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Abstract. In this paper, we propose a discretization for the compressible

Stokes problem with an equation of state of the form p = ϕ(ρ) (where p stands
for the pressure, ρ for the density and ϕ is a superlinear nondecreasing function

from R to R). This scheme is based on Crouzeix-Raviart approximation spaces.

The discretization of the momentum balance is obtained by the usual finite
element technique. The discrete mass balance is obtained by a finite volume

scheme, with an upwinding of the density, and two additional terms. We prove

the existence of a discrete solution and the convergence of this approximate
solution to a solution of the continuous problem.

1. introduction

Let Ω be a bounded open set of Rd, polygonal if d = 2 and polyhedral if d = 3. Let
ϕ ∈ C(R,R) be a convex nondecreasing function such that:

ϕ(0) = 0, ϕ is C1 on R?+
and

(1.1) ∀a ∈ R, ∃b > 0 such that: ϕ(s) ≥ as− b, ∀s ∈ R+.

For M , µ > 0, f ∈ L2(Ω)d and g ∈ L∞(Ω)d, we consider the following problem:

− µ∆u− µ

3
∇(divu) + ∇p = f + ρg in Ω, u = 0 on ∂Ω,(1.2a)

div(ρu) = 0 in Ω, ρ ≥ 0 in Ω,

∫
Ω

ρ(x) dx = M,(1.2b)

p = ϕ(ρ) in Ω.(1.2c)

Remark 1.1.

• We assume that the function ϕ is convex, but not necessarily strictly convex.
We also assume that ϕ is nondecreasing but it can be constant on an interval
(in fact, since ϕ is convex, the function ϕ is, at least for m large enough,
increasing on [m,+∞)).
• The condition (1.1) is equivalent to the following one:

lim inf
s→+∞

ϕ(s)/s = +∞

Key words and phrases. Compressible Stokes equations, finite element methods, finite volume
methods.
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• The fact that ϕ(0) = 0 is not a restriction since p can be replaced by
(p− ϕ(0)) in the momemtum equation and the EOS (namely the equation
(1.2c)) can be written as p− ϕ(0) = ϕ(ρ)− ϕ(0).

• The convexity of the function ϕ can be replaced by the following condition:
there exist a, ã, b, b̃ > 0 and γ > 1 such that:

(1.3) ∀s ∈ R+, asγ − b ≤ ϕ(s) ≤ ãs2γ−1 + b̃.

Here also the function ϕ is assumed to be nondecreasing but not necessarily
increasing.
• The coefficient µ/3 in the second term of the Left Hand Side of (1.2a) is

natural from the physical point of view. From the mathematical point of
view, it is easy to replace it by µ̄, as long as µ̄ ≥ 0.

Definition 1.2. Let f ∈ L2(Ω)d, g ∈ L∞(Ω)d and M > 0. A weak solution of
Problem (1.2) is a function (u, p, ρ) ∈ H1

0(Ω)d × L2(Ω)× L2(Ω) satisfying:

µ

∫
Ω

∇u : ∇v dx +
µ

3

∫
Ω

div(u)div(v) dx−
∫

Ω

p div(v) dx

=

∫
Ω

f · v dx +

∫
Ω

ρg · v dx for all v ∈ H1
0(Ω)d,

(1.4a)

∫
Ω

ρu ·∇ϕdx = 0 for all ϕ ∈W1,∞(Ω),(1.4b)

ρ ≥ 0 a.e. in Ω,

∫
Ω

ρdx = M, p = ϕ(ρ) a.e. in Ω.(1.4c)

The main objective of this paper is to present a numerical scheme for the compu-
tation of an approximate solution of Problem (1.2) and to prove the convergence
(up to a subsequence, since, up to now, no uniqueness result is available for the
solution of (1.2)) of this approximate solution towards a weak solution of (1.2) (i.e.
a solution of (1.4)) as the mesh size goes to 0. The present paper follows a previous
paper [6] where a similar result was presented in the case ϕ(ρ) = ργ , γ > 1 (see also
[11]). We present here a discretization with the so called Crouziex-Raviart element,
as in [6]. However, it could be possible also, without additional difficulties, to use
a MAC scheme, as in [7]. The fact to consider a general EOS (instead of p = ργ)
induces some additional difficulties with respect to the previous papers [6] and [7].
In particular for the estimates on the discrete solutions (Section 3.2 and Appendix
A) and for passing to the limit in the EOS (Section 3.3 and Appendix B). For
passing in the limit in the EOS, we mimic some ideas which were developped for
the study of the Navier-Stokes equations, see [12], [8] or [13]. A part of the results
given in this paper was presented in the FVCA6 workshop (Prague, 2011) and in
a short paper (containing few proofs) in the proceedings of this workshop, see [9].
The present paper is more general. In particular, it considers more general EOS
and it includes the gravity effects (two improvements which induce the need of non
trivial developments, for instance for obtaining estimates on u an p and for passing
to the limit in the EOS). Furthermore, the present paper contains complete proofs
and an appendix with lemmas interesting for their own sake.

Remark 1.3. In the spirit of [12], [8] or [13] (which are devoted to the study of the
compressible Navier-Stokes equations, but not on the discretization point of view),
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it is worth noticing that if (ρ, u) ∈ L2(Ω)×H1
0(Ω) satisfies (1.4b), then, it is known

that (ρ, u) is a renormalized solution of div(ρu) = 0 in the sense of [4], that is

(ρφ′(ρ)− φ(ρ))div(u) + div(φ(ρ)u) = 0 in D′(Rd),

for any C1-function φ from R to R such that φ′ is bounded (in order to give a sense
to the preceding equation, we set u = 0 in Rd \ Ω, so that u ∈ H1(Rd)). This is
explained in Remark B.3.

2. Discrete spaces and numerical scheme

Let T be a decomposition of the domain Ω in simplices, which we call herafter a
triangulation of Ω, regardless of the space dimension. By E(K), we denote the set
of the edges (d = 2) or faces (d = 3) σ of the element K ∈ T ; for short, each edge
or face will be called an edge hereafter. The set of all edges of the mesh is denoted
by E ; the set of edges included in the boundary of Ω is denoted by Eext and the set
of internal edges (i.e. E \ Eext) is denoted by Eint. The decomposition T is assumed
to be regular in the usual sense of the finite element literature (e.g. [2]), and, in
particular, T satisfies the following properties: Ω̄ =

⋃
K∈T K̄; if K, L ∈ T , then

K̄ ∩ L̄ = ∅, K̄ ∩ L̄ is a vertex or K̄ ∩ L̄ is a common edge of K and L, which is
denoted by K|L. For each internal edge of the mesh σ = K|L, nKL stands for the
normal vector of σ, oriented from K to L (so that nKL = −nLK). By |K| and |σ|
we denote the (d and d − 1 dimensional) measure, respectively, of an element K
and of an edge σ, and hK and hσ stand for the diameter of K and σ, respectively.
We measure the regularity of the mesh through the parameter θ defined by:

(2.1) θ = inf { ξK
hK

, K ∈ T }

where ξK stands for the diameter of the largest ball included in K. Note that for
all σ ∈ Eint, σ = K|L, we have hσ ≥ ξK ≥ θ hK and hσ ≤ hL and so θ hK ≤
hL ≤ θ−1hK . Note also that for all K ∈ T and for all σ ∈ E(K), the inequality
hσ |σ| ≤ 2 θ−d |K| holds ([10, relation (2.2)]) and if σ = K|L a rough estimate gives
|K| ≤ (2/θ)2d|L|. These relations will be used throughout this paper. Finally, as
usual, we denote by h the quantity maxK∈T hK .

The space discretization relies on the Crouzeix-Raviart element (see [3] for the
seminal paper and, for instance, [5, pp. 199–201] for a synthetic presentation). The
reference element is the unit d-simplex and the discrete functional space is the space
P1 of affine polynomials. The degrees of freedom are determined by the following
set of edge functionals:

(2.2) {Fσ, σ ∈ E(K)} , Fσ(v) = |σ|−1

∫
σ

v dγ.

The mapping from the reference element to the actual one is the standard affine
mapping. Finally, the continuity of the average value of a discrete functions v across
each edge of the mesh, Fσ(v), is required, thus the discrete space Vh is defined as
follows:

(2.3)
Vh = {v ∈ L2(Ω) : ∀K ∈ T , v|K ∈ P1(K) ;

∀σ ∈ Eint, σ = K|L, Fσ(v|K) = Fσ(v|L); ∀σ ∈ Eext, Fσ(v) = 0}.
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Indeed, this space Vh should be denoted by VT since it depends on T and not only
on h (which is given by T ) but this (somewhat incorrect) notation is commonly
used.

The space of approximation for the velocity is the space Wh of vector-valued func-
tions each component of which belongs to Vh: Wh = (Vh)d. The pressure and the
density are approximated by the space Lh of piecewise constant functions:

Lh =
{
q ∈ L2(Ω) : q|K = constant, ∀K ∈ T

}
.

Since only the continuity of the integral over each edge of the mesh is imposed,
the functions of Vh are discontinuous through each edge; the discretization is thus
nonconforming in H1(Ω)d. We then define, for 1 ≤ i ≤ d and u ∈ Vh, ∂h,i u as
the function of L2(Ω) which is equal to the derivative of u with respect to the
ith space variable almost everywhere. This notation allows to define the discrete
gradient, denoted by ∇h, for both scalar and vector-valued discrete functions and
the discrete divergence of vector-valued discrete functions, denoted by divh.

The Crouzeix-Raviart pair of approximation spaces for the velocity and the pressure
is inf-sup stable, in the usual sense for “piecewise H1” discrete velocities, i.e. there
exists ci > 0 only depending on Ω and, in a non-increasing way, on θ, such that:

∀p ∈ Lh, sup
v∈Wh

∫
Ω

p divh(v) dx

||v||1,b
≥ ci ||p−m(p)||L2(Ω) ,

where m(p) is the value of p over Ω and || · ||1,b stands for the broken Sobolev H1

semi-norm, which is defined for scalar as well as for vector-valued functions by:

||v||21,b =
∑
K∈T

∫
K

|∇v|2 dx =

∫
Ω

|∇hv|2 dx.

