Λ(x)∇h(x).∇h(x) < 0.
This produces

(v(x) − u(x, α))+ = 0 for a.e. (x, α) ∈ Ω \ Ω0 × (0, 1).(46)

We then remark that the function γ : x �→
∫ 1

0
u(x, α)dαg(x) belongs to the convex

set C(g, F ). Therefore, setting v =
∫ 1

0
u(·, α)dα in (46), we get that for a.e. x ∈ Ω\Ω0,∫ 1

0
(
∫ 1

0
u(x, β)dβ − u(x, α))+dα = 0, which proves that u(x, α) does not depend on α

for a.e. x ∈ Ω \Ω0. We define T (u) ∈ L∞(Ω) by T (u)(x) = u(x, α) for a.e. x ∈ Ω \Ω0

and α ∈ (0, 1) and by T (u)(x) = 1 for a.e. x ∈ Ω0. We then get that the function
g̃ : Ω → R

d such that g̃ = T (u)g is such that g̃(x) = ĝ(x, α) for a.e. x ∈ Ω and
α ∈ (0, 1).

Let us assume that ĝ and ˆ̂g are two weak process solutions to problem (10)–(11)
in the sense of Definition 3.3. Let u and û be some elements of L∞(Ω× (0, 1)) which

correspond to ĝ and ˆ̂g, respectively, in Definition 3.3. We then get, setting v = T (û)
in (46), that (T (û)(x) − T (u)(x))+ = 0 for a.e. x ∈ Ω \ Ω0 and, inverting the roles of
u and û, (T (u)(x)−T (û)(x))+ = 0. This suffices to prove that T (û)(x) = T (u)(x) for
a.e. x ∈ Ω\Ω0, which completes the proof of uniqueness of the weak process solution.

Let us prove that the function g̃ = T (u)g is a weak solution to problem (10)-(11)
in the sense of Definition 1.1. We introduce in (27) the functions ξ : s → (s−1)2 and,
for all n ∈ N

�, ϕ = ϕn, as defined in the proof of Proposition 1.3. The same analysis
as that which is done in the proof of Proposition 1.3 delivers that, passing to the limit

n → ∞,
∫
Ω0

∫ 1

0
(u(x, α) − 1)dαF (x)dx ≥ 0. This proves that u(x, α) = 1 = u(x) for

a.e. α ∈ (0, 1) and a.e. x ∈ Ω0 such that F (x) > 0. Since all the terms of (27) under
the symbols

∫
vanish a.e. on {x ∈ Ω, g(x) = 0 and F (x) = 0}, we get that (27) with

u implies (14) with T (u). Thus the function g̃ is a weak solution to problem (10)–(11)
in the sense of Definition 1.1. Since it is obvious that any weak solution is a weak
process solution, we thus deduce, from the uniqueness of the weak process solution,
that of this weak solution.

Let us now show that g̃ is an extremal point of C(g, F ). Let γ ∈ C(g, F ), and
let v ∈ L∞(Ω) such that γ(x) = v(x)g(x) and 0 ≤ v(x) ≤ 1 for a.e. x ∈ Ω. Thanks
to (46), we get that, for a.e. x ∈ Ω \ Ω0, v(x) ≤ T (u)(x). This proves that, for a.e.
x ∈ Ω, |γ(x)| ≤ |g̃(x)|. This property implies that

∫
Ω
(g(x)− g̃(x)) · (g̃(x)− γ(x))dx =∫

Ω
|g(x)|2(1 − T (u)(x))(T (u)(x) − v(x))dx ≥ 0 for all γ ∈ C(g, F ), which shows that

g̃ is the projection of g on C(g, F ) in L2(Ω)d.

4. Passing to the limit in numerical schemes. We now start the study of
the convergence of a numerical scheme, which is based on finite volume methods. Such
methods proved their efficiency for various nonlinear problems such as, for instance,
nonlinear degenerate problems (see, e.g., [9], [13] and references therein) and nonlin-
ear hyperbolic problems (see [8], but there exists a huge literature on this subject).
The main additional difficulty of the present problem is due to the introduction of
the limiter u in (2) in order to satisfy the constraints (3)–(5) (recall that (2)–(5) lead
to (10) and (11) using a time discretization). The “equation” on this unknown u
seems to lead to a new type of problem which is unexpectedly not really related to
variational inequalities but has some similarity with a scalar conservation law, leading
to a nonlinear hyperbolic equation. From the numerical point of view, this similarity
may be viewed in the upwinding choice for u in (50) (more precisely, the choice of
uK or uL, on the interface between the control volumes K and L, depends on the
sign of gK,L). This upwinding is crucial, for instance, in order to have a solution
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u taking values in [0, 1] (which is a constraint given by (10)). Numerical simula-
tions using a centered choice of u often lead to troubles (such as oscillations) and the
simulation has to stop (this is also true in the industrial framework). Another simi-
larity with scalar conservation laws appears in the choice of the convex function ξ in
Definition 1.1.

