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Abstract. In this paper, we prove the existence of a solution for a quite gen-

eral stationary compressible Stokes problem including, in particular, gravity
effects. The Equation Of State gives the pressure as an increasing superlinear

function of the density. This existence result is obtained by passing to the

limit on the solution of a viscous approximation of the continuity equation.

Résumé. dans cet article, nous prouvons l’existence d’une solution pour le
problème de Stokes compressible stationnaire en tenant compte, en particulier,

des effets gravitaires. L’équation d’état donne la pression comme une fonction
strictement croissante superlinéaire de la densité. L’existence de solution est

obtenue en passant à la limite sur une approximation visqueuse de l’équation

de continuité.

1. introduction

We consider the following problem:

−∆u+∇p = f(x, ρ) in Ω,(1.1a)

u = 0 on ∂Ω,(1.1b)

div(ϕ(ρ)u) = 0 in Ω,(1.1c)

ρ ≥ 0 in Ω,(1.1d) ∫
Ω

ρdx = M,(1.1e)

p = η(ρ) in Ω.(1.1f)

This problem is classical in fluid mechanics. In this case, u is a vector valued
function and stands for the velocity of the fluid. The functions p and ρ stand for
the pressure and the density of the fluid (then ρ ≥ 0 is necessary). Equation (1.1a)
is the momentum equation, it is completed with the natural Dirichlet boundary
condition (1.1b). The function f represent a forcing term, including gravity effect,

a main example is f(x, ρ) = f̃(x) + gρ, where g is the gravity constant. Equation
(1.1c) is generally written with ϕ(ρ) = ρ and corresponds to the mass conservation
(or continuity equation). The total mass of the fluid is given by (1.1e). Finally
(1.1f) is the Equation Of State (generally denoted as EOS). A main example is
η(ρ) = ργ with γ = 5/3 or 7/5, or, more generally, γ > 1 (the case γ = 1 has also
some interest and can be treated if f does not depend on ρ, see for instance [11], in
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this case it is simpler). The Stokes equations and, more generally, the Navier-Stokes
equation, in the evolution case and in the steady state case, are extensively used
for a long time as models for fluid mechanics in the incompressible case (that is
the case where ρ is a constant) and in the compressible case. For the compressible
case, a very well known paper is, for instance, [12], see also [19] or [1]. For the
mathematical point de view, the existence of a weak solution for the incompressible
evolution Navier-Stokes equations is due to J. Leray in the pioneering paper [15].
In the compressible case, the first result is due to P. L. Lions [16] (for p = ργ ,
γ > 9/5).

Notations: For a, b ∈ RN , a · b denotes the usual scalar product of a and b in RN
and |a|2 = a · a. For a = (a1, . . . , aN ) and b = (b1, . . . , bN ) with ai, bi ∈ RN (for

i ∈ {1, . . . , N}), we set a : b =
∑N
i=1 ai · bi and |a|2 = a : a.

The set Ω is a connected bounded open set of RN , N = 2 or 3, with a Lipschitz
continuous boundary. The real M is positive. The function f : Ω × R → RN
satisfies the following hypothesis:

(1.2)


f(x, s) is measurable with respect to x ∈ Ω for all s ∈ R
and is continuous with respect to s ∈ R for a.e. x ∈ Ω.

There exists B > 0 and H ∈ L2(Ω) such that,

for a.e. x ∈ Ω and all s ∈ R, |f(x, s)| ≤ B(H(x) + |s|).

The first part of Condition (1.2) (before the bound on f) is also called the Caratheo-
dory condition and a function f(x, s) satisfying this condition is usually called a
Caratheodory function.
The function η satisfy:

η ∈ C(R+,R+), η(0) = 0, η is increasing,(1.3a)

lim inf
s→+∞

η(s)/s = +∞.(1.3b)

The function ϕ is an increasing Lipschitz continuous function from R to R and
ϕ(0) = 0. Then, there exists a constant L > 0 such that

ϕ is increasing,(1.4a)

ϕ(0) = 0 and, for all s1, s2 ∈ R, |ϕ(s1)− ϕ(s2)| ≤ L|s1 − s2|.(1.4b)

Remark 1.1. The hypothesis η(0) = 0 is not a restriction since p can be replaced by
(p − η(0)) in the momemtum equation (Equation (1.1a)), and the EOS (Equation
(1.1f)) can be written as p − η(0) = η(ρ) − η(0). On the contrary, the hypothesis
ϕ(0) = 0 is important. In fact, this hypothesis allow us to prove that any solution
ρ (for u given) of a regularized version (by adding some viscosity) of the mass
equation (1.1c) has a constant sign (and then is positive if (1.1e) is satisfied with
M > 0). This is related to the fact that ρ = 0 is solution of (1.1c) which is not
true if ϕ(0) 6= 0 (since, in general u is not divergence free), see Section 2. Passing
to the limit as the added viscosity tends to 0 leads to a nonnegative weak solution
ρ of (1.1c) (and (1.1d) is true).

Definition 1.2. Let M > 0 and Ω be a connected bounded open set of RN (N = 2
or 3) with a Lipschitz continuous boundary. Assume that (1.2), (1.3) and (1.4)
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are fulfilled. A weak solution of Problem (1.1) is a function (u, p, ρ) ∈ H1
0(Ω)N ×

L2(Ω)× L2(Ω) satisfying:∫
Ω

∇u : ∇v dx−
∫

Ω

p div(v) dx =

∫
Ω

f(x, ρ) · v dx for all v ∈ H1
0(Ω)N ,(1.5a) ∫

ϕ(ρ)u ·∇ψ dx = 0 for all ψ ∈W 1,∞(Ω)N ,(1.5b)

ρ ≥ 0 a.e. in Ω,

∫
Ω

ρ dx = M, p = η(ρ) a.e. in Ω.(1.5c)

The main objective of this paper is to prove the existence of a weak solution of
Problem (1.1) (in the sense of Definition 1.2), namely the following theorem:

Theorem 1.3. Let M > 0 and Ω be a connected bounded open set of RN (N ≥
1) with a Lipschitz continuous boundary. Assume that (1.2), (1.3) and (1.4) are
fulfilled. Then (1.5) has at least one solution.

The proof of Theorem 1.3 mainly uses the tools recently developed for the Navier
Stokes in the books [16], [6] and [18]. It will be obtain by passing to the limit on the
solution of a regularized problem (the existence of the solution of the regularized
problem is also proved). In particular, the idea to add a viscosity to the continuity
equation in order to obtain an approximate solution is already in the book of P.
L. Lions [16]. On the contrary, it seems to us that the way for proving the strong
convergence of the pressure and the density by proving (4.22) (where we pass to the
limit on the product of two weak convergences) is quite original and does not use
the renormalized continuity equation (even if it is implicitly hidden in the proof),
a tool in the theory of P. L. Lions. Indeed, the main interest of the (quite simple)
proof given in this paper is probably that it can be adapted in order to prove the
same result but by passing to the limit on the solution given by a numerical scheme
(in particular using numerical schemes used in an industrial context). Such an
existence proof of a weak solution of Problem (1.1) (by passing to the limit on the
solution given by a numerical scheme) is done, for instance, in [7] for the particular
case f(x, ρ) = f̄(x) + g(x)ρ(x), with f̄ ∈ L2(Ω) and g ∈ L∞(Ω), and ϕ(ρ) = ρ.
In this particular case (f(x, ρ) = f̄(x) + g(x)ρ(x) and ϕ(ρ) = ρ), the hypothesis
“η is increasing” can be replaced by the weaker hypothesis “η is nondecreasing”
and Theorem 1.3 is still true (see Theorem 4.2). Since, in general, no uniqueness
result is available for the weak solution of Problem (1.1), the convergence of a
sequence of approximate solutions is obtained only up to a subsequence. Recent
works were developed for the compressible stationary Navier-Stokes equations with
η(ρ) = ργ . The first papers [3] and [17] are devoted to the case γ > 3/2 with a
periodic boundary condition. The papers [9] [8], [20] deal with γ > 4/3 and [14]
deals with γ > 1, also in the case of a periodic boundary condition. The paper [13]
is devoted to the case γ = 1 and another boundary condition, namely the Navier
condition.
This paper is organized as follows. In Section 2, we present an existence and
uniqueness result to a convection-diffusion equation with the Neumann boundary
condition. This existence and uniqueness result is a main tool for proving, in Section
3, the existence of a weak solution for the Problem (1.1) regularized by adding a
viscous term in the mass conservation (equation (1.1c)) and with a truncation of
f and η. Then, in Section 4, we prove Therorem 1.3 (namely the existence of
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a solution to (1.5)) passing to the limit on a sequence of approximate solutions.
Finally, in Section 5, we collect some useful lemmas.