This norm is known to control the L2 norm by a Poincaré inequality (e.g. [5, lemma
3.31]). We also define a discrete semi-norm on Lh, similar to the usual H1 semi-norm
used in the finite volume context:

∀ρ ∈ Lh, |ρ|2T =
∑

σ∈Eint,
σ=K|L

|σ|
hσ

(ρK − ρL)2.

From the definition (2.2), each velocity degree of freedom may be indexed by the
number of the component and the associated edge, thus the set of velocity degrees
of freedom reads:

{vσ,i, σ ∈ Eint, 1 ≤ i ≤ d}.
We denote by eσ the usual Crouzeix-Raviart shape function associated to σ, i.e.
the scalar function of Vh such that Fσ(eσ) = 1 and Fσ′(eσ) = 0, for all σ′ ∈ E \{σ}.
Similarly, each degree of freedom for the pressure is associated to a cell K, and the
set of pressure degrees of freedom is denoted by {pK , K ∈ T }.

We define by rh the following interpolation operator:

(2.4)

rh : H1
0(Ω) −→ Vh

u 7→ rhu =
∑
σ∈E

Fσ(u) eσ =
∑
σ∈E
|σ|−1

(∫
σ

v dγ

)
eσ.
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This operator naturally extends to vector-valued functions (i.e. to perform the
interpolation from H1

0(Ω)d to Wh) and we keep the same notation rh for both the
scalar and vector case. The properties of rh are gathered in the following lemma.
They are proven in [3].

Theorem 2.1. Let θ0 > 0 and let T be a triangulation of the computational domain
Ω such that θ ≥ θ0, where θ is defined by (2.1). The interpolation operator rh enjoys
the following properties:

(1) preservation of the divergence:

∀v ∈ H1
0(Ω)d, ∀q ∈ Lh,

∫
Ω

q divh(rhv) dx =

∫
Ω

q div(v) dx,

(2) stability:

∀v ∈ H1
0(Ω), ||rhv||1,b ≤ c1(θ0) |v|H1(Ω) ,

(3) approximation properties:

∀v ∈ H2(Ω) ∩H1
0(Ω), ∀K ∈ T ,

||v − rhv||L2(K) + hK ||∇h(v − rhv)||L2(K) ≤ c2(θ0)h2
K |v|H2(K) .

In both above inequalities, the notation ci(θ0) means that the real number ci only
depends on θ0 and Ω, and, in particular, does not depend on the parameter h
characterizing the size of the cells; this notation will be kept throughout the paper.

The following compactness result was proven in [10, Theorem 3.3].

Theorem 2.2. Let (vn)n∈N be a sequence of functions satisfying the following as-
sumptions:

(1) ∀n ∈ N, there exists a triangulation of the domain Tn such that vn ∈ Vhn ,
where Vhn is the space of Crouzeix-Raviart discrete functions associated
to Tn (and hn given by Tn), as defined by (2.3), and the parameter θn
characterizing the regularity of Tn is bounded away from zero independently
of n,

(2) the sequence (vn)n∈N is uniformly bounded with respect to the broken Sobolev
H1 semi-norm, i.e.:

∀n ∈ N, ||vn||1,b ≤ C,

where C is a constant real number and || · ||1,b stands for the broken Sobolev
H1 semi-norm associated to Tn (with a slight abuse of notation, namely
dropping, for short, the index n pointing the dependence of the norm with
respect to the mesh).

Then, when n→∞, possibly up to the extraction of a subsequence, the sequence
(vn)n∈N converges (strongly) in L2(Ω) to a limit v̄ such that v̄ ∈ H1

0(Ω).

We now present the numerical scheme we use. Let ρ∗ be the mean density, i.e.
ρ∗ = M/|Ω| where |Ω| stands for the measure of the domain Ω. Let also α and ξ
be given, with α > 0 and 0 < ξ < 2. Let T be a (regular) decomposition of the
domain Ω in simplices. The discrete unknowns are u, p and ρ, with u ∈ Wh and
p, ρ ∈ Lh. Using the notations previously introduced, we consider the following
numerical scheme for the discretization of Problem (1.2):
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µ

∫
Ω

∇hu : ∇hv dx +
µ

3

∫
Ω

divh(u)divh(v) dx−
∫

Ω

p divh(v) dx

=

∫
Ω

f · v dx +

∫
Ω

ρg · v dx for all v ∈Wh,
(2.5a)

∑
σ=K|L

(
|σ|u+

K,σ ρK − |σ|u
−
K,σ ρL

)
+MK + TK = 0 for all K ∈ T ,(2.5b)

pK = ϕ(ρK) for all K ∈ T .(2.5c)

The quantity uK,σ is defined by

uK,σ = |σ|−1

∫
σ

udγ · nKL.

As usual, u+
K,σ = max(uK,σ, 0) and u−K,σ = −min(uK,σ, 0), so that uK,σ = u+

K,σ−
u−K,σ. The terms MK and TK read:

MK = hα |K| (ρK − ρ∗) ,(2.6a)

TK =
∑

σ=K|L

hξ
|σ|
hσ

(|ρK |+ |ρL|) (ρK − ρL) .(2.6b)

3. Existence and convergence of approximate solutions

3.1. Existence of a solution. Let T be a (regular) decomposition of the domain
Ω in simplices. We prove in this section the existence of a discrete solution, that
the existence of a solution to (2.5), by using the Brouwer fixed point theorem to a
convenient application T from RN to RN where N =card(T ). We first define T .

Let ρ̃ = (ρ̃K)K∈T . Choosing the elements of T in an arbitrary order, we then have
ρ̃ ∈ RN . We calculate p by the following relation: pK = ϕ(ρ̃+

K) for all K ∈ T .

We now compute u as the unique solution (in Wh) of (2.5a) with ρ̃ instead of ρ in
the Right Hand Side of (2.5a) (and p given by pK = ϕ(ρ̃+

K) for all K ∈ T ). The
existence and uniqueness of u is an easy consequence of the coercivity in Wh of the
bilinear form

(u, v) 7→ µ

∫
Ω

∇hu : ∇hv dx.

Furthermore, the solution u continuously depends on ρ̃ (since ϕ is continuous).

We have now to define ρ (and we will set T (ρ̃) = ρ). We change a little bit the
term TK . Instead of (2.6b), we take

TK =
∑

σ=K|L

hξ
|σ|
hσ

(|ρ̃K |+ |ρ̃L|) (ρK − ρL) .

With this choice of TK , the set of Equations (2.5b) leads to the linear system of
N equations with N unknowns (which are ρK for K ∈ T ). The equations of this
system may be written as:

(3.1)
∑
L∈T

aK,LρL = bK for all K ∈ T ,
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with

aK,K = hα|K|+
∑

σ=K|L

(
|σ|u+

K,σ + hξ
|σ|
hσ

(|ρ̃K |+ |ρ̃L|)
)
,

aK,L = −|σ|u−K,σ − h
ξ |σ|
hσ

(|ρ̃K |+ |ρ̃L|) if σ = K|L,

aK,L = 0 if K and L do not share an interface.

bK = hα|K|ρ?.

Using the fact that u−L,σ = u+
K,σ (for σ = K|L), one has, for all K ∈ T ,∑

L∈T
aK,L > 0

and, for all K,L ∈ T , K 6= L,

aK,L ≤ 0.

With these properties, it is quite easy to show thet the system (3.1) has a unique
solution. Furthermore, since bK > 0 for all K ∈ T the solution ρ satisfy ρK > 0
for all K ∈ T (see Lemma C.4). Finally, since the coeffcients aK,L and bK depend
continuously of ρ̃ (and since the application A 7→ A−1 is continuous on the set of
invertible N ×N matrix), the solution ρ of (3.1) continuously depends on ρ̃.

We define now (as we said before) the map T from RN to RN setting T (ρ̃) = ρ.
The map T is continuous.

If ρ ∈ Im(T ), we also showed that ρK > 0 for all K ∈ T . Futhermore summing for
K ∈ T the equations (3.1) we obtain∑

K∈T
hα|K]ρK =

∑
K∈T

bK =
∑
K∈T

hα|K|ρ?.

With the definition of ρ?, this gives
∑
K∈T |K|ρK = M . Since ρ 7→

∑
K∈T |K||ρK |

is a norm on RN , this proves that the whole set Im(T ) is included in a fixed ball of
RN . Then, we can apply the Brouwer fixed point theorem. It gives the existence of
ρ ∈ RN such that T (ρ) = ρ. This gives the existence of a solution (u, p, ρ) to (2.5).

We conclude this section by remarking that if (u, p, ρ) is a solution to (2.5), we
necessarily have T (ρ) = ρ and this show that

ρK > 0 for all K ∈ T and
∑
K∈T

|K|ρK = M.

3.2. Estimates on the discrete solution.

Lemma 3.1. Let T be a triangulation of the computational domain Ω and Φ a
nondecreasing function in C1(R+

∗ ). Let (u, ρ) ∈Wh×Lh satisfy the second equation
of the scheme, i.e. Equation (2.5b). Then, ρK > 0 for all K ∈ T and:∫

Ω

Φ(ρ)divh(u) dx ≤ 0.



8 A. FETTAH AND T. GALLOUËT

Proof. We fist remark that ρ is solution of (3.1) with

aK,K = hα|K|+
∑

σ=K|L

(
|σ|u+

K,σ + hξ
|σ|
hσ

(|ρK |+ |ρL|)
)
,

aK,L = −|σ|u−K,σ − h
ξ |σ|
hσ

(|ρK |+ |ρL|) if σ = K|L,

aK,L = 0 if K and L do not share an interface.

bK = hα|K|ρ?.
Then, since bK > 0 for all K ∈ T , one has ρK > 0 for all K ∈ T (see Lemma C.4).

Let the function ψ ∈ C1(R?+) satisfying ψ′(s) = Φ′(s)
s for all s > 0 (ψ is nondecreas-

ing). Multiplying (2.5b) by ψ(ρK) and summing over K ∈ T yields T1 +T2 +T3 = 0
with:

T1 =
∑
K∈T

ψ(ρK)
∑

σ=K|L

|σ|ρσ uσ · nKL,

T2 =
∑
K∈T

hα |K|ψ(ρK) (ρK − ρ∗) ,

T3 =
∑
K∈T

ψ(ρK)
∑

σ=K|L

(hK + hL)ξ
|σ|
hσ

(ρK + ρL) (ρK − ρL) .