Let us first define the notion of admissible mesh of R
d (this definition is inspired

by [8]).
Definition 4.1 (admissible meshes). An admissible finite volume mesh of Ω,

denoted by T , is given by a finite family of disjoint polygonal (one uses here the
two space dimensions terms for the setting of the general space dimension) connected
subsets of R

d such that Ω is the union of the closure of the elements of T (which
are called control volumes in the following) and such that the common interface of
any pair of neighboring control volumes is included in a hyperplane of R

d (this is
not necessary but is introduced in order to simplify the formulation). We denote by
size(T ) := sup{diam(K),K ∈ T }, by mK the measure of K for all K ∈ T , and by
NK the subset of T of all the control volumes having a common interface with K. We
then denote by E one set of pairs of neighbors (K,L) ∈ T 2 such that, if (K,L) ∈ E,
(L,K) /∈ E, and for all K ∈ T and L ∈ NK , (K,L) ∈ E or (L,K) ∈ E. For K ∈ T
and L ∈ NK , we denote by mKL the measure of the common interface between K and
L. We measure the regularity of the mesh by means of the following expression:

regul(T ) := max

{ ∑
L∈NK

mKLdiam(K)/mK , K ∈ T
}
.

Let T be an admissible mesh of Ω. Let gT := (gK,L)K∈T ,L∈NK
be a family of

real numbers such that

gK,L = −gL,K ∀K ∈ T , ∀L ∈ NK(47)

and ∑
L∈NK

gK,L =

∫
K

divg(x)dx := GK ∀K ∈ T .(48)

Denoting

FK =

∫
K

F (x)dx,(49)

the finite volume scheme, in order to approximate problem (10)–(11), is given by∑
L∈NK

(g+
K,LuL − g−K,LuK) + FK = 0 and uK ≤ 1 or

∑
L∈NK

(g+
K,LuL − g−K,LuK) + FK ≥ 0 and uK = 1.

(50)

We define the function uT by

uT (x) = uK ∀x ∈ K, ∀K ∈ T .(51)

We then define the following value, which measures the consistency of the approxi-
mation gT of the fluxes by means of a discrete L2(Ω)d norm and which is expected
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to tend to 0 with size(T ):

cons(gT ) :=
∑
K∈T

∑
L∈NK

diam(K)

mKL
(gK,L − ḡK,L)

2
,(52)

where

ḡK,L =

∫
K|L

g(x) · nK,Lds(x) ∀K ∈ T , ∀L ∈ NK .(53)

Different choices are possible for gT . We can propose the following, for example.
• The choice gK,L = ḡK,L for all K ∈ T and L ∈ NK is the simplest one which

satisfies that cons(gT ) tends to 0 as size(T ) tends to 0. Unfortunately, it
demands in the general case the knowledge of g.

• In the framework of the coupled problem given in the introduction to this
paper, the field g = Λ∇h is not analytically known, and it must be approx-
imated. This can be achieved, assuming that Λ is scalar (this is the case
in some of the geological applications), using for example the finite volume
method (see [8]). The notion of admissible meshes must then be restricted to
the case where there exists, for all K ∈ T , a point xK in the control volume
K such that, for a pair of two neighboring grid blocks K and L, the line
(xK , xL) is orthogonal to the interface K̄ ∩ L̄ between these grid blocks. One
then defines τKL =

∫
K̄∩L̄

Λ(x)ds(x)/d(xK , xL), where we denote by ds(x)
the d− 1 Lebesgue measure at point x ∈ K̄ ∩ L̄. One can then compute the
family (hK)K∈T of reals such that (48) holds under the condition

gK,L = τKL(hL − hK) ∀K ∈ T , ∀L ∈ NK(54)

in addition to such a relation as
∑

K∈T mKhK = 0 (this corresponds to the
discrete solution of a homogeneous Neumann problem). One can then prove
that, under Hypotheses (H), cons(gT ) tends to 0 as size(T ) tends to 0 (see
[8] and [18]).