2. Convection-diffusion with the Neumann Boundary condition

In this section we consider here the following equation

(2.1) −∆ρ+ div(ϕ(ρ)u) = 0 in Ω,

with the natural boundary condition which reads, if Ω, u and ρ are regular enough,
−∇ρ · n+ ϕ(ρ)u · n = 0 (where n is the exterior normal vector to the boundary of
Ω).
Under the hypothesis u ∈ Lp(Ω)N for some p > N , the weak formulation of this
problem is

(2.2)

{
ρ ∈ H1(Ω),∫

Ω
∇ρ(x) · ∇v(x)dx−

∫
Ω
ϕ(ρ(x))u(x) · ∇v(x) dx = 0 for all v ∈ H1(Ω).

The weak formulation (2.2) is meaningfull, at least if Ω is a bounded open set with
a Lipschitz continuous boundary. Indeed, for N > 1 (the case N = 1 is easier), for
ρ ∈ H1(Ω), one has ρ ∈ Lq(Ω) for all q < 2N/(N − 2) (and even q = 2N/(N − 2) if
N > 2) and then, thanks to (1.4b), ϕ(ρ) ∈ Lq(Ω), for the same values of q. Then,
for u ∈ Lp(Ω)N and p > N , one has ϕ(ρ)u ∈ L2(Ω)N and ϕ(ρ)u · ∇v ∈ L1(Ω) if
v ∈ H1(Ω).

We give in Theorem 2.1 an existence and uniqueness result for (2.2) along with
some useful properties. A similar result (in the linear case, ϕ(ρ) = ρ) is given in
[4].

Theorem 2.1. Let Ω be a connected bounded open set of RN (N = 2 or 3) with
a Lipschitz continuous boundary. Let p > N , u ∈ Lp(Ω)N , M ≥ 0 and ϕ be
a function from R to R satisfying (1.4b). Then, there exist a unique solution to
problem (2.2) satisfying the additional condition

∫
Ω
ρ(x)dx = M . Furthermore one

has the two following properties:

(1) ρ > 0 a.e. on Ω if M > 0 (and ρ = 0 a.e. on Ω if M = 0).
(2) For any A > 0, there exists C only depending on A, p, M , ϕ and Ω such

that, if ρ is the solution of (2.2) with
∫

Ω
ρ(x)dx = M , one has

‖ |u| ‖Lp(Ω) ≤ A⇒ ‖ρ‖H1(Ω) ≤ C.

Remark 2.2. Before giving the proof, we remark that the hypothesis “ϕ increasing”
(Hypothesis (1.4a)) is unuseful in Theorem 2.1. On the contrary, the hypothesis
ϕ(0) = 0 is crucial (in order to have the positivity of ρ).

Proof
The proof is divided in 3 steps.
Step 1 proves the a priori positivity of ρ. Namely, if ρ satisfy (2.2) with

∫
Ω
ρ(x)dx =

M , then ρ > 0 a.e. in Ω if M > 0 and ρ = 0 a.e. in Ω if M = 0. Using similar
arguments, we prove in this step the uniqueness (but not the existence) for all M
given, of the solution of (2.2) with

∫
Ω
ρ(x)dx = M . Step 2 gives an a priori estimate

on the solutions of (2.2) with
∫

Ω
ρ(x)dx = M . Indeed, it gives the second property

of Theorem 2.1 (but not yet the existence result). Step 3 gives the desired existence
result, using the Leray-Schauder topological degree.

Step 1, a priori positivity and uniqueness
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Let ρ be a solution of (2.2) with
∫

Ω
ρ(x)dx = M . In order to prove that ρ > 0 a.e.

if M > 0, we argue by contradiction. We set ω = {ρ ≤ 0} and we assume that
λN (ω) > 0 (where λN is the Lebesgue measure on RN ).
For n ∈ N∗ we define Tn from R to R by Tn(s) = min{ 1

n ,max{s, 0}}. It is well

known that the function Tn(ρ) belongs to H1(Ω) and that

∇Tn(ρ) = 10<ρ< 1
n
∇ρ a.e. in Ω.

Then, taking v = Tn(ρ) in (2.2) leads to

(2.3)

∫
Ω

|∇Tn(ρ)|2dx =

∫
Ω

ϕ(ρ)u · ∇Tn(ρ)dx ≤ Lan
n

(∫
Ω

|∇Tn(ρ)|2dx
) 1

2

,

with

(2.4) an =
(∫

0<ρ< 1
n

|u|2dx
) 1

2

.

Since u ∈ L2(Ω)N and limn→∞ λN ({0 < ρ < 1
n}) = 0, one has limn→∞ an = 0.

Using the fact that ‖z‖L1(Ω) ≤ ‖z‖L2(Ω)λN (Ω)1/2, we have

‖ |∇Tn(ρ)| ‖L1(Ω) ≤ ‖ |∇Tn(ρ)| ‖L2(Ω)λN (Ω)1/2 ≤ Lan
n
λN (Ω)1/2.

We now remark that Tn(ρ) = 0 a.e. on ω. Since λN (ω) > 0, Lemma 5.1 (which
uses the connexity of Ω) gives the existence of C, only depending on Ω and ω such
that

‖Tn(ρ)‖L1(Ω) ≤ C‖ |∇Tn(ρ)| ‖L1(Ω).

Since

‖Tn(ρ)‖L1(Ω) ≥
1

n
λN ({ρ ≥ 1

n
}),

we then have

λN ({ρ ≥ 1

n
}) ≤ LCanλN (Ω)1/2.

Passing to the limit as n→∞ leads to λN ({ρ > 0}) = 0, that is ρ ≤ 0 a.e..
If M > 0, it is impossible since

∫
Ω
ρdx = M > 0. Then, we conclude that λN (ω) =

0, which gives ρ > 0 a.e. in Ω.
If M = 0, one has

∫
Ω
ρdx = M = 0 and then from ρ ≤ 0 a.e. we conlude that ρ = 0

a.e. in Ω.

By a similar argument, we now prove the uniqueness of the solution of (2.2) with∫
Ω
ρdx = M . Let ρ1 and ρ2 be two solutions of (2.2) with

∫
Ω
ρ1dx =

∫
Ω
ρ2dx = M .

We set ρ = ρ1 − ρ2. Taking the difference of the equations satisfied by ρ1 and ρ2,
with v = Tn(ρ) as test function, we obtain (2.3) with (2.4). Since

∫
Ω
ρ(x) dx = 0,

we conclude (as in the preceding proof) that ρ = 0 a.e.. This gives the uniqueness
of the solution of (2.2) with

∫
Ω
ρdx = M .

Actually, it is interesting to notice that the present step consists essentially to prove
that any solution of (2.2) has a constant sign.
Step 2, a priori estimate
Let A > 0 and assume that ‖ |u| ‖Lp(Ω) ≤ A. Let ρ be a solution of (2.2) with∫

Ω
ρdx = M . Taking v = ρ in (2.2) and using Hölder Inequality with q = 2p

p−2

(which gives 1
p + 1

q = 1
2 ) leads to

(2.5) ‖ |∇ρ| ‖2L2(Ω) =

∫
Ω

|∇ρ|2dx ≤ L‖ |u| ‖Lp(Ω)‖ρ‖Lq(Ω)‖ |∇ρ| ‖L2(Ω).
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We choose q̄ such that q < q̄ < +∞ if N = 2 and q̄ = 6 if N = 3 (which gives
q < q̄). By Sobolev Inequality, there exists Cs > 0 only depending on Ω such that

‖ρ‖Lq̄(Ω) ≤ Cs‖ρ‖H1(Ω).

By Hölder Inequality, we also have, with θ = q̄−q
q(q̄−1) ∈ (0, 1) (which only depends

on p and N),

‖ρ‖Lq(Ω) ≤ ‖ρ‖θL1(Ω)‖ρ‖
1−θ
Lq̄(Ω).