Let:

T4 =
∑
K∈T

∫
K

Φ(ρK)div(u) =
∑

σ=K|L

|σ|uσ · nKL(Φ(ρK)− Φ(ρL))

We have: T4 = T4 − T1 − T2 − T3

=
∑

σ=K|L

|σ|uσ · nKL[Φ(ρK)− Φ(ρL)− ρσ(ψ(ρK)− ψ(ρL))]− T2 − T3,

with ρσ = ρK if uσ · nKL > 0 and ρσ = ρL if uσ · nKL < 0.

The fact that ψ is nondecreasing yields:
? T2 ≥

∑
K∈T h

α|K|ψ(ρ∗) (ρK − ρ∗) = 0,

? T3 =
∑
σ=K|L(hK + hL)ξ |σ|hσ (ρK + ρL) (ρK − ρL) (ψ(ρK)− ψ(ρL)) ≥ 0.

For α > 0, we define Φα on R?+ by Φα(s) = Φ(α) − Φ(s) − α(ψ(α) − ψ(s)). Since
Φ is nondecreasing (and sψ′(s) = Φ′(s)), one has Φα(s) ≤ 0 for all s ∈ R?+. Then,
thanks to the choice of ρσ, one has∑

σ=K|L

|σ|uσ · nKL[Φ(ρK)− Φ(ρL)− ρσ(ψ(ρK)− ψ(ρL))] ≤ 0

which gives:

T4 =

∫
Ω

Φ(ρ)divh(u) dx ≤ 0.

�

Proposition 3.2. Let θ0 > 0 and let T be a triangulation of the computational
domain Ω such that θ ≥ θ0, where θ is defined by (2.1). Let (u, p, ρ) ∈Wh×Lh×Lh
be a solution of (2.5). Then there exists C, only depending on the data of the
problem Ω, f , g, µ, ϕ, M and on θ0, such that:
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(3.2) ||u||1,b ≤ C, ||p||L2(Ω) ≤ C and ||ρ||L2(Ω) ≤ C.

Proof. Let (u, p, ρ) be a solution of (2.5) .Taking u as test function in (2.5a) yields:

(3.3) µ ||u||21,b +
µ

3

∫
Ω

div2
h(u) dx−

∫
Ω

p divh(u) dx =

∫
Ω

f · u dx +

∫
Ω

ρg · udx.

Using Lemma 3.1, a (well known) discrete Poincaré Inequality and the Hölder
Inequality, one obtains the existence of C1 only depending on Ω, f , µ, g such that

(3.4) ||u||1,b ≤ C1(1 + ||ρ||L2(Ω) ).

Since p = ϕ(ρ), using (1.1), for all ε > 0 there exists Cε (only depending on ε, ϕ
and Ω) such that:

(3.5) ||ρ||L2(Ω) ≤ Cε + ε ||p||L2(Ω) .

Then, with (3.4), for all ε > 0, there exists C̄ε, only depending on Ω, f , µ, g, ϕ
and ε such that

(3.6) ||u||1,b ≤ C̄ε + ε ||p||L2(Ω) .

We now use Lemma C.2. There exists w ∈ H1
0(Ω)d such that div(w) = p −m(p)

a.e. in Ω and ||w||H1(Ω)d ≤ c2 ||p−m(p)||L2(Ω) where c2 only depends on Ω.

Taking v = rhw as test function in (2.5a) yields:∫
Ω

p divh(v) dx = µ

∫
Ω

∇hu : ∇hv dx +
µ

3

∫
Ω

divh(u)divh(v) dx

−
∫

Ω

f · v dx−
∫

Ω

ρg · v dx.

Since
∫

Ω
divh(v) dx = 0, this gives also∫

Ω

[p−m(p)] divh(v) dx = µ

∫
Ω

∇hu : ∇hv dx +
µ

3

∫
Ω

divh(u)divh(v) dx

−
∫

Ω

f · v dx−
∫

Ω

ρg · v dx

and then∫
Ω

[p−m(p)]2 dx = µ

∫
Ω

∇hu : ∇hv dx +
µ

3

∫
Ω

divh(u)divh(v) dx

−
∫

Ω

f · v dx−
∫

Ω

ρg · v dx.

Using theorem 2.1, lemma C.2 and the inequalities (3.5) and (3.6) we get for all
ε > 0, the existence of Dε, only depending on Ω, f , µ, g, ϕ, θ0 and ε such that

||p−m(p)||L2(Ω) ≤ Dε + ε ||p||L2(Ω) .

In order to obtain an estimate on ||p||L2 , we now use the fact that
∫

Ω
ρdx = M

(and we will deduce an estimate on ||p||L2 in term of Ω, f , µ, g, θ0, ϕ and M).

We first modify a little bit the function ϕ (which is only nondecreasing) in order
to obtain a function ϕ̄ continuous and one-to-one from R+ onto R+, so as to be
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able to use its inverse function. Let s0 > 0 such that ϕ(s0) = 1. We define the
increasing function ϕ̄ from R+ to R+ by

ϕ̄(s) =
s

s0
if 0 ≤ s ≤ s0,

ϕ̄(s) = s max
s∈[s0,s]

ϕ(t)

t
if s0 < s.

The function ϕ̄ is a continuous increasing and one-to-one function from R+ onto
R+. Then, there exists ψ (continuous increasing and one-to-one) from R+ onto R+

such that

ψ(ϕ̄(s)) = ϕ̄(ψ(s)) = s for all s ∈ R+.

Since Im(ψ) = R+, we have lims→+∞ ψ(s) = +∞.
We also remark that for all s ≥ 0 one has for s ≥ s0, ϕ̄(s) ≥ ϕ(s) and then, a.e. in
Ω,

ψ(p) = ψ(ϕ(ρ)) ≤ ψ(ϕ̄(ρ)) + ϕ(s0) = ρ+ 1.

This gives
∫

Ω
ψ(p)dx ≤M + λd(Ω).

We now use Lemma A.1. It gives the existence of C̄, only depending on Ω, f , µ,
g, θ0, ϕ and M such that

(3.7) ‖p‖L2 ≤ C̄.

Using (3.7) in (3.4) we thus get the estimate on ||u||1,b .

Finally, thanks to p = ϕ(ρ) and (1.1), the estimate on ρ follows. �

Lemma 3.3. Let θ0 > 0 and let T be a triangulation of the computational domain
Ω such that θ ≥ θ0, where θ is defined by (2.1). Let (u, p, ρ) ∈ Wh × Lh × Lh be
a solution of (2.5). Then, there exists C̄ only depending on Ω, f , g, µ, ϕ, M and
θ0 such that

hξ |ρ|2T ≤ C̄ and E(ρ) ≤ C̄

where E(ρ) =
∑

σ=K|L

min(
1

ρK
,

1

ρL
)(ρK − ρL)2|σ||uK,σ|.

Proof. We recall that ρK > 0 for all K ∈ T . Multiplying Equation (2.5b) by
ln(ρ(K)) and summing over K ∈ T , we thus obtain:∑

K∈T
ln(ρK)

∑
σ=K|L

|σ|uK,σρσ +
∑
K∈T

ln(ρK)MK +
∑
K∈T

ln(ρK)TK = 0,

with ρσ = ρK if uK,σ > 0 and ρσ = ρL if uK,σ < 0.
The fact that the function s ∈ R∗+ → ln(s) is increasing yields:

(3.8)
∑
K∈T

ln(ρK)
∑

σ=K|L

|σ|uK,σρσ +
∑
K∈T

ln(ρK)TK ≤ 0

Reordering the summations in the second term yields:∑
K∈T

ln(ρK)TK =
∑

σ=K|L

hξ
|σ|
hσ

(ρK + ρL) (ln(ρK)− ln(ρL)) (ρK − ρL) .



NUMERICAL APPROXIMATION OF THE GENERAL COMPRESSIBLE STOKES PROBLEM11

Then, using the mean value theorem, for all σ = K|L there exists ρ̃σ between ρK
and ρL such that∑

K∈T
ln(ρK)TK =

∑
σ=K|L

hξ
|σ|
hσ

(ρK − ρL)
2 (ρK + ρL)

ρ̃σ
, ( ρ̃σ ∈ (ρK , ρL))

and this gives
∑
K∈T

ln(ρK)TK ≥
∑

σ=K|L

hξ
|σ|
hσ

(ρK − ρL)
2
.

Using this inequality in (3.8) we get∑
K∈T

ln(ρK)
∑

σ=K|L

|σ|uK,σρσ +
∑

σ=K|L

hξ
|σ|
hσ

(ρK − ρL)
2 ≤ 0

which be rewritten as∑
σ=K|L

|σ|uK,σρσ(ln(ρK)− ln(ρL)) +
∑

σ=K|L

hξ
|σ|
hσ

(ρK − ρL)
2 ≤ 0.

If σ = K|L, we now choose for K the cell satisfying uK,σ ≥ 0. We thus obtain∑
σ=K|L

|σ|uK,σρK(ln(ρK)− ln(ρL)) +
∑

σ=K|L

hξ
|σ|
hσ

(ρK − ρL)
2 ≤ 0.

Adding and substracting the quantity
∑
σ=K|L |σ|uK,σ(ρK − ρL), we then get∑

σ=K|L

|σ|uK,σ[ρK(ln(ρK)− ln(ρL))− (ρK − ρL)] +
∑

σ=K|L

hξ
|σ|
hσ

(ρK − ρL)
2

≤ −
∑

σ=K|L

|σ|uK,σ(ρK − ρL) = −
∫

Ω

ρ divhu ≤ ||ρ||L2(Ω) ||u||1,b .

Since we have ||ρ||L2(Ω) ≤ C and ||u||1,b ≤ C where C is given by Proposition 3.2,
we obtain

(3.9)

∑
σ=K|L

|σ|uK,σ[ρK(ln(ρK)− ln(ρL))− (ρK − ρL)]

+
∑

σ=K|L

hξ
|σ|
hσ

(ρK − ρL)
2 ≤ C2.