• In the same way, one can compute a mixed finite element approximate for
gK,L which also satisfies that cons(gT ) tends to 0 as size(T ) tends to 0 (see
[4]).

In order to compute a solution of (47)–(50), we shall now describe an algorithm,
denoted by Algorithm (A) below.
Algorithm (A).

Initialization: u
(0)
K = 1 and p

(0)
K = 1 for all K ∈ T .

Iterations: Let n ∈ N
�. Assume that u

(n−1)
K and p

(n−1)
K are known for all K ∈ T .

1. Computation of {p(n)
K , K ∈ T }:

If
∑

L∈NK

(g+
K,Lu

(n−1)
L − g−K,Lu

(n−1)
K ) + FK < 0, then p

(n)
K = 0.

If
∑

L∈NK

(g+
K,Lu

(n−1)
L − g−K,Lu

(n−1)
K ) + FK ≥ 0, then p

(n)
K = p

(n−1)
K .

(55)

2. Computation of {u(n)
K , K ∈ T }, solution to the following linear system:∑

L∈NK

(g+
K,Lu

(n)
L − g−K,Lu

(n)
K ) = −FK ∀K ∈ T s.t. p

(n)
K = 0,

u
(n)
K = 1 ∀K ∈ T s.t. p

(n)
K = 1.

(56)
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The following proposition gives a monotonicity property of Algorithm (A).
Proposition 4.2 (a monotonicity property of Algorithm (A)). Under Hypothe-

ses (H), let T be an admissible mesh of Ω, and let (gK,L)K∈T ,L∈NK
be a family of

real numbers such that (47) and (48) are satisfied. Let n ∈ N
� be given such that there

exists a family {(p(k)
K , u

(k)
K ), K ∈ T , k = 0, . . . , n− 1} such that (55) and (56) hold in

addition to u
(k)
K ≥ 0 for all K ∈ T , k = 0, . . . , n− 1. Let (p

(n)
K )K∈T be given by (55).

Then, for all family of reals (wK , sK)K∈T such that sK ≥ 0 for all K ∈ T and
such that ∑

L∈NK

(g+
K,LwL − g−K,LwK) = −sK ∀K ∈ T s.t. p

(n)
K = 0,

wK = sK ∀K ∈ T s.t. p
(n)
K = 1,

(57)

the property wK ≥ 0 for all K ∈ T holds.
Let us first remark that Proposition 4.2 suffices to prove that the matrix of the

linear system (57) is invertible. Since in the case sK = 0 for all K ∈ T , for any
family (wK)K∈T satisfying (57), then (−wK)K∈T also satisfies (57), which proves
that wK = 0 for all K ∈ T . We therefore state the following corollary.

Corollary 4.3. Under the hypotheses of Proposition 4.2, for all families (sK)K∈T
of reals, there exists one and only one family of reals (wK)K∈T such that (57) holds.

Proof of Proposition 4.2. Let us assume the hypotheses of Proposition 4.2, and
let (wK , sK)K∈T be a family of reals such that sK ≥ 0 for all K ∈ T and such that
(57) holds. Let us assume that the set T− = {K ∈ T ; wK < 0} is not empty. Then,

if K ∈ T−, one has p
(n)
K = 0, since wK = sK ≥ 0 for K ∈ T such that p

(n)
K = 1. We

therefore have ∑
L∈NK

(g+
K,LwL − g−K,LwK) + sK = 0 ∀K ∈ T−.(58)

Summing (58) for K ∈ T− leads to

∑
K∈T−

∑
L∈NK\T−

(g+
K,LwL − g−K,LwK) +

∑
K∈T−

sK = 0.(59)

Since wK < 0 for K ∈ T− and wL ≥ 0 for L 	∈ T−, (59) gives sK = 0 for all K ∈ T−
and gK,L ≥ 0 for all (K,L) such that K ∈ T− and L ∈ NK \ T−. Let k < n be the

greatest integer such that there exists K ∈ T− with p
(k)
K = 1 and p

(k+1)
K = 0 (such

a k exists since p
(0)
K = 1 for all K ∈ T ). We then have, for all K ∈ T−, p

(k+1)
K = 0

(otherwise this would be in contradiction with the choice of k), and therefore one has∑
L∈NK

(g+
K,Lu

(k)
L − g−K,Lu

(k)
K ) + FK ≤ 0.