This gives
‖ρ‖Lq(Ω) ≤MθC1−θ

s ‖ρ‖1−θH1(Ω),

and, with (2.5),

(2.6) ‖ |∇ρ| ‖L2(Ω) ≤ LAMθC1−θ
s ‖ρ‖1−θH1(Ω).

We now use the Poincaré-Wirtinger Inequality. It gives the existence of Cp > 0
only depending on Ω such that

‖ρ−MλN (Ω)−1‖L2(Ω) ≤ Cp‖ |∇ρ| ‖L2(Ω)

(the connexity of Ω is used once again here).
Then we have

‖ρ‖L2(Ω) ≤ ‖ρ−Mλd(Ω)−1‖L2(Ω) +Mλd(Ω)−
1
2 ≤ Cp‖ |∇ρ| ‖L2(Ω) +Mλd(Ω)−

1
2 .

This gives

(2.7) ‖ρ‖H1(Ω) ≤ (Cp + 1)‖ |∇ρ| ‖L2(Ω) +Mλd(Ω)−
1
2 .

Finally, with (2.6) and (2.7), we obtain the existence of C1 and C2 only depending
on A, M , p, L, and Ω such that

‖ρ‖H1(Ω) ≤ C1‖ρ‖1−θH1(Ω) + C2.

Since θ > 0, this gives the existence of C only depending on A, M , p, L and Ω such
that ‖ρ‖H1(Ω) ≤ C and concludes this step.
Step 3, existence
For u and M given, we have to prove the existence of a solution to (2.2) with∫

Ω
ρdx = M . Let t ∈ [0, 1] and q = 2p

p−2 . We now define a continuous and compact

application from [0, 1] × Lq(Ω) in Lq(Ω). For t ∈ [0, 1] and ρ̄ ∈ Lq(Ω), since
uϕ(ρ̄) ∈ L2(Ω)N , it is well known that there exists a unique weak solution of the
following problem (which is the classical Neumann problem):

ρ ∈ H1(Ω),

∫
Ω

ρdx = 0,(2.8a) ∫
Ω

∇ρ · ∇v(x)dx = t

∫
Ω

uϕ(ρ̄) · ∇v(x)dx for all v ∈ H1(Ω).(2.8b)

Since H1(Ω) ⊂ Lq(Ω), we can define the application F from [0, 1]×Lq(Ω) in Lq(Ω)
by setting

F (t, ρ̄) = t(ρ+
M

λN (Ω)
).

One has
∫

Ω
F (t, ρ̄)dx = tM . Then, if ρ = F (1, ρ), the function ρ is a solution of

(2.2) with
∫

Ω
ρdx = M . We prove below the existence of such a function ρ using

the invariance by homotopy of the Leray-Schauder topological degree.

We first prove that F is continuous. Let (tn, ρ̄n)n∈N be a sequence of [0, 1]×Lq(Ω)
such that tn → t (in R) and ρ̄n → ρ̄ in Lq(Ω) as n→∞. Since ϕ is Lipschitz
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continuous (hypothesis (1.4b)) one also has ϕ(ρ̄n)→ ϕ(ρ̄) in Lq(Ω) as n→∞ (the
continuity in Lq of the application ρ 7→ ϕ(ρ), when ϕ is Lipschitz continuous is
well known, see, for instance, [10]). Let ρn be the solution of (2.8) with tn and
ρ̄n instead of t and ρ̄. The sequence (ρn)n∈N is bounded in H1(Ω). Then, up a
subsequence, there exists ρ ∈ H1(Ω) such that ρn → ρ weakly in H1(Ω). Then,
passing to the limit (as n→∞) in the equations satisfied by ρn, we prove that ρ
is solution of (2.8). Since this solution is unique, we obtain that ρn → ρ weakly in
H1(Ω) without extraction of a sequence. Indeed, it is even possible to prove that
ρn → ρ in H1(Ω) since taking un as test function in the equation satisfied by un
one obtains limn→∞ ‖ |∇un| ‖L2(Ω) = ‖ |∇u| ‖L2(Ω). Finally, since the space H1(Ω)
is continuously embedded in Lq(Ω) (this is the Sobolev Embedding Theorem since
q < 2N/(N − 2)), one has ρn → ρ in Lq(Ω) and this proves that F is continuous
from [0, 1]× Lq(Ω) to Lq(Ω).

Furthermore, since H1(Ω) is compactly embedded in Lq(Ω) (once again since q <
2N/(N − 2)), the function F is compact from [0, 1]× Lq(Ω) to Lq(Ω).
Now, we remark that

(t ∈ [0, 1], ρ ∈ Lq(Ω), ρ = F (t, ρ))⇒ ρ is solution of (2.2) with

∫
Ω

ρ = tM.

A quick look on Step 2 gives an H1 estimate on ρ, namely,

(t ∈ [0, 1], ρ ∈ Lq(Ω), ρ = F (t, ρ))⇒ ∃C > 0 such that ‖ρ‖H1(Ω) ≤ C.

Then, there exists R > 0 such that

(t ∈ [0, 1], ρ ∈ Lq(Ω), ρ = F (t, ρ))⇒ ‖ρ‖Lq(Ω) < R.

Let BR be the ball of radius R and center 0 in Lq(Ω). The topological degree of
Id − F (t, ·) (where Id is the application ρ 7→ ρ) on BR associated to point 0 is
well defined and is independant of t ∈ [0, 1]. This gives d(Id − F (1, ·), BR, 0) =
d(Id − F (0, ·), BR, 0). But, since F (0, ·) = 0, we have d(Id − F (0, ·), BR, 0) = 1.
Then d(Id − F (1, ·), BR, 0) = 1. This proves the existence of ρ ∈ BR such that
ρ = F (1, ρ) and concludes the proof of the Theorem 2.1.

3. The regularized problem

In this section, we prove the existence of a solution for Problem 1.1 regularized by
adding a diffusion term in (1.1c) and replacing f and η by truncated functions.

For n ∈ N, one defines the function Tn from R to R by setting

Tn(s) = min{max{s,−n}, n}.

For s = (s1, . . . , sN ) ∈ RN , one sets Tn(s) = (Tn(s1), . . . , Tn(sN )). Then, the
regularized problem reads, for n, l,m ∈ N∗,
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u ∈ H1
0 (Ω)N , ρ ∈ H1(Ω), p ∈ L2(Ω),(3.1a) ∫

Ω

∇u : ∇v dx−
∫

Ω

p div(v) dx =

∫
Ω

fl(x, ρ) · v dx, ∀v ∈ H1
0(Ω)N ,(3.1b) ∫

Ω

ϕ(ρ)u ·∇ψ dx− 1

n

∫
Ω

∇ρ(x) ·∇ψ(x) dx = 0 for all ψ ∈ H1(Ω),(3.1c)

ρ > 0 a.e. in Ω,

∫
Ω

ρ dx = M, p = ηm(ρ) a.e. in Ω,(3.1d)

where fl(x, s) = Tl(f(x, s)) and ηm(s) = Tm(η(s)) for x ∈ Ω and s ∈ R.

Proposition 3.1. Let M > 0 and Ω be a connected bounded open set of RN
(N ≥ 1) with a Lipschitz continuous boundary. Assume that (1.2), (1.3) and (1.4b)
are fulfilled. Let l, m, n ∈ N∗. Then (3.1) has at least one solution.

Proof
We will apply the Brouwer Fixed Point Theorem to a convenient application T
from L2(Ω) to L2(Ω).

Let ρ̃ ∈ L2(Ω). We set p̃ = ηm(ρ̃+). Knowing p̃ and ρ̃, The classical Lax-Milgram
lemma gives existence and uniqueness of u solution of the following problem:

(3.2)

 u ∈ H1
0(Ω)N ,∫

Ω

∇u : ∇v dx =

∫
Ω

p̃ div(v) dx+

∫
Ω

fl(x, ρ̃) · v dx, ∀v ∈ H1
0(Ω)N .

Knowing u, Therorem 2.1 gives existence and uniqueness of ρ solution of the fol-
lowing problem:

(3.3)


ρ ∈ H1(Ω),

∫
Ω

ρ(x) dx = M,

1

n

∫
Ω

∇ρ(x) ·∇ψ(x)dx−
∫

Ω

ϕ(ρ(x))u(x) ·∇ϕ(x)dx = 0, ∀ψ ∈ H1(Ω).