We now use Lemma C.5 with ψ(s) = ln(s). We obtain the existence for σ = KlL
of ρ̃σ between ρK and ρL such that∑
σ=K|L

|σ|uK,σ[ρK(ln(ρK)− ln(ρL))− (ρK − ρL)] =
∑

σ=K|L

1

2
|σ|uK,σ(ρK − ρL)2ρ̃−1

σ .

Using this equality in (3.9), we get:∑
σ∈Eint

1

2
|σ|uK,σ(ρK − ρL)2ρ̃−1

σ︸ ︷︷ ︸
S1

+
∑

σ=K|L

hξ
|σ|
hσ

(ρK − ρL)
2

︸ ︷︷ ︸
S2

≤ C2.

This gives S1 ≤ C2 and S2 ≤ C2 and concludes the proof since S2 = hξ |ρ|2T and
E(ρ) ≤ S1. �
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3.3. Passing to the limit in the discrete problem.

Theorem 3.4. Let α > 0 and 0 < ξ < 2. Let a sequence of triangulations (Tn)n∈N
of Ω be given. We assume that hn (given by Tn) tends to zero when n→∞. In
addition, we assume that the sequence of discretizations is regular, in the sense that
θn ≥ θ0 > 0 for all n ∈ N. For n ∈ N, we denote by Whn and Lhn the discrete
spaces (for velocity, pressure and density) associated to Tn and by (un, pn, ρn) ∈
Whn ×Lhn ×Lhn a corresponding solution to the discrete problem (2.5). Then, up
to the extraction of a subsequence, when n→∞:

(1) The sequence (un)n∈N (strongly) converges in L2(Ω)d to a limit u ∈ H1
0(Ω)d

and (pn)n∈N and (ρn)n∈N converge weakly in L2(Ω) to p, ρ respectively;
(2) (u, p, ρ) is a solution to Problem (1.4).

Furthermore, if ϕ is increasing, the sequences (pn)n∈N and (ρn)n∈N converge in
Lp(Ω) for 1 ≤ p < 2 (up to a subsequence).

Proof. The proof is devided in four steps:

• Step 1. Existence of a limit

The convergence (up to the extraction of a subsequence) of the sequence (un, pn, ρn)
is a consequence of the uniform (with respect to n) estimates of Proposition 3.2
(applying Theorem 2.2 to each component of un). Then (up to an extraction) the
sequence (un)n∈N (strongly) converges in L2(Ω)d to a limit u ∈ H1

0(Ω)d and (pn)n∈N
and (ρn)n∈N converge weakly in L2(Ω) to p and ρ.

Since ρn > 0 and
∫

Ω
ρn dx = M , we obtain, passing to the limit as n→∞, ρ ≥ 0

a.e. and
∫

Ω
ρdx = M .

We now have to prove that (u, p) satisfies (1.4a) (this is proven in Step 2), that
(u, ρ) statisfies (1.4b) (Step 3) and that p = ϕ(ρ) a.e. (Step 4). Step 4 will also
gives the strong convergence of ρ and p if ϕ is increasing.

• Step 2. Passing to the limit in (2.5a)

Let ψ be a function of C∞c (Ω)d. We denote by ψn the interpolant of ψ in Whn , i.e.
ψn = rhn(ψ). Taking v = ψn in (2.5a), we obtain:

(3.10)
µ

∫
Ω

∇hnun : ∇hnψn dx +
µ

3

∫
Ω

divhn(un)divhn(ψn) dx

−
∫

Ω

pn divhn(ψn) dx =

∫
Ω

f · ψn dx +

∫
Ω

ρng · ψn dx.

We now write
∫

Ω
∇hnun : ∇hnψn dx = T1 + T2 with

T1 =

∫
Ω

∇hnun : ∇hn(ψn − ψ) dx and T2 =

∫
Ω

∇hnun : ∇hnψ dx.

Using the third property of the interpolation operator given in theorem 2.1, we get,
with c(θ0) only depending on Ω and θ0,

|T1| ≤ ||un||1,b ||(ψn − ψ)||1,b ≤ c(θ0)hn ||un||1,b |ψ|H2(Ω)

and thus T1 tends to zero as n tends to +∞. Integrating by parts over each control
volume, the term T2 reads:

T2 = −
∫

Ω

un ·∆ψ dx +
∑
σ∈Eint

∫
σ

[un]σ : ∇ψ dγ,
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where [un]σ = (uK ⊗ nK + uL ⊗ nL) if σ = K|L (for all K ∈ Tn, uK is the
value of un in K, and nK is the normal vector to ∂K exterior to K). We omit
the dependance of Eint with respect to n. Noticing that nL = −nK and applying
Lemma 2.4 in [10], we get, again with c(θ0) only depending on Ω and θ0,∣∣∣ ∑

σ∈Eint

∫
σ

[un] : ∇ψ nσ dγ
∣∣∣ ≤ c(θ0)hn ||un||1,b |ψ|H2(Ω)

and thus tends to zero as n tends to +∞. On the other hand we have:

−
∫

Ω

un ·∆ψ dx→ −
∫

Ω

u ·∆ψ dx as n→ +∞

=

∫
Ω

∇u : ∇ψ dx since u ∈ H1
0(Ω).

Then, the first term of the Left Hand Side of (3.10) converges to
∫

Ω
∇u : ∇ψ dx as

n→∞. For the second term of (3.10), using the first property of the interpolation
operator in theorem 2.1, we get, with [un · n]σ = uK · nK + uL · nL,∫

Ω

divhn(un)divhn(ψn) dx =

∫
Ω

divhn(un)div(ψ) dx

=
∑
K∈Tn

∑
i≤d

∑
j≤d

∫
K

(un)i
∂2ψj
∂xi∂xj

dx +
∑
K∈Tn

∫
∂K

undivψ.nK dγ

=
∑
K∈Tn

∑
i≤d

∑
j≤d

∫
K

(un)i
∂2ψj
∂xi∂xj

dx +
∑
σ∈Eint

∫
σ

[un · n]σdivψ dγ

= T2,1 + T2,2.

Applying Lemma 2.4 in [10], we get, with c(θ0) only depending on Ω and θ0,

|T2,2| = |
∑
σ∈Eint

∫
σ

[un · n]σdivψ dγ| ≤ c(θ0)hn ||un||1,b |divψ|H1(Ω)

and thus T2,2 tends to zero as n tends to +∞. Then, the second term of (3.10) has
the same limit as T2,1 and this limit is

∫
Ω

divu divψ dx.

For the third term of (3.10), we use, once again, Theorem 2.1 which yields:∫
Ω

pn divhn(ψn) dx =

∫
Ω

pn div(ψ) dx→
∫

Ω

p div(ψ) dx as n→ +∞.

We now consider the Right Hand Side of (3.10). Since ψn → ψ in L2(Ω)d we obtain∫
Ω

f · ψn dx→
∫

Ω

f · ψ dx as n→ +∞.

For the last term of (3.10), we use, once again, the (L2)d convergence of ψn to ψ
and we use the weak-L2 convergence of ρn to ρ. We obtain∫

Ω

ρng · ψn dx→
∫

Ω

ρg · ψ dx as n→ +∞.

Finally, we can pass to limit in (3.10) as n→∞ and we get (1.4a) for all ψ ∈
C∞c (Ω)d (and then, by density, for all ψ ∈ H1

0 (Ω)d), namely:

µ

∫
Ω

∇u : ∇ψ dx +
µ

3

∫
Ω

div(u)div(ψ) dx−
∫

Ω

p div(ψ) dx

=

∫
Ω

f · ψ dx +

∫
Ω

ρg · ψ dx.
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• Step 3. Passing to the limit in (2.5b)

Let ψ be a function of C∞c (Ω)d.Multiplying (2.5b) by ψK = ψ(xK) and summing
over K ∈ Tn we obtain:

(3.11)

T1 + T2 + T3 =
∑
K∈Tn

ψK
∑

σ∈E(K)

|σ|uK,σρσ +
∑
K∈Tn

hαn|K|ψK(ρK − ρ∗)

+
∑
K∈Tn

ψK
∑

σ∈E(K)

hξn
|σ|
hσ

(ρK + ρL) (ρK − ρL) = 0.

The first term T1 reads, with ψσ = ψ(xσ),

T1 =
∑
K∈Tn

∑
σ∈E(K)

|σ|uK,σρσψK =
∑
K∈Tn

∑
σ∈E(K)

|σ|uK,σρσ(ψK − ψσ)

=
∑
K∈Tn

∑
σ∈E(K)

|σ|uK,σρK(ψK − ψσ) +R1

with R1 = −
∑
K∈Tn

∑
σ∈E(K)

|σ|uK,σ(ρK − ρσ)(ψK − ψσ).

Then,

T1 =
∑
K∈Tn

ρKψK
∑

σ∈E(K)

|σ|uK,σ −
∑
K∈Tn

ρK
∑

σ∈E(K)

|σ|uK,σψσ +R1

=
∑
K∈Tn

ρK

∫
K

ψdivun dx−
∑
K∈Tn

ρK

∫
K

div(ψun) dx +R1 +R2 +R3.

with R2 = −
∑
K∈Tn

ρK

∫
K

(ψ − ψK)divun dx

and R3 =
∑
K∈Tn

ρK
∑

σ∈E(K)

∫
σ

(ψ − ψσ)un · nK,σ dγ

T1 = −
∫

Ω

ρnun ·∇ψ +R1 +R2 +R3.

Let us now prove that the terms R1, R2, R3 → 0 as n → +∞. We begin with R1.

One has, with Cψ = |||∇ψ|||L∞(Ω) ,

|R1| = |
∑
K∈Tn

∑
σ∈E(K)

|σ|uK,σ(ρK − ρσ)(ψK − ψσ)|

≤ Cψ
∑

σ=K|L

(hK + hL)|ρK − ρL||σ||uK,σ|.

This gives, with the Cauchy-Schwarz inequality,

|R1| ≤ CψE(ρn)
( ∑
σ=K|L

(hK + hL)2

min( 1
ρK
, 1
ρL

)
|σ||uK,σ|

) 1
2

.

