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Abstract

We give here a comparative study of the mathematical analysis of two (classes of) discretisation
schemes for the computation of approximate solutions to incompressible two phase flow problem
in homogeneous porous media. The first scheme is the well-known finite volume scheme with a
two-point flux approximation, classically used in industry. The second class contains the so-called
approximate gradient schemes, which include finite elements with mass lumping, mixed finite ele-
ments, mimetic finite differences. Both (classes of) schemes are nonconforming and can be expressed
using discrete function and gradient reconstructions within a variational formulation. Each class has
its specific advantages and drawbacks: monotony properties are natural with the two point finite vol-
ume scheme, but meshes are restricted due to consistency issues; on the contrary, gradient schemes
can be used on general meshes, but monotony properties are difficult to obtain.

KEYWORDS. two-phase flow in porous media, two-point flux approximation, finite volume scheme,
gradient scheme.

1 Introduction

Ideally, discretisation schemes should be both consistent and robust. By consistent we mean that if the
scheme converges, then it converges to a (weak) solution of the problem under study, and by robust, we
mean that it preserves the physical properties of the unknowns. In the past several decades, a great deal
of effort has been put into finding this ideal scheme for the simulation of fluid flow in porous media,
which would be both consistent on any mesh and robust: we refer to e.g [13, 18] and references therein
for a battery of tests and schemes for anisotropic and heteregenous problems.
Here we concentrate on the finite volume scheme with two point flux approximation, which is widely
used in industry, and which we shall call the TP scheme here for short, and on the class of gradient
schemes, which can be shown to include well-known schemes such as the conforming finite elements
with mass lumping, also known as Control Volume Finite Element, mixed finite elements, and some
MPFA schemes, as well as some recently developed schemes such as the mimetic method, the mixed and
hybrid finite volumes or the SUSHI scheme [12]. Our aim here is to analyze the mathematical properties
of these two (classes of) schemes, in order to better understand their mechanisms. To this purpose, we
choose to work on a simplified model for two-phase flow in porous media problem, which is clearly more
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difficult than a mere diffusion problem but which remains simple enough to compare the different steps
in the mathematical analysis.
Let Ω be an open bounded subset of Rd(d ≥ 0), let T ∈ R+. The saturation u : Ω×]0, T [→ R and the
pressures p1, p2 : Ω×]0, T [→ R of the two phases are solution to the following coupled system posed
on the domain Ω×]0, T [:

ut − div(k1(u)∇p1) = f1(c) s+ − f1(u) s−, (1)

(1− u)t − div(k2(u)∇p2) = f2(c) s+ − f2(u) s−, (2)

p2 − p1 = pc(u), (3)

The functions k1(u) and k2(u) respectively denote the mobilities of the wetting fluid and of the non-
wetting fluid and the function pc(u) represents the capillary pressure. The functions s+ and s− stand
respectively for an injection and a production volumetric flow rate. The composition of the injected fluid
in the wetting and non wetting components is prescribed by the imposed input saturation c, whereas that
of the produced fluid depends on the saturation u, by means of “the fractional flows” f1 and f2 of the
wetting and non-wetting phases defined by:

f1(a) =
k1(a)

k1(a) + k2(a)
,

f2(a) =
k2(a)

k1(a) + k2(a)
= 1− f1(a),

∀a ∈ [0, 1].

Following Chavent [6], in order to obtain a weak formulation (which is shown in the sequel to be the
limit of the numerical scheme), we introduce the following primitive functions p̃1 and p̃2:

p̃1(b) =

∫ b

1

k2(a)

k1(a) + k2(a)
pc
′(a)da and

p̃2(b) =

∫ b

1

k1(a)

k1(a) + k2(a)
pc
′(a)da, ∀b ∈ [0, 1]. (4)

The “global pressure” is then defined as p = p1 + p̃1(u) = p2 − p̃2(u) (indeed we have p2 − p1 =
pc(u) = p̃1(u) + p̃2(u)). Let us finally define the function ψ by:

ψ(b) = −
∫ b

0

k1(a)k2(a)

k1(a) + k2(a)
pc
′(a)da, ∀b ∈ [0, 1]. (5)