Then, we set T (ρ̃) = ρ. We now prove that the function T is continuous and
compact (from L2(Ω) to L2(Ω)) and that there exists R > 0 such that Im(T ) ⊂ BR,
where BR = {ρ ∈ L2(Ω); ‖ρ‖L2(Ω) ≤ R} (and we conclude with the Brouwer
theorem).

• Continuity of T

This is the tricky part of the proof of Proposition 3.1. Let (ρ̃k)k∈N a sequence
in L2(Ω). We suppose that ρ̃k converges to ρ̃ in L2(Ω) and we will prove that
ρk = T (ρ̃k)→ T (ρ̃) in L2(Ω) as k → +∞.

We first remark that, as k → +∞, ρ̃k → ρ̃ and p̃k = ηm(ρ̃k
+) → p̃ = ηm(ρ̃+) in

L2(Ω) and fl(·, ρ̃k)→ fl(·, ρ̃) in L2(Ω) (this can be proven arguing by contradiction
and using the a.e. convergence or directly with the convergence in measure as in
Theorem 4.45 in [10] for L1). Let u be the solution of (3.2) and, for k ∈ N, uk be
the solution of (3.2) with p̃k and ρ̃k in the right hand side. A classical result for an
elliptic equation with Dirichlet boundary condition gives that uk → u in H1

0 (Ω), as
k → +∞. Furthermore, taking v = uk as test function in the equation satisfied by
uk, we obtain the existence of C1 only depending on m, l and Ω such that

(3.4) ‖uk‖H1
0 (Ω)N ≤ C1.
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Then, Sobolev embedding gives the existence of C2 only depending on m, l and Ω
and p for p ∈ [1,+∞) if N = 2 and p = 6 for N = 3, such that, for all k ∈ N,

(3.5) ‖uk‖Lp(Ω)N ≤ C2

Let now ρk be the solution of (3.3) with u = uk, namely the solution of the following
problem:

(3.6)
ρk ∈ H1(Ω),

∫
Ω

ρk = M,

1

n

∫
Ω

∇ρk(x) ·∇v(x)dx−
∫

Ω

ϕ(ρk(x))uk(x) ·∇v(x)dx = 0, ∀v ∈ H1(Ω).

Theorem 2.1 and inequality (3.5) gives the existence of C3 only depending on n,
m, l, ϕ, M, and Ω such that

(3.7) ‖ρk‖H1(Ω) ≤ C3

and then, there exists ρ ∈ H1(Ω) such that, up to a subsequence,

ρk → ρ in L2(Ω) and weakly in H1(Ω).

Passing to the limit (as k → +∞) in (3.6) gives that ρ is solution of (3.3). Thanks
to the uniqueness of the solution of (3.3), this give (arguing by contradiction) that
ρk → ρ (in L2(Ω) and weakly in H1(Ω)), as k → ∞, without extraction of a
sequence. Since ρ = T (ρ̃), we have proven the continuity of T from L2(Ω) in
L2(Ω).

• Compactness of T and existence of R.
This part is a consequence of the estimate (3.7). Actually, this estimate gives
that Im(T ) is bounded in H1(Ω) and then is compact in L2(Ω), thanks to Rellich
Theorem. This gives the compactness of T and the existence of R > 0 such that
Im(T ) ⊂ BR. We then conclude, using the Brouwer Fixed Point Theorem, that
there exists ρ ∈ L2(Ω) such that T (ρ) = ρ which gives that ρ is a solution of
problem (3.1) (in particular, we recall that Theorem 2.1 gives that ρ > 0 a.e. in
Ω).

4. Proof of Theorem 1.3

In this section we pass to the limit on the regularized problem in order to prove the
existence of a solution to (1.5). We assume that the hypotheses of Theorem 1.3 are
satisfied. Thanks to the previous section, we know that the regularized problem
has a solution. This regularized problem is defined with three parameters which
are m, l, and n. We will first let m → +∞ (Step 1), then l → +∞ (Step 2) and
finally n→ +∞ (Step 3).

Step 1, m→ +∞
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In this step l and n are fixed in N∗ and we prove the existence of a solution to (3.1)
with η instead of ηm, namely a solution to (4.1).

u ∈ H1
0 (Ω)N , ρ ∈ H1(Ω), p ∈ L2(Ω),(4.1a) ∫

Ω

∇u : ∇v dx−
∫

Ω

p div(v) dx =

∫
Ω

fl(x, ρ) · v dx, ∀v ∈ H1
0(Ω)N ,(4.1b) ∫

Ω

ϕ(ρ)u ·∇ψ dx− 1

n

∫
Ω

∇ρ(x) ·∇ψ(x) dx = 0 for all ψ ∈ H1(Ω),(4.1c)

ρ > 0 a.e. in Ω,

∫
Ω

ρ dx = M, p = η(ρ) a.e. in Ω.(4.1d)

Let (um, pm, ρm) be a solution of (3.1). Taking um as test function in (3.1b) yields
(where ‖u‖H1

0 (Ω)N = ‖ |∇u| ‖L2(Ω))

‖um‖2H1
0 (Ω)N

−
∫

Ω

pm div(um) dx =

∫
Ω

fl(x, ρm) · um dx.

which gives, since pm = ηm(ρm),

‖um‖2H1
0 (Ω)N

−
∫

Ω

ηm(ρm) div(um) dx =

∫
Ω

fl(x, ρm) · um dx.

We now use Lemma 5.2. It gives, thanks to the fact that (ρm, um) satisfy Equation
(3.1c),

∫
Ω
ηm(ρm) div(um) dx ≤ 0 (this Lemma uses hypothesis (1.4b) on ϕ and the

fact that ϕ(s) > 0 for s > 0). Then, we have

‖um‖2H1
0 (Ω)N

≤
∫

Ω

fl(x, ρm) · um dx.

Using Poincaré and Hölder inequalities, we obtain the existence of C1 only depend-
ing on l and Ω such that

(4.2) ‖um‖H1
0 (Ω)N ≤ C1.

Using (4.2) and theorem 2.1, there exists C2 only depending on l, Ω, M, ϕ and n
such that

(4.3) ‖ρm‖H1(Ω) ≤ C2.

In order to obtain a bound for pm in L2(Ω), we now choose v given by Lemma 5.3
with q = pm −m(pm), where m(pm) is the mean value of pm. Taking v in (3.1b)
and using

∫
Ω

div(v) dx = 0 give∫
Ω

(
pm −m(pm)

)2
dx =

∫
Ω

(fl(x, ρm) · v −∇um : ∇v) dx.

Then, since ‖v‖H1
0 (Ω)N ≤ Cd ||pm − m(pm)||L2(Ω) (Cd given by Lemma 5.3) and

‖um‖H1
0 (Ω)N ≤ C1, the preceding inequality leads to an estimate on the L2-norm

of (pm −m(pm)), i.e. the existence of C3, only depending on Ω and l , such that

(4.4) ‖pm −m(pm)‖L2(Ω) ≤ C3.

We now use the fact that
∫

Ω
ρm dx = M to deduce an estimate on ‖pm‖L2(Ω). The

function η is a one-to-one function from R+ onto R+. We denote by η̄ its reciprocal
function (that is η̄(η(s)) = η(η̄(s)) = s for all s ∈ R+). we thus get∫

Ω

η̄(pm) dx =

∫
Ω

η̄(ηm(ρm)) dx ≤
∫

Ω

η̄(η(ρm)) dx =

∫
Ω

ρm dx = M.
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and then, using (4.4) and Lemma 5.4 , there exists C4, only depending on the Ω, l,
η and M , such that:

(4.5) ||pm||L2(Ω) ≤ C4.

Remark 4.1. The fact that η is increasing is not necessary here. If η is only nonde-
creasing, the estimate on p is obtained using the reciprocal function of s 7→ η(s)+s
(instead of the reciprocal function of η). This is useful for Theorem 4.2.

Thanks to the estimates (4.2), (4.3) and (4.5), we have, up to a subsequence, as
m→ +∞,

um → u weakly in H1
0 (Ω)N ,

ρm → ρ a.e., in L2(Ω) and weakly in H1(Ω),

pm → p weakly in L2(Ω).