Then,

|R1| ≤ CψE(ρn)(
∑

σ=K|L

(hK + hL)2(ρK + ρL)|σ||uK,σ|︸ ︷︷ ︸
S2

)
1
2 .
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Using again the Cauchy Schwarz inequality we thus obtain:

S2 ≤ (
∑

σ=K|L

(hK + hL)|σ|(ρK + ρL)2)1/2(
∑

σ=K|L

(hK + hL)3|σ||uK,σ|2)1/2

The properties of the scheme given in section 2 and Hölder’s Inequality yields, with
C1(θ0) and C2(θ0) only depending on Ω and θ0,

S2 ≤ C1(θ0)(
∑

σ=K|L

(|K|+ |L|)(ρK + ρL)2)1/2(
∑

σ=K|L

(hK + hL)3‖un‖2L2(σ))
1/2

≤ C2(θ0)(
∑
K∈Tn

|K|ρ2
K)1/2(

∑
σ=K|L

h3
σ‖un‖2L2(σ))

1/2.

The estimate on ρn in L2(Ω) gives the existence of C3, only depending on the
L2-bound on ρn and on C2(θ0) such that:

S2 ≤ C3

( ∑
σ=K|L

h3
σ‖un‖2L2(σ)

)1/2
.

By Lemma 2.3 in [10], we have:

‖un‖L2(σ) ≤ (d
|σ|
|K|

)1/2(‖un‖L2(K) + hK‖∇un‖L2(K)).

We thus obtain, with some C4 and C5 only depending on the L2-bound on ρn, Ω
and θ0,

S2 ≤ C4

( ∑
K∈Tn

h2
K(‖un‖2L2(K) + h2

K‖∇un‖2L2(K))
)1/2

≤ C5hn(‖un‖2L2(Ω) + ‖un‖21,b)1/2.

Finally, thanks to the bound on un (Proposition 3.2) we get limn→∞ S2 = 0 and
thanks to the bound on E(ρn) (Lemma 3.3) we conclude that limn→∞R1 = 0.

We now come to R2. One has

|R2| ≤ Cψhn ||ρn||L2(Ω) ||divhn(un)||L2(Ω) ≤ Cψhn ||ρn||L2(Ω) ||un||1,b ,

which tends to 0 as n→ +∞.

It remains to treat R3. One has

|R3| = |
∑
K∈Tn

ρK
∑

σ∈E(K)

∫
σ

(ψ − ψσ)un · nK,σ dγ|

= |
∑

σ=K|L

(ρK − ρL)

∫
σ

(ψ − ψσ)un · nK,σ dγ|

In order to prove that limn→∞R3 = 0, we treat separetely, the interfaces σ where
the sign of un ·nK,σ is constant or not (for σ between K and L, it can be different
for K and L). For the interfaces where the sign of un ·nK,σ is constant, we use the
same arguments as for the first term R1 (bound on un and bound on E(ρn)) and
we get a bound in

√
hn for the sum of these terms. For the interfaces where the sign

of un · nK,σ is not constant, we use a bound (only depending of the regularity of
the mesh, that is θ) of ||un ·nK,σ||L1(σ) by ||∇un||L1(K) (this bound uses the fact
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that un · nK,σ vanishes at a point of σ). Then, thanks to the bound on ||un||1,b
and ||ρn||L2(Ω) , we get a bound in hn for the sum of these terms.

Finally, since limn→∞Ri = 0 for i = 1, 2, 3, one has

lim
n→∞

T1 = − lim
n→∞

∫
Ω

ρnun ·∇ψ dx.

Using the L2(Ω) convergence of un and the L2(Ω)-weak convergence of ρn, we
conclude that

lim
n→∞

T1 = −
∫

Ω

ρu ·∇ψ dx.

We now prove that T2 and T3 tend to 0 as n→∞. We remark that

| T2 |=|
∑
K∈Tn

hαK |K| (ρK − ρ∗)ψK |≤ hαn2M ||ψ||L∞(Ω) → 0 as n→ +∞

and

| T3 |=|
∑
K∈Tn

∑
σ∈E(K)

hξn
|σ|
hσ

(ρK + ρL) (ρK − ρL)ψK |

=| hξn
∑

σ=K|L

|σ|
hσ

(ρK + ρL) (ρK − ρL) (ψK − ψL) |

≤ Cψ hξn
∑

σ=K|L

(hK + hL)
|σ|
hσ

(ρK + ρL) | ρK − ρL | .

We now use the Cauchy-Schwarz Inequality to obtain, with C1 only depending on
ψ and the bound on hξn|ρn|2 given by Lemma 3.3,

|T3| ≤ Cψ hξn | ρn |T
( ∑
σ=K|L

(hK + hL)2 |σ|
hσ

(ρK + ρL)
2 ) 1

2

≤ C1 h
ξ/2
n

( ∑
σ=K|L

(hK + hL)2 |σ|
hσ

(ρK + ρL)
2 ) 1

2 .

The properties of the mesh given in section 2 yield the existence of c(θ0) only
depending on Ω and θ0 such that

|σ|
hσ
≤ c(θ0)

|K|+ |L|
(hK + hL)2

.

We thus obtain | T3 |≤ C1

√
c(θ0)h

ξ/2
n (

∑
σ=K|L(|K| + |L|) (ρK + ρL)

2
)

1
2 . Thanks

to the L2-estimate on ρn, we then conclude that limn→∞ T3 = 0.

Finally, we can pass to the limit in (3.11) as n→∞ and we obtain (1.4b) for all
ψ ∈ C∞c (Ω). This gives also (1.4b) for all ψ ∈ W 1,∞(Ω) thanks to Lemma B.6
(since u ∈ H1

0 (Ω) and ρ ∈ L2(Ω)).

• Step 4. Passing to the limit in the Equation Of State

In order to conclude the proof of Theorem 3.4, it remains to prove that the equation
of state is satisfied, that is p = ϕ(ρ) a.e. in Ω. This is a tricky part of the proof.

Let (qn)n∈N be a sequence such that qn ∈ Lhn for all n ∈ N. We assume that the
sequence (qn)n∈N weakly converges in L2(Ω) to q ∈ L2(Ω) and satisfies

|qn|T ≤ c h−ηn ,
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where c is a positive real number and η is such that η < 1. Then one has:

(3.12) ∀ψ ∈ C∞c (Ω), lim
n→∞

∫
Ω

(
divhn(un)− pn

)
qnψ dx =

∫
Ω

(
div(u)− p

)
qψ dx.

This result is proven in [6], Proposition 5.9. Indeed, in Proposition 5.9 of [6] the
hypothesis on ρ is ρ ∈ L2γ(Ω), γ > 1, and the sequence (ρn)n∈N converges to ρ
weakly in L2γ(Ω), but the proof given in [6] is also true for γ = 1.

Taking qn = ρn in (3.12) (which is possible with η = ξ/2, thanks to Lemma 3.3),
one obtains

(3.13) ∀ψ ∈ C∞c (Ω), lim
n→∞

∫
Ω

(
divhn(un)− pn

)
ρnψ dx =

∫
Ω

(
div(u)− p

)
ρψ dx.

We now want to prove (3.13) with ψ = 1 a.e. on Ω. This is possible, thanks to
Lemma C.1, if the sequence ((divhnun−pn)ρn)n∈N is equi-integrable. The condition
(1.1) on ϕ, and the L2-bound on divhnun and on pn will give this equi-integrability.
Let a > 0 and b > 0 given by (1.1). One has a.e. on Ω,

aρn ≤ ϕ(ρn) + b = pn + b,

so that

ρ2
n ≤

2p2
n

a2
+

2b2

a2
.

If C is a bound for the L2-norm of pn (such a bound is given by Proposition 3.2),
one obtains for any borelian subset A of Ω,∫

A

ρ2
ndx ≤

2C2

a2
+

2b2

a2
|A|.

Let ε > 0, we then take a2 = 2C2/ε which yields:∫
A

ρ2
ndx ≤ ε+

2b2

a2
|A|.

and then, with δ =
εa2

2b2
,

|A| ≤ δ ⇒
∫
A

ρ2
ndx ≤ 2ε.

This proves the equi-integrability of the sequence (ρ2
n)n∈N. Since the sequence

((divhnun−pn))n∈N is bounded in L2(Ω), we then easily conclude (with the Cauchy-
Scwarz inequality) that the sequence ((divhnun−pn)ρn)n∈N is equi-integrable. Thus
Lemma C.1 yields the conclusion, namely (3.13) is true for ψ = 1 a.e. on Ω:

(3.14) lim
n→∞

∫
Ω

(
divhn(un)− pn

)
ρn dx =

∫
Ω

(
div(u)− p

)
ρ dx.

We now want to get rid of
∫

Ω
ρdiv(u) dx and

∫
Ω
ρndiv(un) dx in (3.14).

Since ρ ∈ L2(Ω), ρ ≥ 0 a.e. in Ω, u ∈ H1
0 (Ω)d and (ρ, u) satisfies (1.4b), we can use

Lemma B.1. It gives

(3.15)

∫
Ω

ρ div(u) dx = 0.
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Then, using (3.15) in (3.14) we get:

lim
n→∞

∫
Ω

(
pn − divhn(un)

)
ρn dx−

∫
Ω

p ρdx = 0.

By Lemma 3.1 we also have
∫

Ω
ρndivhn(un) dx ≤ 0. Hence:

(3.16) lim sup
n→∞

∫
Ω

pn ρn dx ≤
∫

Ω

p ρdx.

To conclude the proof of p = ϕ(ρ), we will now use the so called Minty trick. Let
ρ̄ ∈ L2(Ω) such that ϕ(ρ̄) ∈ L2(Ω). We define for n ∈ N the function Gn by

Gn = (ϕ(ρn)− ϕ(ρ̄))(ρn − ρ̄) = (pn − ϕ(ρ̄))(ρn − ρ̄).

One has Gn ∈ L1(Ω), Gn ≥ 0 a.e. in Ω (since ϕ is nondecreasing) and

(3.17) 0 ≤
∫

Ω

Gn dx =

∫
Ω

(pnρn − pnρ̄− ϕ(ρ̄)ρn + ϕ(ρ̄)ρ̄) dx.