For K ∈ T− such that p
(k)
K = 1 and p

(k+1)
K = 0, one has

∑
L∈NK

(g+
K,Lu

(k)
L −

g−K,Lu
(k)
K ) + FK < 0. We thus get

∑
K∈T−

∑
L∈NK , L 	∈T−

(g+
K,Lu

(k)
L − g−K,Lu

(k)
K ) +

∑
K∈T−

FK < 0.

On the other hand, since u
(k)
L ≥ 0 and since gK,L ≥ 0 for all (K,L) such that K ∈ T−
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and L ∈ NK \ T− and FK ≥ 0, we can write

0 ≤
∑

K∈T−

∑
L∈NK , L 	∈T−

g+
K,Lu

(k)
L

≤
∑

K∈T−

∑
L∈NK , L 	∈T−

(g+
K,Lu

(k)
L − g−K,Lu

(k)
K ) +

∑
K∈T−

FK < 0,

which is impossible. This contradiction proves that T− is empty, which concludes the
proof of the proposition.

We can now prove the following proposition, which states that Algorithm (A) is
well defined and leads to a solution of (50) for some n ≤ card(T ).

Proposition 4.4 (convergence of an algorithm and existence of a discrete solu-
tion). Under Hypotheses (H), let T be an admissible mesh of Ω, and let (gK,L)K∈T ,L∈NK

be a family of real numbers such that (47) and (48) are satisfied. Then the following
hold.

1. There exists a unique family {(p(n)
K , u

(n)
K ), K ∈ T , n ∈ N} solution of Algo-

rithm (A).

2. For all K ∈ T and all n ∈ N, one has u
(n)
K ≥ 0.

3. For all K ∈ T , the sequence (u
(n)
K )n∈N is nonincreasing.

4. There exists n ≤ card(T ) such that, setting uK = u
(n)
K for all K ∈ T , the

family {uK , K ∈ T } is such that u
(p)
K = uK for all K ∈ T and p ≥ n. This

family is therefore a solution of (49) and (50) such that

0 ≤ uK ≤ 1 ∀K ∈ T .(60)

Proof. The family {(p(0)
K , u

(0)
K ), K ∈ T } is uniquely defined and satisfies u

(0)
K ≥ 0

for all K ∈ T .
Let us prove the first two items of the above proposition by induction. Let n ∈ N

�;

we assume that there exists a family {(p(k)
K , u

(k)
K ), K ∈ T , k = 0, . . . , n− 1} such that

(55) and (56) hold in addition to u
(k)
K ≥ 0 for all K ∈ T , k = 0, . . . , n − 1. Let

(p
(n)
K )K∈T be given by (55). We can then apply Proposition 4.2 and Corollary 4.3,

setting sK = 1 for all K ∈ T such that p
(n)
K = 1 and sK = FK ≥ 0 for all K ∈ T such

that p
(n)
K = 0. We thus immediately get the existence and the uniqueness of u

(n)
K ≥ 0

for all K ∈ T such that (56) holds. This suffices to prove the first two items at the
level n.

We can now prove that u
(n)
K ≤ u

(n−1)
K for all K ∈ T . Indeed let us consider

wK = u
(n−1)
K − u

(n)
K for all K ∈ T . We have, for all K ∈ T such that p

(n)
K = 0,∑

L∈NK
(g+

K,Lu
(n)
L −g−K,Lu

(n)
K )+FK = 0 and

∑
L∈NK

(g+
K,Lu

(n−1)
L −g−K,Lu

(n−1)
K )+FK ≤

0, which gives, by subtraction∑
L∈NK

(g+
K,LwL − g−K,LwK) := −sK ,

with sK ≥ 0. For all K ∈ T such that p
(n)
K = 1, we have

wK = sK := 0.

We can then apply Proposition 4.2, and we get that 0 ≤ wK for all K ∈ T , which is
the third item of the proposition. Let us prove the last item.
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The definition of the algorithm gives p
(n)
K = p

(n−1)
K or p

(n)
K = 0 for all K and all

n ∈ N
�. Then, setting An = {K ∈ T ; p

(n)
K = 0}, one has card(An) ≥ card(An−1) for

all n ∈ N
�. Since card(A0) =0, there exists n ≤ card(T ) + 1 such that card(An)

= card(An−1). For this value of n one has p
(n)
K = p

(n−1)
K for all K ∈ T . If

p
(n−1)
K = 1, one has u

(n−1)
K = 1 and

∑
L∈NK

(g+
K,Lu

(n−1)
L − g−K,Lu

(n−1)
K ) + FK ≥ 0

(since
∑

L∈NK
(g+

K,Lu
(n−1)
L − g−K,Lu

(n−1)
K ) + FK < 0 gives p

(n)
K = 0).