We then deduce that the saturation u and the global pressure p are solutions to the following system,
posed on the domain Ω×]0, T [:

ut + div(f1(u)v −∇ψ(u)) = f1(c) s+ − f1(u) s−, (6)

div(v) = s+ − s−, (7)

v = −M(u)∇p, (8)

where M(u) = k1(u) + k2(u) is the total mobility. Since our aim is to compare the main properties of
discretisation schemes, we assume homogeneous Dirichlet boundary conditions on p and ψ(u):

ψ(u) = 0 on ∂Ω×]0, T [, (9)

p = 0 on ∂Ω×]0, T [. (10)
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We complete the strong formulation of the problem with the following initial condition:

u(·, 0) = uini on Ω. (11)

Then the following conservation equation for the second phase is a consequence of (6)-(8) (which shows
that the two phases are treated symmetrically):

(1− u)t + div(f2(u)v +∇ψ(u)) = f2(c) s+ − f2(u) s−.

The data are assumed to satisfy the following assumptions:

• Ω is a polygonal connected subset of Rd, d = 1, 2 or 3, and T > 0 is given, (12a)

• uini ∈ L∞(Ω), and 0 ≤ uini ≤ 1 a.e in Ω, (12b)

• c ∈ L∞(Ω), and 0 ≤ c ≤ 1 a.e in Ω, (12c)

• s+, s− ∈ L2(Ω), s+ and s− ≥ 0 a.e.in Ω, (12d)

• f1 is a non-decreasingcontinuous function from R to [0, 1] s.t.

f1(x) = f1(0) = 0, for all x ∈ (−∞, 0], (12e)

f1(x) = f1(1) = 1, for all x ∈ [1,+∞), (12f)

•M is a nonnegative continuous function from R to R and

there exist real values 0 < M ≤M s.t. M ≤M(x) ≤M for all x ∈ R, (12g)

• ψ is (strictly) increasing and Lipschitz-continuous

from R to R with constant Lψ s.t. ψ(0) = 0, (12h)

|ψ(x)| ≥ A|x| −B for all x ∈ R, for some given values A,B ∈ (0,+∞). (12i)

Let us emphasize that these hypotheses correspond to industrial situations. In particular, the fact that
the function ψ is assumed to be Lipschitz continuous corresponds to the fact that the functions k1 and k2

tend to zero faster than the possible singularity of the capillary pressure function.
Note that functions M , f1 and ψ are assumed to be defined on R, even though they are functions of the
saturation; indeed, we are not able to prove that the approximation of the saturation remains in [0, 1]
when using a gradient scheme (see Section 3).

Definition 1.1 (Weak solution) Under assumptions and definitions (12), the pair (u, p) is a weak solu-
tion of Problem (6)-(11) if

u ∈ L2(Ω×]0, T [),

p ∈ L2(0, T ;H1
0 (Ω)),

ψ(u) ∈ L2(0, T ;H1
0 (Ω)),
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and for every function ϕ ∈ C∞c (Ω× [0, T [),∫ T

0

∫
Ω

[
−uϕt − (f1(u)v −∇ψ(u)) · ∇ϕ

]
dxdt−

∫
Ω
uini ϕ(., 0)dx

=

∫ T

0

∫
Ω

(f1(c) s+ − f1(u) s−)ϕdxdt (13)

∫ T

0

∫
Ω

[
v · ∇ϕ+ ( s+ − s−)ϕ

]
dxdt = 0, (14)

v = −M(u)∇p a.e. in Ω×]0, T [, (15)

where we denote by C∞c (Ω × [0, T [) the set of the restrictions of functions of C∞c (Ω×] − ∞, T [) to
Ω× [0, T [.

The remainder of this paper is concerned with the discretisation of Problem (6)-(11). The TP method
is presented in Section 2, and the gradient scheme is described in Section 3. Some conclusions and
perspectives are drawn in Section 4.

2 Approximation by the TP finite volume scheme

2.1 The mesh and the discrete operators

The Two-Point Flux Approximation (TPFA in the literature, TP for short) is used to discretise diffusion
terms under the form −divλ∇u (a few terms under this form occur in Problem (6)-(11)) on a finite
volume mesh M satisfying the following orthogonality condition: each control volume K ∈ M is
assumed to contain a point xK such that, for each pair of neighboring control volumes K,L ∈ M, the
line (xK ,xL) is orthogonal to the common interface K|L (see Fig.1). This leads to a strong restriction
on the meshes; main examples of such meshes are rectangular parallelepipedic boxes in 3D (possibly
distorted in the case of the so-called “corner point geometry”) or Voronoı̈ boxes (in which case the
control volume relative to xK are all the points that are closer to xK than to any other center point.).
For a given K ∈M, we denote by EK the set of all the faces of K, and we define the set of all faces

E =
⋃

K∈M
EK .