Using (3.16) and the weak convergences of pn to p and ρn to ρ in L2(Ω), we obtain:

0 ≤ lim sup
n→∞

∫
Ω

Gn dx ≤
∫

Ω

(p− ϕ(ρ̄))(ρ− ρ̄) dx.

We have thus proven that for all ρ̄ ∈ L2(Ω) such that ϕ(ρ̄) ∈ L2(Ω) one has

(3.18)

∫
Ω

(p− ϕ(ρ̄))(ρ− ρ̄) dx ≥ 0.

We now have to choose ρ̄ conveniently to deduce p = ϕ(ρ) a.e. on Ω from (3.18).
The idea of the Minty trick is to take ρ̄ = ρ+ (1/k)ψ with ψ ∈ C∞c (Ω), k ∈ N? and
to let k goes to +∞. Unfortunately, ϕ(ρ+(1/k)ψ) is not necessarily in L2(Ω). then,
such a choice for ρ̄ is not possible. We will use here (and only here) the convexity of
ϕ. Since (ρn)n weakly converges in L2(Ω) to ρ and since the sequence (ϕ(ρn))n∈N
is bounded in L2(Ω), we deduce, using the convexity of ϕ, that ϕ(ρ) ∈ L2(Ω). This
is proven in Lemma B.8. This allows us a convenient choice for ρ̄.

Let ψ ∈ C∞c (Ω,R). For k,m ∈ N?, we set

ρk,m = ρ+
1

k
ψ1ρ≤m.

Since ρ ∈ L2(Ω), one has ρk,m ∈ L2(Ω). Using the fact that ϕ is nondecreasing
(and nonnegative), we have, with M = ||ψ||L∞(Ω) ,

ϕ(ρk,m) ≤ ϕ(ρ) + ϕ(m+M),

so that ϕ(ρk,m) ∈ L2(Ω) (since ϕ(ρ) ∈ L2(Ω)). Then, since ρk,m and ϕ(ρk,m)
belong to L2(Ω), we can choose ρ̄ = ρk,m in (3.18). We obtain∫

Ω

(p− ϕ(ρ+
1

k
ψ1ρ≤m))ψ1ρ≤m ≤ 0.

Fixing m in N?, we use the Dominated Convergence theorem on the sequence
(gk)k∈N? with gk = (p− ϕ(ρ+ 1

kψ1ρ≤m))ψ1ρ≤m. Indeed, the continuity of ϕ gives
gk → (p − ϕ(ρ))ψ1ρ≤m a.e. in Ω. Furthermore, since ϕ is nondecreasing, one has,
for all n ∈ N?,

|gk| ≤ H = [p+ ϕ(ρ) + ϕ(m+M)]|ψ| a.e. in Ω,
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and H ∈ L1(Ω). Then, the Dominated Convergence theorem yields∫
Ω

(p− ϕ(ρ))ψ1ρ≤m ≤ 0.

Changing ψ in −ψ, we conclude that
∫

Ω
(p−ϕ(ρ))ψ1ρ≤m = 0 for all ψ ∈ C∞c (Ω,R).

Once again by the Dominated Convergence Theorem, as m to +∞ we get:
∫

Ω
(p−

ϕ(ρ))ψ = 0 for all ψ ∈ C∞c (Ω) This gives p = ϕ(ρ) a.e. in Ω.

The hypothesis of convexity of the function ϕ is only used to get that the four
terms of the Right Hand Side of (3.17) are in L1(Ω). If the hypothesis of convexity
for ϕ is replaced by the hypothesis (1.3), the proof is a little simpler. In this case,
the L2-bound of pn gives a L2γ-bound on ρn (since aργn ≤ ϕ(ρn) + b = pn + b).
Then one has ρn → ρ weakly in L2γ(Ω) and we can use Gn with ρ̄ ∈ L2γ(Ω) such
that ϕ(ρ̄) ∈ L2γ/(2γ−1)(Ω) (which is the dual space to L2γ(Ω)). With such a ρ̄, the
four terms in the Right Hand Side of (3.17) are in L1(Ω)) and we obtain (3.18).
For ψ ∈ C∞c (Ω) and k > 0, we take ρ̄ = ρ + (1/k)ψ (so that ρ̄ ∈ L2γ(Ω) and
ϕ(ρ̄) ∈ L2γ/(2γ−1)(Ω)). Passing to the limit as k → +∞ in (3.18) leads to∫

Ω

(p− ϕ(ρ))ψ dx ≤ 0.

With this inequality, we conclude, as before, that p = ϕ(ρ) a.e. in Ω.

In both cases (ϕ convex or ϕ satisfies (1.3)), if ϕ is increasing, we can obtain a
strong convergence of ρn and pn, as in [6]. We take directly ρ̄ = ρ in the definition
of Gn. We obtain that Gn = (ϕ(ρn) − ϕ(ρ))(ρn − ρ) → 0 in L1(Ω) as n→∞.
Then, up to a subsequence, one has Gn → 0 a.e. in Ω. Since ϕ is increasing, we
finally deduce that ρn → ρ a.e.. This yields also ρn → ρ in Lq(Ω) for all q ∈ [1, 2[,
p = ϕ(ρ) a.e. in Ω and pn → p in Lq(Ω) for all q ∈ [1, 2[.

The proof of Theorem 3.4 is now complete. �

Conclusion
We gave a scheme for the discretization of the compressible Stokes problem with a
general EOS and we proved the existence of a solution of the scheme along with the
convergence of the approximate solution to an exact solution (up to a subsequence)
as the mesh size goes to zero. A first difficulty of the paper is to get some estimates
on the approximate solution (in particular with the dependancy of the forcing term
with the density). A second complication is in the passage to the limit in the EOS.
This difficulty is due to the nonlinearity of the EOS and the fact that the estimates
on pressure and density only lead to weak convergences. It will be now interesting
to consider the Navier-Stokes problem along with the evolution problem.

Appendix A. Estimate on p

Lemma A.1. Let Ω be a bounded set of Rd (d ≥ 1) and p ∈ L2(Ω), p ≥ 0 a.e..
We assume that there exist a < 1 and b ∈ R such that

‖p−m‖L2 ≤ a‖p‖L2 + b,

where m is the mean value of p. Furthermore, we assume that there exist A ∈
R and a continuous function ψ from R+ to R+ such that

∫
Ω
ψ(p)dx ≤ A and

lims→∞ ψ(s) = +∞. Then, there exists C only depending on Ω, a, b A and ψ such
that ||p||L2 ≤ C.
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Proof of Lemma A.1
We first modify the function ψ. Let s0 ∈ R+ such that ψ(s0) > 0. We define ψ̄ by

ψ̄(s) = ψ(s0) if 0 ≤ s ≤ s0,

ψ̄(s) = s min
t∈[s0,s]

ψ(t)

t
if s0 < s.

We remark that ψ̄(s) ≤ ψ(s) for s ≥ s0, so that
∫

Ω
ψ̄(p)dx ≤ Ā = A+ ψ(s0)λd(Ω).

Furthermore, one has lims→+∞ ψ̄(s) = +∞. In order to prove this result, let
(sn)n∈N be an incresing sequence such that limn→∞ sn = +∞. For n ∈ N let
tn ∈ [s0, sn] such that ψ̄(sn) = (ψ(tn)/tn)sn. For any converging (in R+ ∪ {+∞})
subsequence of the sequence (tn)n∈N, still denoted (tn)n∈N, we have two possible
cases,
First case. limn→∞ tn = t ∈ R+. Then limn→∞ ψ̄(sn) = +∞
(since ψ(t)/t > 0)
Second case. limn→∞ tn = +∞. Then limn→∞ ψ̄(sn) = +∞
since ψ̄(sn) ≥ ψ(tn).
We then conclude that lims→+∞ ψ̄(s) = +∞. Finally we also remark that the

function s 7→ ψ̄(s)
s is nonincreasing on R+.

We now prove the bound on ||p||L2 . Let N > 0, one has∫
Ω

p(x)dx =

∫
p≥N

p(x)dx+

∫
p<N

p(x)dx ≤ 1

N

∫
Ω

p2(x)dx+
N

ψ̄(N)

∫
Ω

ψ̄(p(x))dx.

This gives mλd(Ω) ≤ 1
N ||p||L2

2 + N
ψ̄(N)

Ā. We now use the bound on ||p−m||L2 , it

leads to

||p||L2 ≤ ||p−m||L2 +mλd(Ω)1/2

≤ a ||p||L2 + b+
1

Nλd(Ω)1/2
||p||L2

2 +
N

ψ̄(N)λd(Ω)1/2
Ā.

If ||p||L2 6= 0, we now choose N such that 1
Nλd(Ω)1/2

= 1−a
2 ||p||L2

, that is N =
2 ||p||L2

(1−a)λd(Ω)1/2
, we obtain

1− a
2
||p||L2 ≤ b+

2Ā

ψ̄(N)(1− a)λd(Ω)
||p||L2 .

Since lims→∞ ψ̄(s) = +∞, there exists C1 such that

N ≥ C1 ⇒
2Ā

ψ̄(N)(1− a)λd(Ω)
≤ 1− a

4
.

Then, with C2 such that 2C2

(1−a)λd(Ω)1/2
= C1, ona has

||p||L2 ≥ C2 ⇒
2Ā

ψ̄(N)(1− a)λd(Ω)
≤ 1− a

4
.

Therefore

||p||L2 ≥ C2 ⇒ ||p||L2 ≤ 4b

1− a
.

Then, we conclude that ||p||L2 ≤ C = max{C2,
4b

1−a}.
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Appendix B. Passing to the limit in the EOS

Lemma B.1. Let Ω be a bounded open set of Rd. Let ρ ∈ L2(Ω), ρ ≥ 0 a.e. in Ω
and u ∈ H1

0 (Ω)d. Assume that (ρ, u) satisfies:

(B.1)

∫
Ω

ρu ·∇ϕdx = 0 for all ϕ ∈W 1,∞(Ω).

Then,

(B.2)

∫
Ω

ρdiv(u) dx = 0.