If p
(n−1)
K = 0, one has

∑
L∈NK

(g+
K,Lu

(n−1)
L −g−K,Lu

(n−1)
K )+FK = 0 and u

(n−1)
K ≤ 1

thanks to the fact that the sequence (u
(n)
K )n∈N is nonincreasing and u

(0)
K = 1.

Therefore, setting uK = u
(n−1)
K for all K ∈ T , the family {uK , K ∈ T } is a

solution of (49) and (50). It is also obvious to see that u
(p)
K = uK for all K ∈ T and

for all p ≥ n− 1.
This concludes the proof of Proposition 4.4.
Remark 4.1. Under Hypotheses (H), assuming that Λ is a scalar function and

following a method similar to the proof of uniqueness of Proposition 3.5, it is possible
to prove that there exists a unique solution to (49) and (50), with the choice (54) for
the discrete fluxes.

We then have the following proposition.
Proposition 4.5 (weak bounded variation inequality). Under Hypotheses (H),

let T be an admissible mesh of Ω in the sense of Definition 4.1, and let gT be a family
of reals which satisfies (47) and (48). Let (uK)K∈T be a solution of scheme (49) and
(50) such that (60) holds. Then there exists C > 0, which only depends on d,Ω, g, F
and not on T , such that ∑

(K,L)∈E
|gK,L|(uK − uL)2 ≤ C.(61)

Proof. We multiply (50) by (1 − uK); we sum on K. We get T17 + T18 = 0 with

T17 =
∑
K∈T

(1 − uK)
∑

L∈NK

(g+
K,LuL − g−K,LuK)

and

T18 =
∑
K∈T

(1 − uK)FK .

We have T17 = T19 + T20, with

T19 =
∑
K∈T

(1 − uK)
∑

L∈NK

g+
K,L(uL − uK)

and, using (48),

T20 =
∑
K∈T

(1 − uK)uKGK .

We develop T19: we get

T19 =
1

2

∑
K∈T

(1 − uK)2
∑

L∈NK

g+
K,L +

1

2

∑
K∈T

∑
L∈NK

g+
K,L(uL − uK)2

−1

2

∑
K∈T

(1 − uL)2
∑

L∈NK

g+
K,L.
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Since g+
K,L = g−L,K , we get

T19 =
1

2

∑
K∈T

(1 − uK)2GK +
1

2

∑
(K,L)∈E

|gK,L|(uL − uK)2.

Gathering the previous results, we get the conclusion.
We can now state the convergence of the scheme to a weak process solution.

This convergence result is obtained in the sense of the nonlinear weak-� convergence,
defined in [7], which is a convenient way to understand the convergence towards a
Young measure. Indeed, a bounded sequence (un)n∈N of L∞(Ω) converges in the
nonlinear weak-� sense to some function u ∈ L∞(Ω × (0, 1)) if, for all ξ ∈ C0(R),
the sequence (ξ(un))n∈N converges for the weak-� topology of L∞(Ω) to the function

x �→
∫ 1

0
ξ(u(x, α))dα (the notation dα stands here for the Lebesgue measure on (0, 1)).

A main compactness result is that from a bounded sequence of L∞(Ω), it is possible
to extract a subsequence converging in the nonlinear weak-� sense (see [7] or [8] for
more details).

Proposition 4.6 (convergence of the scheme to a weak process solution). Under
Hypotheses (H), let (T (m), gT (m))m∈N be a sequence such that, for all m ∈ N, T (m)

is an admissible mesh of Ω in the sense of Definition 4.1 and gT (m) is a family of
reals such that (47) and (48) are satisfied. We assume that limm→∞ size(T (m)) = 0,
that there exists R > 0 s.t regul(T (m)) ≤ R for all m ∈ N (see Definition 4.1 for
the definitions of size and regul), and that limm→∞ cons(gT (m)) = 0. For all m ∈ N,
we denote by uT (m) a solution of scheme (49)–(50) such that (60) holds. Then, from
the sequence (T (m))m∈N, one can extract a subsequence, again denoted (T (m))m∈N,
such that the corresponding sequence (uT (m)g)m∈N converges in the nonlinear weak-
� sense (see above for the sense of this convergence) to a weak process solution of
problem (10)–(11) in the sense of Definition 1.1.