Then, passing to the limit (as m→ +∞) in the equations satisfied by (um, ρm, pm)
gives that (u, p, ρ) is solution of (4.1). In particular, since ηm(ρm)→ η(ρ) a.e and
(ηm(ρm))m∈N is bounded in L2(Ω), one has ηm(ρm)→ η(ρ) in Lq(Ω) for all q < 2.
Since ηm(ρm) = pm → p weakly in L2(Ω), we then conclude that p = η(ρ). We
recall also that the fact that ρ > 0 a.e. in Ω is given by Theorem 2.1. This concludes
the proof of Step 1.

Step 2, l→ +∞
In this step n is fixed in N∗ and we prove the existence of a solution to (4.1) with
f instead of fl, namely a solution to (4.6).

u ∈ H1
0 (Ω)N , ρ ∈ H1(Ω), p ∈ L2(Ω),(4.6a) ∫

Ω

∇u : ∇v dx−
∫

Ω

p div(v) dx =

∫
Ω

f(x, ρ) · v dx, ∀v ∈ H1
0(Ω)N ,(4.6b) ∫

Ω

ϕ(ρ)u ·∇ψ dx− 1

n

∫
Ω

∇ρ(x) ·∇ψ(x) dx = 0 for all ψ ∈ H1(Ω),(4.6c)

ρ > 0 a.e. in Ω,

∫
Ω

ρ dx = M, p = η(ρ) a.e. in Ω.(4.6d)

Let (ul, pl, ρl) be a solution of (4.1). The main additionnal difficulty with respect
to Step 1 is to obtain the H1

0 (Ω) estimate on ul. Taking ul as test function in (4.1b)
yields

‖ul‖2H1
0 (Ω)N

−
∫

Ω

pl div(ul) dx =

∫
Ω

fl(x, ρl) · ul dx.

which gives, since pl = η(ρl),

‖ul‖2H1
0 (Ω)N

−
∫

Ω

η(ρl) div(ul) dx =

∫
Ω

fl(x, ρl) · ul dx.

Thanks to the fact that (ρl, ul) satisfy Equation (4.1c) and using Lemma 5.2 one
has

∫
Ω
η(ρl) div(ul) dx ≤ 0. Then, we have

‖ul‖2H1
0 (Ω)N

≤
∫

Ω

fl(x, ρl) · ul dx.

Using Poincaré and Cauchy-Schwarz inequalities, we obtain the existence of C1 only
depending on f and Ω such that

(4.7) ‖ul‖H1
0 (Ω)N ≤ C1(‖ρl‖L2(Ω) + 1).
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Using (1.3b) and pl = η(ρl), for all ε > 0 there exists Cε only depending on ε, η and
Ω such that:

(4.8) ‖ρl‖L2(Ω) ≤ Cε + ε‖pl‖L2(Ω).

Then, with (4.7), for all ε > 0, there exists C̃ε, only depending on ε, f, and Ω, such
that

(4.9) ‖ul‖H1
0 (Ω)N ≤ C̃ε + ε‖pl‖L2(Ω).

We now choose (as in Step 1) v given by Lemma 5.3 with q = pl −m(pl), where
m(pl) is the mean value of pl. Taking v in (4.1b) and using

∫
Ω

div(v) dx = 0 give

(4.10)

∫
Ω

(
pl −m(pl)

)2
dx =

∫
Ω

(fl(x, ρl) · v −∇ul : ∇v) dx.

Since ‖v‖H1
0 (Ω)N ≤ Cd ||pm −m(pm)||L2(Ω) (Cd given by Lemma 5.3), Inequalities

(4.10) and (4.9) (and Poincaré Inequality) give the existence of C̄ε only depending
on ε, f, η and Ω, such that

‖pl −m(pl)‖L2(Ω) ≤ ε‖p‖L2(Ω) + C̄ε.

As in Step 1, we now use
∫

Ω
ρm dx = M (and the fonction η̄). Taking ε < 1 gives,

by Lemma 5.4 , the existence of C2, only depending on the Ω, f, η and M , such
that

(4.11) ||pl||L2(Ω) ≤ C2.

As in Remark 4.1, this estimate holds also if η is nondecreasing (instead of increas-
ing).

With (4.11), turning back to (4.9) and (4.8), there exists C3, only depending on Ω,
f, η and M , such that

(4.12) ‖ul‖H1
0 (Ω)N ≤ C3 and ‖ρl‖L2(Ω)N ≤ C3.

Since n is fixed, we also obtain an H1(Ω) estimate on ρl. Actually, Theorem 2.1
gives the existence of C4 only depending on the Ω, f, η, M, ϕ and n such that

(4.13) ‖ρl‖H1(Ω) ≤ C4.

Thanks to the estimates obtained in this Step 2, it is possible to assume (up to a
subsequence) that, as l→ +∞:

• ul → u in L2(Ω)N and weakly in H1
0 (Ω)

N
,

• ρl → ρ a.e, in L2(Ω) and weakly in H1(Ω),
• pl → p weakly in L2(Ω).

Then, passing to the limit (as l→ +∞) in the equations satisfied by (ul, ρl, pl) gives
that (u, p, ρ) is solution of (4.6). In particular, as in Step 1, since η(ρl)→ η(ρ) a.e
and (η(ρl))m∈N is bounded in L2(Ω), one has η(ρl) → η(ρ) in Lq(Ω) for all q < 2.
Since η(ρl) = pl → p weakly in L2(Ω), we then conclude that p = η(ρ). Here also,
we recall that the fact that ρ > 0 a.e. in Ω is given by Theorem 2.1. This concludes
the proof of Step 2.

Step 3, n→ +∞
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Step 2 gives, for all n ∈ N∗ the existence of (un, ρn, pn) such that

un ∈ H1
0 (Ω)N , ρn ∈ H1(Ω), pn ∈ L2(Ω),(4.14a) ∫

Ω

∇un : ∇v dx−
∫

Ω

pn div(v) dx =

∫
Ω

f(x, ρn) · v dx, ∀v ∈ H1
0(Ω)N ,(4.14b) ∫

Ω

ϕ(ρn)un ·∇ψ dx− 1

n

∫
Ω

∇ρn(x) ·∇ψ(x) dx = 0 for all ψ ∈ H1(Ω),(4.14c)

ρn > 0 a.e. in Ω,

∫
Ω

ρn dx = M, pn = η(ρn) a.e. in Ω.(4.14d)

In order to obtain a solution of (1.5), we have to pass to the limit in these equations
as n→ +∞.

As in Step 2, we obtain an H1
0 (Ω) estimate on un and an L2(Ω) estimate on ρn and

pn (the proof is the same as in Step 2, replacing fl by f). Namely, there exists C1

only depending on Ω, f, η and M , such that

(4.15) ‖un‖H1
0 (Ω)N , ‖ρn‖L2(Ω), ‖pn‖L2(Ω) ≤ C1.

Thanks to these estimates, it is possible to assume (up to a subsequence) that, as
n→ +∞,

• un → u in L2(Ω)N and weakly in H1
0 (Ω)

N
,

• ρn → ρ weakly in L2(Ω),
• pn → p weakly in L2(Ω).

But, we do not have anH1(Ω) estimate on ρn (this estimate in Step 2 was depending
on n). So, we need some additional tricks to prove the convergence of f(·, ρn), ϕ(ρn)
and η(ρn) to f(·, ρ), ϕ(ρ) and η(ρ).

We first remark that the weak convergence of ρn in L2(Ω) gives ρ ≥ 0 a.e. and∫
Ω
ρ dx = M .

We now try to pass to the limit in (4.14b) and (4.14c). For n ∈ N∗, we set
hn = f(·, ρn) and qn = ϕ(ρn). Thanks to Hypothesis (1.2) on f and Hypothesis
(1.4b) on ϕ, the sequences (hn)n∈N∗ and (qn)n∈N∗ are bounded in L2(Ω)N and
L2(Ω). Then, it is possible to assume (up to a subsequence) that, as n→ +∞,

• hn → h weakly in L2(Ω)N ,
• qn → q weakly in L2(Ω).

Thanks to the convergence of un, pn and hn, it is quite easy to pass to the limit,
as n→∞, in (4.14b). We obtain

(4.16)

∫
Ω

∇u : ∇v dx−
∫

Ω

p div(v) dx =

∫
Ω

h · v dx, ∀v ∈ H1
0(Ω)N .