Remark B.2. Before giving the proof of Lemma B.1, we want to point out the
following remark. In the case of a regular function ρ, say ρ ∈ C1(Ω̄), and assuming
that ρ > 0 in Ω, the proof is very easy. We take ϕ = ln(ρ) in (B.1) which yields,
since ∇ϕ = 1

ρ∇ρ, ∫
Ω

u ·∇ρdx = 0.

But, for any v ∈ C∞c (Ω)d one has
∫

Ω
v ·∇ρdx = −

∫
Ω
ρdiv(v) dx. Then, the density

of C∞c (Ω)d in H1
0 (Ω)d yields

∫
Ω
v ·∇ρdx = −

∫
Ω
ρdiv(v) dx for v ∈ H1

0 (Ω)d. This
gives (B.2).

This proof is interesting because it suggests the proof of an equivalent result in the
case of a discrete version (using a convenient numerical scheme) of div(ρu) = 0 (see
Lemma 3.1). In other words, working on a numerical scheme is quite similar of
working on the continuous equation with a regular solution.

Proof. We now prove Lemma B.1. (without assuming ρ ∈ C1(Ω̄) and ρ > 0).

We set u = 0 in Rd \Ω and ρ = 0 in Rd \Ω, we have ρ ∈ L2(Rd) and u ∈ H1(Rd)d.
We also deduce from (B.1):

(B.3)

∫
Rd
ρu ·∇ϕdx = 0 for all ϕ ∈ C1(Rd).

Let (rn)n∈N? be a sequence of mollifiers, that is:

(B.4)
r ∈ C∞c (Rd,R),

∫
Rd
rdx = 1, r ≥ 0 in Rd

and, for n ∈ N?, x ∈ Rd, rn(x) = ndr(nx).

For n ∈ N?, we set ρn = ρ ? rn and (ρu)n = (ρu) ? rn. Thanks to (B.3), we have
div((ρu)n) = 0 in Rd. Since u ∈ H1(Rd)d and ρ ∈ L2(Rd), we will prove in
Lemma B.4 that div((ρu)n − ρnu) → 0 in L1(Rd) as n→∞. Then, if (qn)n∈N? is
a bounded sequence in L∞(Rd) which converges a.e. to q, we have:

(B.5) −
∫
Rd

div(ρnu) qndx =

∫
Rd

div((ρu)n − ρnu) qndx→ 0 as n→∞.

Let ψ be a bounded and C1 function from R to R, taking qn = ψ(ρn) in (B.5)
(which converges a.e. to ψ(ρ), at least up to a subsequence) we obtain

−
∫
Rd

div(ρnu)ψ(ρn)dx→ 0 as n→∞.



22 A. FETTAH AND T. GALLOUËT

We now define θ by θ(s) =
∫ s

0
tψ′(t)dt for s ∈ R and we obtain∫

Rd
θ(ρn)div(u)dx =

∫
Rd
ρnψ

′(ρn)u ·∇ρndx =

∫
Rd
ρnu ·∇ψ(ρn)dx

= −
∫
Rd

div(ρnu)ψ(ρn) dx,

and then

∫
Rd
θ(ρ)div(u)dx = lim

n→∞

∫
Rd
θ(ρn)div(u) dx = 0.

It is now quite easy to construct a sequence of functions (ψn)n∈N such that 0 ≤
θn(s) ≤ s for all s ∈ R+ and limn→∞ θn(s) = s for all s ∈ R+. With the Dominated

Convergence Theorem we then conclude that

∫
Rd
ρdiv(u) dx = 0. �

Remark B.3. Under the hypothesis of Lemma B.1, a quick look on the proof of this
lemma shows that it is also possible to prove∫

Ω

ψ(ρ)div(u) dx = 0,

for any continuous function ψ (from R to R) “at most linear”, that is such that

lim sup
s→+∞

|ψ(s)|
s

< +∞.

It is also possible (as it was said in Remark 1.3) to prove that (ρ, u) is a renormalized
solution to div(ρu) = 0 in Rd.
Indeed, let ψ be a bounded and C1 function from R to R and ϕ ∈ C∞

c (Ω). Taking
qn = ψ(ρn)ϕ in (B.5) (which converges a.e. to ψ(ρ)ϕ, at least up to a subsequence) we
obtain

−
∫
Rd

div(ρnu)ψ(ρn)ϕ dx→ 0 as n→∞.

Taking, for s ∈ R, ψ̄(s) =
∫ s

0
ψ(t)dt and θ(s) =

∫ s

0
tψ′(t)dt = sψ(s) − ψ̄(s), we obtain,

after some integrations by parts and passing to the limit as n→∞,∫
Rd

(ρψ̄′(ρ)− ψ̄(ρ))(divu)ϕdx−
∫
Rd
ψ̄(ρ)u ·∇ϕdx = 0.

Then, it is easy to see that this equality also holds if ψ̄ is a C1 fonction form R to R with
a bounded derivative. This proves that (ρ, u) is a renormalized solution to div(ρu) = 0 in
Rd.

Lemma B.4. Let ρ ∈ L2(Rd) and u ∈ H1(Rd)d. Let (rn)n∈N? be a sequence of
mollifiers as given by (B.4) and, for n ∈ N?, ρn = ρ ? rn and (ρu)n = (ρu) ? rn.
Then,

∇((ρu)n − ρnu)→ 0 in L1(Rd)d×d,
and then,

div((ρu)n − ρnu)→ 0 in L1(Rd).

Proof. Let i, j ∈ {1, . . . , d}. Denoting by u1, . . . , ud the components of u and by ∂i
the derivative with respect to xi, we have to prove that the sequence (∂i[(ρuj)n −
ρnuj ])n∈N? converges to 0 in L1(Rd). (As a consequence, taking i = j and summing
on i, we obtain that div((ρu)n − ρnu)→ 0 in L1(Rd).)
We have

∂i[(ρuj)n − ρnuj ] = (ρuj) ? ∂irn − (ρ ? ∂irn) uj − ρn∂iuj = Fn −Gn,
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with

Fn = (ρuj) ? ∂irn − (ρ ? ∂irn) uj − ρ(∂iuj ? rn)

and

Gn = ρn∂iuj − ρ(∂iuj ? rn).

Since ρn → ρ in L2(Rd) and ∂iuj ? rn → ∂iuj in L2(Rd) (as n→∞), the two
parts of Gn converges in L1(Rd) (as n→∞) to ρ∂iuj . Then, the sequence (Gn)n
converges in L1(Rd) (as n→∞) to 0. It remains to show that Fn → 0 in L1(Rd).

Using the fact that ∂iuj ?rn = uj ?∂irn and the fact that rn has a compact support,
we have, for a.e. x ∈ Rd,

Fn(x) =

∫
Rd

(ρ(x− y)− ρ(x))
(
uj(x− y)− uj(x)

)
∂irn(y)dy

=

∫
B

(ρ(x− z

n
)− ρ(x))

(
uj(x−

z

n
)− uj(x)

)
n ∂ir(z)dz,

where B is a ball of center 0 and radius R containing the support of r. Then, we
get:

|Fn(x)| ≤ n
∫
B

|(ρ(x− z

n
)− ρ(x))

(
uj(x−

z

n
)− uj(x)

)
| |∂ir(z)|dz.

We integrate over R the preceding inequality and we use the Fubini-Tonelli Theo-
rem,

(B.6)

∫
Rd
|Fn(x)|dx ≤

n

∫
B

[∫
Rd
|(ρ(x− z

n
)− ρ(x))(uj(x−

z

n
)− uj(x))|dx

]
|∂ir(z)|dz.

Using the Cauchy-Schwarz Inequality, we have for z ∈ B,∫
Rd
|(ρ(x− z

n
)− ρ(x))(uj(x−

z

n
)− uj(x))|dx

≤
[∫

Rd
|ρ(x− z

n
)− ρ(x)|2dx

]1/2 [∫
Rd
|uj(x−

z

n
)− uj(x)|2dx

]1/2

.

For all z ∈ B (see Lemma B.5) we have∫
Rd
|uj(x−

z

n
)− uj(x)|2dx ≤

(R
n

)2‖u‖2H1(Rd)d .

Then,

(B.7)

∫
Rd
|(ρ(x− z

n
)− ρ(x))(uj(x−

z

n
)− uj(x))|dx

≤ R

n
||u||H1(Rd)d

[∫
Rd
|ρ(x− z

n
)− ρ(x)|2dx

]1/2

.

Let ε > 0. Since ρ ∈ L2(Rd), there exists δ > 0 such that

h ∈ Rd, |h| ≤ δ ⇒ ||ρ(·+ h)− ρ||L2(Rd) ≤ ε.

With (B.7), this gives if n ≥ R/δ and z ∈ B,∫
Rd
|(ρ(x− z

n
)− ρ(x))(uj(x−

z

n
)− uj(x))|dx ≤ εR

n
||u||H1(Rd)d .
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Coming back to (B.6), we obtain, if n ≥ R/δ,∫
Rd
|Fn(x)|dx ≤ nR

n
ε ||u||H1(Rd)d

∫
B

|∂ir(z)|dz = εR ||u||H1(Rd)d

∫
B

|∂ir(z)|dz.

This proves that Fn → 0 in L1(Rd) as n→∞ and concludes the proof of Lemma
B.4. �

Lemma B.5. Let w ∈ H1(Rd). Then, for h ∈ Rd,

(B.8) ||w(·+ h)− w||L2(Rd) ≤ |h| ||w||H1(Rd) ,

where |h| is the Euclidean norm of h.

Lemma B.5 is well-known. A proof is given, for instance, in [6].
The following lemma (Lemma B.6) proves that (for regular enough set Ω) in Lemma
B.1, W 1,∞(Ω) can be replaced by C∞c (Ω). That is to say that B.1 is true with
ϕ ∈ W 1,∞(Ω) if (and only if) it is true with the weaker assumption ϕ ∈ C∞c (Ω).
Lemma B.6 is given with ρ ∈ L2(Ω) and u ∈ (H1

0 (Ω))d, which is the case needed
for the present paper (and allows a nice proof using the Hardy inequality). Similar
results are possible with different assumptions on u and ρ (for instance, ρ ∈ L∞(Ω)

and u ∈W 1,1
0 (Ω)). However, the fact that ρu ∈ L1(Ω) is obviously not sufficient to

ensure that (B.1) is true with ϕ ∈ W 1,∞(Ω) as long as it is true for ϕ ∈ C∞c (Ω).
In a following paper, dealing with the Navier-Stokes equations, we will give the
same lemma with a weaker assumption on ρ (since ρ 6∈ L2(Ω) in the case of the
Navier-Stokes equations, when d = 3 and γ < 5

3 ). In this case, the proof will use a
different argument, slightly more complicated.