Proof. Using the property (60) satisfied by uT (m) , we can deduce the existence
of a subsequence, again denoted (T (m))m∈N, such that the corresponding sequence
(uT (m))m∈N converges in the nonlinear weak-� sense to some function u ∈ L∞(Ω ×
(0, 1)). We shall now prove that u is the weak process solution of problem (10)–
(11) in the sense of Definition 1.1. Let ϕ ∈ C1(Ω,R+), and let ξ ∈ C1(R) be a
convex function with ξ′(1) ≥ 0. Let m ∈ N, and let (T (m)) be the corresponding
admissible mesh of the subsequence. For simplicity, we do not mention the index m
until we consider some convergence properties as m → ∞. We get from (50), using
ξ′(uK) = ξ′(1) + ξ′(uK) − ξ′(1), that

ξ′(uK)

( ∑
L∈NK

(g+
K,LuL − g−K,LuK) + FK

)
≥ 0 ∀K ∈ T .(62)

We can then multiply (62) by ϕK , where we denote ϕK = 1
mK

∫
K
ϕ(x)dx, and we

sum on K ∈ T . We get T21 + T22 ≥ 0, with

T21 =
∑
K∈T

ξ′(uK)ϕK

∑
L∈NK

(g+
K,LuL − g−K,LuK)

and

T22 =
∑
K∈T

ξ′(uK)ϕKFK .
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We have T21 = T23 + T24 with

T23 =
∑
K∈T

ξ′(uK)uKϕK

∑
L∈NK

gK,L

and

T24 =
∑
K∈T

ξ′(uK)ϕK

∑
L∈NK

g+
K,L(uL − uK).

Since
∑

L∈NK
gK,L =

∫
K

divg(x)dx, we thus get that

lim
m→∞

T
(m)
23 =

∫
Ω

∫ 1

0

ξ′(u(x, α))u(x, α)ϕ(x)divg(x)dαdx.

On the other hand, we have

T24 ≤ T25 :=
∑
K∈T

ϕK

∑
L∈NK

g+
K,L(ξ(uL) − ξ(uK)).

Gathering by edges, we get

T25 =
∑

(K,L)∈E
(ξ(uL) − ξ(uK))(ϕKg+

K,L − ϕLg
−
K,L).

Let us compare T25 with T26 defined by

T26 = −
∑
K∈T

ξ(uK)

∫
K

div(ϕ(x)g(x))dx.

We have, on one hand, that

lim
m→∞

T
(m)
26 = −

∫
Ω

∫ 1

0

ξ(u(x, α))div(ϕ(x)g(x))dαdx,

and on the other hand, we have

T26 =
∑

(K,L)∈E
(ξ(uL) − ξ(uK))

∫
K|L

ϕ(x)g(x) · nK,Lds(x).

Thus we get that

T25 − T26 = T27 + T28 + T29,

with

T27 =
∑

(K,L)∈E
(ξ(uL) − ξ(uK))

(
ϕKg+

K,L − ϕLg
−
K,L − gK,L

mKL

∫
K|L

ϕ(x)ds(x)

)
,

T28 =
∑

(K,L)∈E
(ξ(uL) − ξ(uK)) (gK,L − ḡK,L)

(
1

mKL

∫
K|L

ϕ(x)ds(x)

)
,

T29 =
∑

(K,L)∈E
(ξ(uL) − ξ(uK))

(∫
K|L

(
ḡK,L

mKL
− g(x) · nK,L)ϕ(x)ds(x)

)

(recall that ḡK,L is defined by (53)). In the following, we designate by Ci various real
numbers which can depend on d,Ω, g, F, ϕ, ξ but not on T . Using |ξ(uK) − ξ(uL)| ≤
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C1 |uK − uL| and the Cauchy–Schwarz inequality,∣∣∣∣∣ϕK − 1

mKL

∫
K|L

ϕ(x)ds(x)

∣∣∣∣∣ ≤ diam(K)C2 ,

and ∣∣∣∣∣ϕL − 1

mKL

∫
K|L

ϕ(x)ds(x)

∣∣∣∣∣ ≤ diam(L)C2 ,

we get

|T27|2 ≤ C3

⎛
⎝ ∑

(K,L)∈E
|gK,L|(uK − uL)2

⎞
⎠

⎛
⎝ ∑

(K,L)∈E
|gK,L|(diam(K)2 + diam(L)2)

⎞
⎠ .

Using (61) and ∑
(K,L)∈E

|gK,L|(diam(K)2 + diam(L)2) ≤ C4 size(T ),

we thus get that

lim
m→∞

|T (m)
27 | = 0.