We prove now that

(4.17)

∫
Ω

qu ·∇ψ dx = 0 for all ψ ∈W 1,∞(Ω),

Let ε > 0 and n ∈ N∗. We take ψ = ln(ρn + ε) in (4.14c) (this is possible since
ρn > 0 a.e. and then ψ ∈ H1(Ω)). We obtain

1

n

∫
Ω

|∇ρn(x)|2

ρn(x) + ε
dx =

1

n

∫
Ω

∇ρn(x) ·∇ψ(x)dx =

∫
Ω

ϕ(ρn(x))u(x) · ∇ρn(x)

ρn(x) + ε
.
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We define φ by φ(s) =
∫ s

0
ϕ(ξ)
ξ+ε dξ for s > 0. Thanks to (1.4b), one has |φ(s)| ≤ Ls

(and |ϕ(s)| ≤ Ls) for all s > 0. Since ρn ∈ H1(Ω) and ρn > 0 a.e., one has
φ(ρn) ∈ H1(Ω) and the previous equality gives

1

n

∫
Ω

|∇ρn(x)|2

ρn(x) + ε
dx =

∫
Ω

u(x) ·∇φ(ρn(x)) dx =

∫
Ω

φ(ρn(x))div(u(x)) dx.

Then, thanks to (4.15), there exists C2 only depending on Ω, f, η and M , such that

1

n

∫
Ω

|∇ρn(x)|2

ρn(x) + ε
dx ≤ C2.

When ε→ 0, this inequality gives, with the theorem of Monotone Convergence, for
all n ∈ N∗,

(4.18)
1

n

∫
Ω

|∇ρn(x)|2

ρn(x)
dx ≤ C2.

Inequality (4.18) allows us to prove (4.17). Indeed, let ψ ∈ W 1,∞(Ω). Thanks to
the convergence of un to u in L2(Ω) and to the weak convergence of ϕ(ρn) to q in
L2(Ω), one has, as n→∞,∫

Ω

ϕ(ρn)un ·∇ψ dx→
∫

Ω

qu ·∇ψ dx,

and Inequality (4.18) gives∣∣ 1
n

∫
Ω

∇ρn(x) ·∇ψ(x) dx
∣∣ ≤ 1√

n

√
C2M‖|∇ψ |‖L∞(Ω) → 0.

Then, passing to the limit in (4.14c) (with ψ ∈W 1,∞(Ω)) leads to (4.17).

The main difficulty now is that we do not know if h = f(·, ρ) and q = ϕ(ρ) (except
in the very interesting case where f(x, ρ) = f̄(x) + g(x)ρ(x), with f̄ ∈ L2(Ω) and
g ∈ L∞(Ω)) and we do not know if p = η(ρ) (at least, up to a subsequence). In
order to prove these results, we will first show that

lim inf
n→∞

∫
Ω

pnqn dx ≤
∫

Ω

pq dx.

Since the sequence (qn)n∈N is bounded in L2(Ω), Lemma 5.5 gives the existence of
a bounded sequence (vn)n∈N in H1(Ω)N such that div(vn) = qn and curl(vn) = 0.
It is possible to assume (up to a subsequence) that vn → v in L2(Ω)N and weakly
in H1(Ω)N . Passing to the limit as n→∞ gives div(v) = q and curl(v) = 0.

Let ψ ∈ C∞c (Ω) (so that vnψ ∈ H1
0(Ω)N ). Taking v = vnψ in (4.14b) leads to∫

Ω

∇un : ∇(vnψ) dx−
∫

Ω

pn div(vnψ) dx =

∫
Ω

hn · (vnψ) dx.

Since un, vnψ ∈ H1
0 (Ω)N one has∫

Ω

∇un : ∇vnψ dx =

∫
Ω

curl(un) · curl(vnψ) dx+

∫
Ω

div(un) div(vnψ) dx.

Thus,∫
Ω

div(un) div(vnψ) dx+

∫
Ω

curl(un) · curl(vnψ) dx

−
∫

Ω

pn div(vnψ) dx =

∫
Ω

hn · (vnψ) dx.
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The choice of vn gives div(vnψ) = qnψ + vn ·∇ψ and curl(vnψ) = L(ψ)vn, where
L(ψ) is a matrix with entries involving the first order derivatives of ψ. Then, the
previous equality yields∫

Ω

(
div(un)− pn

)
qn ψ dx+

∫
Ω

div(un) vn ·∇ψ dx

+

∫
curl(un) · L(ψ) vn dx−

∫
Ω

pnvn ·∇ψ dx =

∫
Ω

hn · (vnψ) dx.

Thanks to the weak convergence of un in H1
0(Ω)N to u, the weak convergence of pn

in L2(Ω) to p, the weak convergence of hn in L2(Ω) to h and the convergence of vn
in L2(Ω)N to v, we obtain:

(4.19) lim
n→∞

∫
Ω

(
div(un)− pn

)
qn ψ dx =

∫
Ω

h · (vψ) dx−
∫

Ω

div(u) v ·∇ψ dx

−
∫

Ω

curl(u) · L(ψ) v dx+

∫
Ω

p v ·∇ψ dx.

But, thanks to (4.16), (u, p) satisfies:∫
Ω

∇u : ∇(vψ) dx−
∫

Ω

p div(vψ) dx =

∫
Ω

h · (vψ) dx,

or equivalently:∫
Ω

div(u) div(vψ) dx+

∫
Ω

curl(u) · curl(vψ) dx−
∫

Ω

p div(vψ) dx =

∫
Ω

h · (vψ) dx,

which gives (using div(v) = q and curl(v) = 0)∫
Ω

(div(u)− p) q ψ dx+

∫
Ω

div(u) v ·∇ψ dx+

∫
Ω

curl(u) · L(ψ) v dx

−
∫

Ω

p v ·∇ψ dx =

∫
Ω

h · (vψ) dx.

Then, with (4.19), we obtain:

(4.20) lim
n→∞

∫
Ω

(
pn − div(un)

)
qn ψ dx =

∫
Ω

(
p− div(u)

)
q ψ dx.

In (4.20), the function ψ is an arbitrary element of C∞c (Ω). We are going to prove
now that it is possible to take ψ = 1 in this relation.
Let a > 0. Thanks to (1.4b) and (1.3b), there exists b > 0 such, a.e. on Ω,

aqn = aϕ(ρn) ≤ η(ρn) + b = pn + b,

so that

q2
n ≤

2p2
n

a2
+

2b2

a2
.

If C is a bound for the L2-norm of pn (we already have such a bound), one obtains
for any borelian subset A of Ω,∫

A

q2
ndx ≤

2C2

a2
+

2b2

a2
|A|.

Let ε > 0, we then take a2 = 2C2/ε which yields:∫
A

ρ2
ndx ≤ ε+

2b2

a2
|A|.
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and then, with δ =
εa2

2b2
,

|A| ≤ δ ⇒
∫
A

q2
ndx ≤ 2ε.

This proves the equi-integrability of the sequence (q2
n)n∈N. Since the sequence

((divhn
un−pn))n∈N is bounded in L2(Ω), we then easily conclude (with the Cauchy-

Schwarz inequality) that the sequence ((divhn
un − pn)qn)n∈N is equi-integrable.

Thus Lemma 5.7 yields the conclusion, namely (4.20) is true for ψ = 1 a.e. on Ω:

(4.21) lim
n→∞

∫
Ω

(
div(un)− pn

)
qn dx =

∫
Ω

(
div(u)− p

)
q dx.

We now use the fact that ϕ is continuous and nondecreasing. It gives, by Lemma
5.3 with φ = ϕ, that∫

Ω

qndiv(un) dx =

∫
Ω

ϕ(ρn)div(un) dx ≤ 0

and then∫
Ω

pnqn dx =

∫
Ω

(
pn − div(un)

)
qn dx+

∫
Ω

div(un) qn dx ≤
∫

Ω

(
pn − div(un)

)
qn dx.

With (4.21) it yields

lim sup
n→∞

∫
Ω

pnqn dx ≤
∫

Ω

(
p− div(u)

)
q dx.