For any σ ∈ E , we define (see Fig.1) the set Dσ ⊂ Ω by:

• the union of the two cones with basis σ and respective vertices xK and xL if σ is the interface
between control volumes K and L,

• the cone with basis σ and vertex xK if σ is a boundary face and a face of the control volume K.

We denote by nK,σ the unit vector, normal to σ, oriented outward to K. For any face σ, we define dσ
as the distance between xK and xL if σ is the interface between control volumes K and L, and as the
orthogonal distance between xK and σ if σ ∈ EK is included in the boundary of the domain.
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xL

xK

L

K

σ′ ⊂ ∂Ω

σ ∈ EK ∩ EL

dσ
dσ′

nK,σ

Dσ′

Dσ

Figure 1: Two control volumes of an admissible mesh

We then denote by XD,0 = RM, and for u ∈ XD,0, we denote by ΠDu ∈ L2(Ω) the piecewise constant
function equal to uK in K ∈ M. Then for any u ∈ XD,0 and σ ∈ EK , we let uK,σ = uL if σ is the
interface between control volumes K and L, and uK,σ = 0 if σ is a boundary face. The finite volume
method consists in first writing

−
∫
K

div(λ∇u)dx = −
∑
σ∈EK

∫
σ
λ∇u · nK,σds,

and then specifying the approximation FK,σ of the flux
−
∫
σ λ∇u · nK,σds. The TP numerical flux FK,σ is defined by:

FK,σ = −λσ
|σ|
dσ

(uK,σ − uK), ∀σ ∈ EK , (16)

where |σ| is the area of σ in the 3D case (length in the 2D case and 1 in the 1D case), and λσ is a suitable
approximation of λ on σ.
The numerical flux is then consistent under the orthogonality assumption on the mesh (and this is actually
the reason why we need this assumption) in the sense that, for any function ϕ ∈ C∞c (Ω),

|
∫
σ
∇ϕ · nK,σ −

|σ|
dσ

(vK,σ − vK)| ≤ |σ|Cϕh, (17)

where v ∈ XD,0 is defined by vK = ϕ(xK) for all K ∈ M, Cϕ ∈ R+ depends only on ϕ and
h = max{diam(K), K ∈ M} is the size of the mesh. This consistency property is crucial in order for
the scheme to converge to the correct solution.
Note that the important following local conservation property, characterizing the finite volume frame-
work, holds in the case where σ is the interface between the control volumes K and L:

FK,σ + FL,σ = 0.

5
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We may write the TP finite volume schemes with discrete gradient operators. To this purpose, for any
u ∈ XD,0, we define the piecewise constant function ∇̂Du ∈ L2(Ω)d whose constant value ∇̂σu on Dσ

is defined by:

∇̂σu = d
uK,σ − uK

dσ
nK,σ, ∀K ∈M, ∀σ ∈ EK .

(Recall that d is the space dimension.) We also define, for any v ∈ XD,0, a piecewise constant function
∇̃Dv ∈ L2(Ω)d whose constant value ∇̃σv on Dσ is such that:

∇̃σv · nK,σ =
vK,σ − vK

dσ
, ∀K ∈M, ∀σ ∈ EK .

The discrete normal gradient thus defined is consistent with the normal gradient: this is in fact the same
property as the conservativity of the flux (17), obtained thanks to the orthogonality assumption on the
mesh. We complete the definition of ∇̃σv by any consistent reconstruction in the hyperplane parallel to
σ, chosen such that if ϕ ∈ C∞c (Ω) and v ∈ XD,0 is defined by vK = ϕ(xK) for all K ∈ M, then
∇̃Dv converges in L2(Ω)d to∇ϕ as the space step tends to 0: the whole discrete gradient ∇̃ is therefore
consistent.
If we now define by λD the piecewise constant function with value λσ onDσ, and using |Dσ| = 1

d |σ| dσ,
we infer from (16) that∑

K∈M
vK

∑
σ∈EK

FK,σ =

∫
Ω
λD∇̂Du · ∇̃Dvdx

=
∑

σ∈EK∩EL

λσ
|σ|
dσ

(uL − uK)(vL − vK) +
∑

σ∈EK ,σ⊂∂Ω

λσ
|σ|
dσ
uKvK , (18)

which leads to ∫
Ω
λD∇̂Du · ∇̃Dudx =

1

d

∫
Ω
λD|∇̂Du|2dx. (19)