We now turn to the study of T28. Since we have

T28 = −
∑
K∈T

ξ(uK)
∑

L∈NK

(gK,L − ḡK,L)

(
1

mKL

∫
K|L

ϕ(x)ds(x)

)
,

we get, using the property (48),

T28 = −
∑
K∈T

ξ(uK)
∑

L∈NK

(gK,L − ḡK,L)

(
1

mKL

∫
K|L

ϕ(x)ds(x) − ϕK

)
.

Thus, thanks to the Cauchy–Schwarz inequality and using (52), we get

T 2
28 ≤ C5 cons(gT ).

Thus

lim
m→∞

|T (m)
28 | = 0.

We conclude with the study of T29. Since

T29 = −
∑
K∈T

ξ(uK)
∑

L∈NK

(∫
K|L

(
ḡK,L

mKL
− g(x) · nK,L

)
(ϕ(x) − ϕK)ds(x)

)

and since
∫
K|L(

ḡK,L

mKL
− g(x) · nK,L)(ϕ(x) − ϕK)ds(x) ≤ C6 mKLdiam(K)2, we easily

get

lim
m→∞

|T (m)
29 | = 0.
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Gathering these results gives

lim
m→∞

T
(m)
25 = −

∫
Ω

∫ 1

0

ξ(u(x, α))div(ϕ(x)g(x))dαdx.

Finally, we easily get

lim
m→∞

T
(m)
22 =

∫
Ω

∫ 1

0

ξ′(u(x, α))ϕ(x)F (x)dαdx.

Gathering the previous results, we get T23 + T25 + T22 ≤ 0. Passing to the limit
m → ∞ in this inequality, we get

+

∫
Ω

∫ 1

0

u(x, α)ξ′(u(x, α))ϕ(x)divg(x)dαdx

−
∫

Ω

∫ 1

0

ξ(u(x, α))div(ϕ(x)g(x))dαdx

+

∫
Ω

∫ 1

0

ξ′(u(x, α))ϕ(x)F (x)dαdx ≥ 0,

which is exactly Definition 3.3.
Thanks to the uniqueness result, we now classically conclude with the following

convergence theorem (similar proofs can be found in [8]).
Theorem 4.7 (strong convergence of the scheme to a weak solution). Under

Hypotheses (H), let T be an admissible mesh of Ω in the sense of Definition 4.1, and
let gT be a family of reals such that (47) and (48) are satisfied. Then the function uT g,
where uT is a solution of scheme (49)–(50) such that (60) holds, converges in Lp(Ω)d

for all p ∈ [1,∞) to g̃, the unique weak solution to problem (10)–(11) in the sense
of Definition 1.1, as size(T ) tends to 0, cons(gT ) tends to 0, and regul(T ) remains
bounded (see Definition 4.1 for the definitions of size(T ) and regul(T ), and see (52)
for the definition of cons(gT )).

Proof. Under Hypotheses (H), let (T (m))m∈N be a sequence of admissible meshes
of Ω in the sense of Definition 4.1 such that limm→∞ size(T (m)) = 0. For all m ∈ N, we
denote by uT (m) a solution of scheme (47)–(50) such that (60) holds. Using Proposi-
tion 4.6, from the sequence (T (m))m∈N, one can extract a subsequence, again denoted
(T (m))m∈N, such that the corresponding sequence (uT (m))m∈N converges in the non-
linear weak-� sense to a weak process solution u of problem (10)–(11) in the sense of

Definition 1.1. We then get that the limit of
∫
Ω
g(x)2(uT (m)(x)−

∫ 1

0
u(x, α)dα)2dx as

m → ∞ is equal to
∫
Ω
g(x)2(

∫ 1

0
u(x, α)2dα−2(

∫ 1

0
u(x, α)dα)2 +(

∫ 1

0
u(x, α)dα)2)dx =

0, using Proposition 3.5 which stands that g̃(x) = u(x, α)g(x), for a.e. x ∈ Ω and
α ∈ (0, 1). This proves that (uT (m)g)m∈N converges to g̃ in L2(Ω)d. The uniqueness
of g̃ gives the conclusion of the theorem.