We now recall that (q, u) satisfy (4.17). One has u ∈ H1
0 (Ω), q ∈ L2(Ω) and q ≥ 0

a.e. (since ϕ is nondecreasing and then qn = ϕ(ρn) ≥ 0 a.e.). Then, Lemma 5.8
gives

∫
Ω
qdiv(u) dx = 0 which gives

lim sup
n→∞

∫
Ω

pnqn dx ≤
∫

Ω

pq dx

and, up to a subsequence, we can assume

(4.22) lim
n→∞

∫
Ω

pnqn dx ≤
∫

Ω

pq dx.

We now use the fact that ϕ and η are increasing. The function η is a one-to-one
function from R onto R. We denote by η̄ the reciprocal function of η (that is
η̄(η(s)) = η(η̄(s)) = s for all s ∈ R+). Thanks to (1.3b), there exists b ∈ R such
that 0 ≤ η̄(s) ≤ s + b for all s ∈ R+. Then η̄(p) ∈ L2(Ω) (since p ∈ L2(Ω)). We
set ρ̄ = η̄(p) (so that η(ρ̄) = p) and Gn = (ϕ(ρn) − ϕ(ρ̄))(η(ρn) − η(ρ̄)) so that
Gn ∈ L1(Ω), Gn ≥ 0 a.e. and

0 ≤
∫

Ω

Gn dx =

∫
Ω

qnpn dx−
∫

Ω

qnp dx−
∫

Ω

ϕ(ρ̄)pn dx+

∫
Ω

ϕ(ρ̄)p dx.

Thanks to (4.22) and to the L2(Ω) weak convergences of qn and pn to p and q,
passing to the limit, as n→∞, in the previous inequality leads to

0 ≤ lim
n→∞

∫
Ω

Gn dx =

∫
Ω

(q − ϕ(ρ̄))(p− p) dx = 0.

This gives Gn → 0 in L1(Ω) and then, up to a subsequence,

(4.23) Gn = (ϕ(ρn)− ϕ(ρ̄))(η(ρn)− η(ρ̄))→ 0 a.e. in Ω.
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Thanks to the fact that ϕ and η are increasing, a classical argument by contradiction
gives, from (4.23), that ρn → ρ̄ a.e. in Ω as n→∞ (see, for instance [5]). Since
the sequence (ρn)n∈N is bounded in L2(Ω), we then conclude that ρn → ρ̄ in Lq(Ω)
for all q < 2. But, we already know that ρn → ρ weakly in L2(Ω) (and therefore
weakly in Lq(Ω) for q ≤ 2). Then, the uniqueness of the weak limit gives ρ̄ = ρ
a.e.. Therefore, we also obtain that q = ϕ(ρ) a.e., h = f(·, ρ) a.e. and p = η(ρ)
a.e. and this proves that (u, ρ, p) is solution of (1.5). This concludes the proof of
Theorem 1.3.

The following theorem (Theorem 4.2) is devoted to the important case where
f(x, ρ) = f̄(x) + g(x)ρ(x) and ϕ(ρ) = ρ). In this case, the hypothesis “η is in-
creasing” can be replaced by the weaker hypothesis “η is nondecreasing”.

Theorem 4.2. Let M > 0 and Ω be a connected bounded open set of RN (N ≥ 1)
with a Lipschitz continuous boundary. Assume that f(x, ρ) = f̄(x) + g(x)ρ(x), with
f̄ ∈ L2(Ω)N and g ∈ L∞(Ω)N . Assume that η satisfy (1.3) but with η nondecreasing
instead of η increasing. Then (1.5) has at least one solution.

Proof
In order to prove this theorem, there are some minor changes to do in the proof of
Theorem 1.3.

In Step 1 of the proof of Theorem 1.3, we have to change the definition of η̄ in order
to have the estimate on pm. We take, for η̄, the reciprocal function of the function
s 7→ η(s) + s (which is one-to-one from R+ onto R+), as it is explained in remark
4.1.

In Step 3, since ρn → ρ weakly in L2(Ω), as n→∞, the hypotheses on ϕ and f
give q = ρ and h = f(·, ρ). Then it remains only to prove that p = η(ρ).
Thanks to fact that η is nondecreasing, we now use the Minty-trick. In order to
have η defined on the whole R, we set η(s) = s for s < 0. Let ρ̄ ∈ L2(Ω) such that
η(ρ̄) ∈ L2(Ω). Since ρn, ρ̄, η(ρn), η(ρ̄) ∈ L2(Ω) one has, for all n ∈ N∗,

(4.24) 0 ≤
∫

Ω

(ρn − ρ̄)(η(ρn)− η(ρ̄)) dx =

∫
Ω

(ρn − ρ̄)(pn − η(ρ̄)) dx.

Thanks to (4.22) and to the L2(Ω) weak convergences of ρn and pn to ρ and p,
passing to the limit, as n→∞, in the previous inequality leads to

0 ≤
∫

Ω

(ρ− ρ̄)(p− η(ρ̄)) dx.

which gives also

(4.25) 0 ≤
∫

Ω

(ρ− ρ̄)(p+ ρ− η(ρ̄)− ρ̄) dx,

Let η̄ be the reciprocal function of the function s 7→ η(s) + s (which is a one-to-one
function from R onto R). Let p̄ ∈ L2(Ω). Since 0 ≤ η̄(s) ≤ s for all s ∈ R+, one
has η̄(p̄) ∈ L2(Ω) and we can take ρ̄ = η̄(p̄) in (4.25), it yields

(4.26) 0 ≤
∫

Ω

(ρ− η̄(p̄))(p+ ρ− p̄) dx.
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Let ψ ∈ C∞c (Ω) and ε > 0. Taking p̄ = p+ ρ+ εψ in (4.26) and letting ε→ 0 leads
to, with the Dominated Convergence Theorem,

0 ≤ −
∫

Ω

(ρ− η̄(p+ ρ))ψ dx.

Since ψ is arbitrary in C∞c (Ω), we then conclude that ρ = η̄(p+ρ) a.e. and, finally,
p = η(ρ) a.e.. This concludes Theorem 4.2.

5. Some lemmas

Lemma 5.1. Let Ω be a connected bounded open set of RN (N ≥ 1) with a Lipschitz
continuous boundary. Let ω ⊂ Ω be a measurable set with positive Lebesgue measure.
We define the set Wω by:

Wω = {u ∈W 1,1(Ω) such that u = 0 a.e. in ω}.

Then there exist C only depending on Ω and ω such that

(5.1) ‖u‖Lp(Ω) ≤ C‖ |∇u| ‖L1(Ω) for all u ∈Wω and for all 1 ≤ p ≤ N

N − 1
.

Proof
Since Ω is bounded, we only have to prove (5.1) for p = 1? = N/(N − 1). With the
Sobolev Embedding Theorem, we already know that there exist C1 only depending
on Ω such that ‖u‖L1? (Ω) ≤ C1‖u‖W 1,1(Ω) for all u ∈ W 1,1(Ω). Then we only have

to show that on Wω the W 1,1-norm of u is equivalent to the L1-norm of the gradient
of u, that is that there exists C2 only depending on Ω and ω such that

(5.2) ‖u‖L1(Ω) ≤ C2‖ |∇u| ‖L1(Ω) for all u ∈Wω.

In order to prove the existence of C2 such that (5.2) holds, we argue by contradic-
tion. We assume the existence of a sequence (un)n∈N? in Wω such that

‖un‖L1(Ω) ≥ n‖ |∇un| ‖L1(Ω) for all n ∈ N?.

Replacing un by un/‖un‖L1(Ω), we can assume that ‖un‖L1(Ω) = 1. Then, (un)n∈N?

is bounded in W 1,1(Ω) and it is relatively compact in L1(Ω) (by Rellich’ Theorem).
Therefore, we can assume (up to a subsequence) that un → u in L1(Ω) and a.e..
Furthermore, since

‖ |∇un| ‖L1(Ω) ≤
1

n
,

one has ∇u = 0 a.e. in Ω and, since Ω is connected, u is a constant function. Then,
the fact that un = 0 a.e. in ω gives that u = 0 a.e. in ω. Therefore u = 0 a.e. in
Ω. But, this is impossible since un → u in L1(Ω) and ‖un‖L1(Ω)=1. This concludes
the proof of Lemma 5.1.
N.B. It is also possible to prove Lemma 5.1 using the “mean-value” Sobolev Inequal-
ity (or also using the Poincaré-Wirtinger Inequality). Actually, there exists Cs only
depending on Ω such that for all u ∈W 1,1(Ω) one has, with mλN (Ω) =

∫
Ω
u(x)dx,

‖u−m‖L1? (Ω) ≤ Cs‖ |∇u| ‖L1(Ω).