Lemma B.6. Let Ω be a bounded open set of Rd, with a Lipschitz continuous
boundary. Let u ∈ (H1

0 (Ω))d and ρ ∈ L2(Ω) such that, for all ϕ ∈ C∞c (Ω),

(B.9)

∫
Ω

ρu ·∇ϕdx = 0.

Then (B.9) holds for all ϕ ∈W 1,∞(Ω).

The proof of this lemma is given in [7] (Lemma A.1).

Remark B.7. The hypothesis ρ ∈ L2(Ω) is sharp in Lemma B.6, as we will see now.
Let d > 1and 2d/(d + 2) < q < 2. We give here an example for which (B.9) holds
for all ϕ ∈ C∞c (Ω) but does not hold for some ϕ ∈ W 1,∞(Ω). In this example,
one has ρ ∈ Lq(Ω) and u ∈ (H1

0 (Ω))d (so that ρu ∈ L1(R)d). Let us assume that
Ω =]0, 2[×]− 1, 1[d−1. Let α ∈] 1

2 ,
1
q [. We define ρ and u = (u1, . . . , ud)

t as follows:

u1(x) = xα1

d∏
i=2

(1− |xi|) if x ∈ Ω, x1 ≤ 1,

u1(x) = (2− x1)α
d∏
i=2

(1− |xi|) if x ∈ Ω, x1 > 1,

u2 = . . . = ud = 0,

ρ(x) =
1

xα1
if x ∈ Ω, x1 ≤ 1,

ρ(x) =
1

(2− x1)α
if x ∈ Ω, x1 > 1.



NUMERICAL APPROXIMATION OF THE GENERAL COMPRESSIBLE STOKES PROBLEM25

We have ρ ∈ Lq(Ω) (thanks to αq < 1) and u ∈ (H1
0 (Ω))d (thanks to 2α > 1).

Since ρu1 does not depend on x1, if is easy to see (integrating by parts) that (B.9)
holds for all ϕ ∈ C∞c (Ω). Taking now ϕ ∈ C∞c (Rd) with, for instance ϕ = 0 outside
]− 1, 1[×]− 1

2 ,
1
2 [d−1, one has∫

Ω

ρu · ∇ϕdx = −
∫

]− 1
2 ,

1
2 [d−1

d∏
i=2

(1− |xi|)ϕ(0, y)dy,

where y = (x2, . . . , xn). It is possible to choose ϕ such that ϕ(0, y) > 0 for all
y ∈] − 1

2 ,
1
2 [d−1. This gives

∫
0
ρu · ∇ϕdx < 0 and proves that (B.1) does not hold

for this choice of ϕ (which belongs to W 1,∞(Ω)).

Lemma B.8. Let ϕ be a convex function from R+ to R+ and (ρn)n∈N be a sequence
of nonnegative functions of L2(Ω) weakly converging in L2(Ω) to ρ. We assume that
the sequence (ϕ(ρn))n∈N is bounded in L2(Ω). Then, ϕ(ρ) ∈ L2(Ω).

Proof. Since ρn ≥ 0 a.e. (for all n ∈ N), one has also ρ ≥ 0 a.e..

Since the sequence (ρn)n∈N weakly converge in L2(Ω) to ρ, there exists a sequence
(ρ̃n)n∈N converging (strongly) in L2(Ω) to ρ and such that ρ̃n is (for all n ∈ N) a
convex combination of {ρk, k ≥ n} (this result is known as the Mazur lemma).
Then, for all n ∈ N, there exists qn ∈ N and αn,0, . . . , αn,qn such that

ρ̃n =

qn∑
i=0

αn,iρn+i,

qn∑
i=0

αn,i = 1 and αn,i ≥ 0 for i = 0, . . . , qn.

Let M = sup{ ||ϕ(ρn)||L2(Ω) }. Using the convexity of ϕ (and the fact that ϕ take
its values in R+) we have, for all n ∈ N,

0 ≤ ϕ(ρ̃n) ≤
qn∑
i=0

αn,iϕ(ρn+i) a.e.,

and then

||ϕ(ρ̃n)||L2(Ω) ≤
qn∑
i=0

αn,i ||ϕ(ρn+i)||L2(Ω) ≤M.

Up to a subsequence, one has ρ̃n → ρ̃ a.e. and then, using the continuity of the
function ϕ, ϕ2(ρ̃n) → ϕ2(ρ) a.e on Ω. Then, using Fatou Lemma, we thus get
ϕ(ρ) ∈ L2(Ω) (and ||ϕ(ρ)||L2(Ω) ≤M). �

Appendix C. general lemmas

Lemma C.1. Let (Fn)n∈N ⊂ L1(Ω) be an equi-integrable sequence, and F be a
function of L1(Ω). We assume that:

(C.1) lim
n→∞

∫
Ω

Fnϕdx =

∫
Ω

Fϕdx for all ϕ ∈ C∞c (Ω).

Then:

lim
n→∞

∫
Ω

Fn dx =

∫
Ω

F dx.

Lemma C.1 is well-known. A proof is given, for instance, in [6]. The following
lemma is also well-known. A simple proof of this result is given in [1].
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Lemma C.2. Let q ∈ L2(Ω) such that
∫

Ω
q dx = 0. Then, there exists w ∈

(H1
0(Ω))d such that div(w) = q a.e. in Ω and ||w||H1(Ω)d ≤ c2 ||q||L2(Ω) where c2

only depends on Ω.

We now give two simple lemmas related to the so-called “M-matrices”. We recall
that for a vector x of Rn, the fact that all the components of x are nonnegative is
denoted by x ≥ 0. Similarly the fact that all the components of x are positive is
denoted by x > 0.

Lemma C.3. Let n ∈ N? and A be a n×n matrix with real entries (these entries are
denoted by ai,j, i, j = 1, . . . , n). We asume that A satisfies the following properties:{

ai,j ≤ 0 for all i, j ∈ {1, . . . , n}, i 6= j,
ai,i +

∑
j 6=i ai,j > 0 for all i ∈ {1, . . . , n}.

then,

(C.2) x ∈ Rn, A x ≥ 0⇒ x ≥ 0,

which is equivalent to say that A is invertible and that all the entries of A−1 are
nonnegatives. Futhermore, one also has

(C.3) x ∈ Rn, A x > 0⇒ x > 0,

Proof. The proof of (C.2) is very classical. We can do it, for instance, by contra-
diction. Let x ∈ Rn such that Ax ≥ 0. We assume that α = min{xi, i = 1, . . . , n}
< 0 (where the xi are the components of x) and we choose i0 ∈ {1, . . . , n} such
that xi0 = α.

Since the i0-component of Ax is nonnegative and since xi0 ≤ xi for all i, one has,
thanks to the properties of A,

xi0(ai0,i0 +
∑
j 6=i0

ai0,j) ≥ 0,

Which gives xi0 ≥ 0, in contradiction with xi0 = α < 0. This proves (C.2).

In order to prove (C.3). Let e be the vector of Rn whose all components are
equal to 1. let x ∈ Rn such Ax > 0. Then, for ε > 0 small enough, one has
A(x− εe) = Ax− εAe ≥ 0. Thanks to (C.2), one deduces x− εe ≥ 0 and this gives
x > 0. �

The second lemma is a little bit less classical but is a very simple consequence of
the first one.

Lemma C.4. Let n ∈ N? and A be a n×n matrix with real entries (these entries are
denoted by ai,j, i, j = 1, . . . , n). We asume that A satisfies the following properties:{

ai,j ≤ 0 for all i, j ∈ {1, . . . , n}, i 6= j,
ai,i +

∑
j 6=i aj,i > 0 for all i ∈ {1, . . . , n}.

then,

(C.4) x ∈ Rn, A x ≥ 0⇒ x ≥ 0

and

(C.5) x ∈ Rn, A x > 0⇒ x > 0,



NUMERICAL APPROXIMATION OF THE GENERAL COMPRESSIBLE STOKES PROBLEM27

Proof. The matrix At satisfies the properties of lemma C.3. Then At is invertible
and (At)−1 has all its entries nonnegative. This gives that A is also invertible and
has all its entries nonnegative since (At)−1 = (A−1)t. This gives that A satisfies
(C.4)

The proof of (C.5) is the same as the proof of (C.3) in lemma C.3. �

Lemma C.5. Let ϕ be a function of class C1 from R?+ to R. Let ψ from R?+ to R
such that sψ′(s) = ϕ′(s) for all s ∈ R?+. Let a, b ∈ R?+, a 6= b. Then, there exists c
between a et b such that

(ψ(b)− ψ(a))b− (ϕ(b)− ϕ(a)) =
1

2
(b− a)2ψ′(c).

Proof. One has

(ψ(b)− ψ(a))b− (ϕ(b)− ϕ(a)) = b

∫ b

a

ψ′(s)ds−
∫ b

a

ϕ′(s)ds =

∫ b

a

(b− s)ψ′(s)ds.

But,

min
t∈[a,b]

ψ′(t)

∫ b

a

(b− s)ds ≤
∫ b

a

(b− s)ψ′(s)ds ≤ max
t∈[a,b]

ψ′(t)

∫ b

a

(b− s)ds.

Then, since ψ′ is continuous on [a, b], there exists c ∈ [a, b] such that∫ b

a

(b− s)ψ′(s)ds = ψ′(c)

∫ b

a

(b− s)ds.

Noticing that

∫ b

a

(b− s)ds =
1

2
(b− a)2, we obtain the desired equality. �
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[11] K. Karlsen, and T. Karper. A convergent nonconforming finite element method for compress-

ible Stokes flow. SIAM J. Numer. Anal. 48 (2010), no. 5, 18461876

[12] P.-L. Lions. Mathematical topics in fluid mechanics -volume 2- compressible models. volume
10 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press,

1998.
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