5. Numerical results.

5.1. One-dimensional example. We again consider the following data, stud-
ied in section 2: Ω = (−1, 1), g : x �→ x3 − x, and F : x �→ 1/2. We recall that
the weak solution is the function g̃ given by g̃ = ug, where the function u is such that
u : x �→ 1 for all x ∈ (−1,−

√
1/2) ∪ (

√
1/2, 1) and u : x �→ 1/(2(1 − x2)) for all

x ∈ (−
√

1/2,
√

1/2). We use Algorithm (A) to solve the nonlinear system (49)–(50)
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Fig. 1. Approximate solution (ap.sol) and exact solution (ex.sol) with 100 control volumes.

with gK,L = ḡK,L (ḡK,L is defined in (53)). We get, with 100 uniform control volumes,
the results given in Figure 1. The exact solution g̃ is represented by the dashed line
(and denoted by “ex.sol.” in the legend). The approximate solution of (49)–(50) is
uT . Figure 1 gives, with the solid line, the product of uT with the exact function
g (and this product is denoted by “ap.sol.” in the legend). The dashed line and the
solid line are very close to one another. The last line, namely the grey dotted one,
represents the exact function g.

It is interesting to remark that Algorithm (A) converges for a significantly smaller
number of iterations than card(T ). The table below gives, for different numbers of

control volumes, the number of iterations until p
(n)
K = p

(n+1)
K for all K ∈ T .

Number of control volumes Number of iterations ‖g̃ − uT g‖L1(Ω)

10 3 0.031757
50 9 0.006969
100 17 0.003488
500 76 0.000699
1000 151 0.000348
5000 748 0.000070
10000 1496 0.000035
50000 7473 0.000007

We observe that this number behaves as 1/size(T ), whereas the error in L1(Ω)
behaves as size(T ).

5.2. Two-dimensional examples. We use the coupled finite volume scheme
(48)–(54) in order to compute gT . We consider the following data: Ω = (0, 1)2,
Λ(x) = Id, and F (x) = 1/100 for a.e. x ∈ Ω, g = ∇h, where h is a solution of
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Fig. 2. Value of h from 0 (black) to 0.00111 (white): rectangular 60 × 60 mesh (left) and
triangular mesh with 3650 triangles (right).

Fig. 3. Value of u from 0.48 (black) to 1 (white): rectangular 60×60 mesh (left) and triangular
mesh with 3650 triangles (right).

the homogeneous Neumann problem

−Δh(x, y) = y(1 − y)(−x2 + x− 1/6) ∀(x, y) ∈ (0, 1)2,

∇h · n = 0 on ∂Ω.

These data have been chosen since they represent a kind of generalization in two di-
mensions of the one-dimensional case presented above. Two meshes have been tested.
With a rectangular 60× 60 mesh, the convergence of Algorithm (A) is obtained after
10 iterations; with a triangular mesh with 3650 triangles, 14 iterations are necessary
to converge. The results obtained after the resolution of h by the finite volume method
are presented in Figure 2. The corresponding values of the function u such that ug is
the weak solution are given in Figure 3, and the values of gx, gy, g̃x, g̃y which are the
components of g and g̃ are given in Figures 4 and 5 for the rectangular mesh.

These results show the efficiency of the numerical method. In particular, we can
remark that the approximate solution obtained with the rectangular mesh is very
close to the approximate solution obtained with the triangular mesh.

The following table gives, for rectangular meshes, the number of iterations needed
by Algorithm (A) for convergence.

Number of control volumes Number of iterations
10×10 3
50×50 9

100×100 16
150×150 23
200×200 30

We again observe that this number behaves as 1/size(T ).
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Fig. 4. Value of gx (left) and of g̃x (right) from −0.00342 (black) to 0.00342 (white).

Fig. 5. Value of gy (left) and of g̃y (right) from −0.00094 (black) to 0.00094 (white).

6. Conclusions. We have been able to prove the existence and the uniqueness
of the weak solution to problem (10)–(11) in the sense of Definition 1.1, and we have
proved the convergence of a numerical scheme, under Hypotheses (H). At this time, we
have not yet derived an error estimate although we can guess that it will be possible to
follow the same steps as that of a scalar nonlinear hyperbolic problem, since the basis
of proof of the uniqueness theorem is the doubling variable technique of Krushkov. It
is, however, probable that the error estimate that we shall obtain will be not sharp.
Moreover, the mathematical problem is not directly formulated as a function of h but
on g. We have only briefly mentioned in remarks that some of the results of this paper
can be obtained without the assumption g = Λ∇h. However, this is not the case for
all of them. Finally, much work remains to be done in order to handle the complete
problem (2)–(5).
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[16] T. Roubiček, Nonlinear Partial Differential Equations with Applications, Internat. Ser. Nu-
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