2.2 The TP scheme for the two-phase flow problem

Let us consider the TP scheme for the discretisation of Problem (6)-(11). We consider a finite volume
discretisation D following the specification of the preceding section, and a discrete time sequence t(0) =

0 < t(1) . . . < t(N) = T ; the time step is defined as δt(n+ 1
2

) = t(n+1)−t(n) for n = 0, . . . , N−1, and the
discrete initial condition u(0)

K on cell K as the average value of uini on K. Then, for n = 0, . . . , N − 1,
we look for (u(n+1), p(n+1)) ∈ X2

D,0 such that

u
(n+1)
K − u(n)

K

δt(n+ 1
2

)
|K|+

∑
σ∈EK

|σ|
(

(V
(n+1)
K,σ )+f1(u

(n+1)
K )− (V

(n+1)
K,σ )−f1(u

(n+1)
K,σ )−

ψ(u
(n+1)
K,σ )− ψ(u

(n+1)
K )

dσ

)
= f1(cK)s+

K − f1(u
(n+1)
K )s−K , (20)∑

σ∈EK

|σ|V (n+1)
K,σ = s+

K − s
−
K , (21)

with V (n+1)
K,σ = −M (n+1)

σ

p
(n+1)
K,σ − p(n+1)

K

dσ
,

6
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where s±K =
∫
K s
±(x)dx, cK is the average value of c in K, M (n+1)

σ is equal to M(0) for an exterior

edge, and any averaging value between M(u
(n+1)
K ) and M(u

(n+1)
L ) in the case where σ is the interface

between control volumes K and L. Note that the above scheme is upstream weighted with respect to the
convection term in (20).

One may rewrite Scheme (20)-(21), introducing as in (18) the above defined discrete gradient operators.
This formulation of the TP scheme has a few common points with (27) corresponding to the gradient
scheme presented in Section 3.

u(0) ∈ XD,0, u(n+1) ∈ XD,0, p(n+1) ∈ XD,0,

δ
(n+ 1

2
)

D u = ΠD
u(n+1) − u(n)

δt(n+ 1
2

)
,

∫
Ω

(
δ

(n+ 1
2

)

D uΠDw − (f1(Πup
D u

(n+1))v
(n+1)
D − ∇̂Dψ(u(n+1))) · ∇̃Dw

)
dx

=

∫
Ω

(f1(cD) s+ − f1(ΠDu
(n+1)) s−)ΠDw dx, (22)

−
∫

Ω
v

(n+1)
D · ∇̃Dw dx =

∫
Ω

( s+ − s−)ΠDw dx, (23)

v
(n+1)
D = −M(u(n+1))∇̂Dp(n+1),

∀w ∈ XD,0, ∀n = 0, . . . , N − 1,

where Πup
D u

(n+1) is the upstream value of u(n+1) on eachDσ, the piecewise constant function cD is equal
to cK on each control volume K, M(u(n+1)) is equal to the average value M (n+1)

σ on each diamond cell
Dσ (see Fig.1), and with the same notations for the definition of space-time dependent functions, that is,
for any t ∈ (t(n), t(n+1)], n = 0, . . . , N − 1 and for a.e. x ∈ Ω:

ΠDu(x, 0) = ΠDu
(0)(x),

ΠDu(x, t) = ΠDu
(n+1)(x),

ΠDψ(u)(x, t) = ΠDψ(u(n+1))(x),

Πup
D u(x, t) = Πup

D u
(n+1)(x),

∇̂Dψ(u)(x, t) = ∇̂Dψ(u(n+1))(x),

ΠDp(x, t) = ΠDp
(n+1)(x),

∇̂Dp(x, t) = ∇̂Dp(n+1)(x).

(24)

An important difference between (22)-(23) and (27) is that there are two discrete gradients defined for
an element of XD,0. The first one is applied to the unknown fields (∇̂D), and converges only weakly; the
second one (∇̃D) is applied to the test functions and converges strongly. In the framework of the gradient
schemes presented in Section 3, only one discrete gradient is used: this has been the main difficulty in
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going from the TP finite volume scheme to the gradient schemes: indeed, this gradient must be such that
we can get some estimates in a discrete H1 norm (as the first gradient ∇̂D) but also be consistent, as the
second gradient ∇̃D.