Then, for u ∈Wω, since gives∫
Ω\ω
|u−m|1

?

dx+ |m|1
?

λN (ω) ≤ C1?

s ‖ |∇u| ‖1
?

L1(Ω).
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Then, we have |m| ≤ Cs

λN (ω)1/1? ‖ |∇u| ‖L1(Ω), and we conclude by using

‖u‖L1? (Ω) ≤ ‖u−m‖L1? (Ω) + |m|λN (Ω)1/1?

≤ Cs
(

1 +
(λN (Ω)

λN (ω)

)1/1?)
‖ |∇u| ‖L1(Ω).

Lemma 5.2. Let Ω be a connected bounded open set of RN (N = 2 or 3) with a
Lipschitz continuous boundary. Let ϕ be a function from R to R satisfying (1.4b)
and such that ϕ(s) > 0 if s > 0. Let n ∈ N?,M > 0, u ∈ H1

0(Ω)N and ρ ∈ H1(Ω) a
solution of the following problem:

(5.3)

∫
Ω

ϕ(ρ(x))u(x) ·∇ψ(x)dx− 1

n

∫
Ω

∇ρ(x) ·∇ψ(x)dx = 0 ∀ψ ∈ H1(Ω),∫
Ω

ρ(x) dx = M.

Then, ρ > 0 and for Φ ∈ C0(R+,R) nondecreasing such that Φ(0) = 0 and Φ(ρ) ∈
L2(Ω),

(5.4)

∫
Ω

Φ(ρ)div(u) dx ≤ 0

Proof
The positivity of the solution ρ of (5.3) results from theorem 2.1 .
We now give the proof of (5.4) which is composed of four steps.

Step 1 Let α, β, γ ∈ R∗+, β < γ. We suppose in this case that Φ satisfies the
following properties:  Φ ∈ C1(R),nondecreasing,

Φ = 0 on ]−∞, β],
Φ = α on ]γ,+∞[.

Let Ψ defined by Ψ(s) =

∫ s

0

Φ′(t)

ϕ(t)
dt .

Taking ψ = Ψ ◦ ρ ∈ H1(Ω) in equation (5.3), that is∫
Ω

ϕ(ρ)u ·∇ψ dx− 1

n

∫
Ω

∇ρ ·∇ψ dx = 0,

we obtain ∫
Ω

u · Φ′(ρ)∇ρ dx− 1

n

∫
Ω

|∇ρ|2 Φ′(ρ)

ϕ(ρ)
dx = 0

Using the fact that the function Φ is nondecreasing and ρ > 0, we get∫
Ω

uΦ′(ρ)∇ρ dx ≥ 0

and then since u ∈ H1
0 (Ω)d, ∫

Ω

Φ(ρ)div(u) dx ≤ 0.



20 A. FETTAH, T. GALLOUËT, AND H. LAKEHAL

Step 2 In this step, we also have α, β, γ ∈ R∗+, β < a and we take Φ satisfying Φ ∈ C0(R),nondecreasing,
Φ = 0 on ]−∞, β],
Φ = α on [γ,+∞[.

Let (αm)m∈N? ∈ C∞c (R) be a sequence of mollifiers, that is αm(s) = mα(ms) (for
s ∈ R, m ∈ N∗), α ∈ C∞c (R,R+), α(s) = 0 if |s| ≥ 1 and

∫
R αdx = 1.

Let Φm = Φ ∗ αm.We then get by Step 1, if 1/m < β∫
Ω

Φm(ρ)div(u) dx ≤ 0

and then using the fact that

Φm → Φ a.e inR
and

‖Φm‖L∞ ≤ ‖Φ‖L∞‖αm‖L1 = ‖Φ‖L∞

we thus get applying the Dominated Convergence Theorem, as m→ +∞,∫
Ω

Φ(ρ)div(u) dx ≤ 0.

Step 3 In this step we take α, γ ∈ R?+ and Φ satisfying Φ ∈ C0(R),nondecreasing,
Φ = 0 on ]−∞, 0]
Φ = α on [a,+∞[.

Let β > 0 and Φβ defined by Φβ(x) = Φ(x− β) so that Φβ = 0 on ]−∞, β]. Then
by Step 2 we get ∫

Ω

Φη(ρ)div(u) dx ≤ 0

Finally, applying the Dominated Convergence Theorem, we get as β → 0

(5.5)

∫
Ω

Φ(ρ)div(u) dx ≤ 0

Step 4 In this step we take Φ satisfying Φ ∈ C0(R),nondecreasing,
Φ(0) = 0,
Φ(ρ) ∈ L2(Ω).

Let n ∈ N∗ we define Φn by Φn(s) = min(n,Φ(s+)) where s+ = max(0, s). By Step
3 we have ∫

Ω

Φn(ρ)div(u) dx ≤ 0.

Since ρ > 0 and Φ(ρ) ∈ L2(Ω), applying the Dominated Convergence Theorem we
pass to the limit as n→ +∞ and we get∫

Ω

Φ(ρ)div(u) dx ≤ 0.

The following lemma is well-known. A simple proof of this result is given in [2].
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Lemma 5.3. Let Ω be a bounded open subset of RN (N ≥ 1) with a Lipschitz
continuous boundary. Let q ∈ L2(Ω) such that

∫
Ω
q dx = 0. Then, there exists

w ∈ H1
0(Ω)N such that div(w) = q a.e. in Ω and ‖w‖H1

0 (Ω)N ≤ Cd‖q‖L2(Ω) where
Cd only depends on Ω.

Lemma 5.4. Let Ω be a bounded set of RN (N ≥ 1) and p ∈ L2(Ω), p ≥ 0 a.e..
We assume that there exist 0 ≤ a < 1 and b ∈ R such that

‖p−m‖L2(Ω) ≤ a‖p‖L2(Ω) + b,

where m is the mean value of p. Furthermore, we assume that there exist A ∈
R and a continuous function θ from R+ to R+ such that

∫
Ω
θ(p)dx ≤ A and

lims→+∞ θ(s) = +∞. Then, there exists C only depending on Ω, a, b, A and θ
such that

‖p‖L2(Ω) ≤ C.

The proof of Lemma 5.4 is in [7].

Lemma 5.5. Let Ω be a bounded open set of RN and q ∈ L2(Ω). Then, there
exists v ∈ H1(Ω)N such that div(v) = q a.e. in Ω, curl(v) = 0 a.e. in Ω and
‖v‖H1(Ω)N ≤ C‖q‖L2(Ω) where C only depends on Ω.

Proof
This lemma is very classical. For instance, it is possible to take v = ∇w where
w ∈ H1

0 (Ω) is the weak solution of ∆w = q in a ball B containing Ω (see, for
instance, [5]).

Definition 5.6. Let Ω be a subset of RN . A sequence (Fn)n∈N ⊂ L1(Ω) is said
equi-integrable if

lim
λN (A)→0

∫
A

|Fn| dx = 0, uniformly with respect to n ∈ N,

where λN (A) denotes the N−dimensional Lebesgue measure of the Borelian subset
A ⊂ Ω.

Lemma 5.7. Let Ω be a bounded open subset of RN . Let (Fn)n∈N ⊂ L1(Ω) be an
equi-integrable sequence, and F be a function of L1(Ω). We assume that:

(5.6) lim
n→∞

∫
Ω

Fnϕdx =

∫
Ω

Fϕdx for all ϕ ∈ C∞c (Ω).

Then

lim
n→∞

∫
Ω

Fn dx =

∫
Ω

F dx.

Lemma 5.7 is well-known. A proof is given, for instance, in [5].

Lemma 5.8. Let Ω be a bounded open subset of RN . Let q ∈ L2(Ω), q ≥ 0 a.e. in
Ω and u ∈ H1

0 (Ω)N . Assume that (q, u) satisfies:

(5.7)

∫
Ω

q u ·∇ψdx = 0 for all ψ ∈W 1,∞(Ω).

Then,

(5.8)

∫
Ω

q div(u) dx = 0.



22 A. FETTAH, T. GALLOUËT, AND H. LAKEHAL

See [5] for a proof of Lemma 5.8.
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