2.3 Convergence analysis

The convergence proof of Scheme (20)-(21) is detailed in [21] (in the case of Neumann boundary con-
ditions instead of Dirichlet ones). Let us sketch its principles; some are close to those presented in
Section 3; we stress those which are specific to the TP framework. Consider a sequence of finite volume
discretisations with space and time steps tending to 0.

1. Let us first show that any solution (u(n+1), p(n+1)) ∈ X2
D,0 is such that 0 ≤ u

(n+1)
K ≤ 1 for all

K ∈ M and n = 0, . . . , N − 1. Multiply (21) by f1(u
(n+1)
K ) and subtract to (20); let K̄ ∈ M

realizing the maximum (resp. minimum) value of the family (u
(n+1)
K )K∈M,n=0,...,N−1, assumed

to be greater than 1 (resp. negative).

Then f1(u
(n+1)

K̄
) − f1(u

(n+1)

K̄,σ
) is non negative (resp. non positive), and a contradiction follows,

thanks to hypotheses (12b), (12c). Note that this estimate is not in general possible for gradient
schemes.

2. The existence of a solution is then obtained from this estimate, thanks to a standard topological
degree argument (this is also the case for gradient schemes).

3. Following the lines of [10, chapter 4], letting w = p(n+1) in (23), we get, for the same reason as in
(19), an estimate on the norm of ∇̂Dp in L2(Ω×]0, T [)d. This leads to the existence of a function
p̄ ∈ L2(0, T ;H1

0 (Ω)) such that, up to a subsequence, ΠDp (resp. ∇̂Dp) weakly converges to p̄
(resp. ∇p̄) in L2(Ω×]0, T [) (resp. L2(Ω× ]0, T [)d). This step is quite similar to the proof of (32)
in Section 3.

4. Similarly to [21], we let w = δt(n+ 1
2

)u(n+1) in (22), and we sum on n = 0, . . . , N − 1. We then
slightly improve the proof of [21] by introducing, as in [11], the primitive ζ of

√
ψ′ and by using

the relation
(ζ(a)− ζ(b))2 ≤ (a− b)(ψ(a)− ψ(b)), ∀(a, b) ∈ R2.

We then get an estimate on the norm of ∇̂Dζ(u) in L2(Ω ×]0, T [)d; note that this estimate is ob-
tained thanks to the positivity of the transmissivities in the approximate diffusion operator when
using the TP scheme (more on this in the discussion). It is not possible to obtain such an estimate
in this way for a general gradient scheme. This uniform L2 estimate on ∇̂Dζ(u) yields the exis-
tence of ζ̄ ∈ L2(0, T ; H1

0 (Ω)) such that (up to a subsequence) ΠDζ(u) (resp. ∇̂Dζ(u)) weakly
converges to ζ̄ (resp. ∇ζ̄) in L2(Ω×]0, T [) (resp. L2(Ω×]0, T [)d). Note that the convective term
poses no problem in the obtention of this estimate: thanks to the upstream weighting scheme, it
yields a positive term; in fact, this positive term leads to the so-called weak BV inequality, which
is needed in the case where ψ is only assumed to be non decreasing (case of degenerate diffusion
problems [11]). This step highly differs from the proof of (33) in Section 3.

5. The Alt&Luckhaus technique [2] allows to get a time translate estimate on ζ(u), and therefore
strong convergence to ζ̄. From an estimate on the norm of ∇̂Dζ(u) in L2(Ω×]0, T [)d [10], we get
an estimate on the space translates, and therefore, ΠDζ(u) converges to ζ̄ in L2(Ω ×]0, T [) (up
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to a subsequence), and ΠDu also converges to ū = ζ(−1)(ζ̄) in L2(Ω×]0, T [). This step is quite
similar to Lemma 3.2 in Section 3.

We then get that Πup
D u (resp. M(u)) converge to ū (resp. M(ū)) in L2(Ω×]0, T [), thanks to the

estimate on the norm of ∇̂Dζ(u) in L2(Ω ×]0, T [)d. This step results from the use of upstream
weighting and averaging in the TP method.

6. Defining, for any regular function ϕ ∈ C∞c (Ω × [0, T [), the interpolation v(n) ∈ XD,0 by v(n)
K =

ϕ(xK , t
(n)) for all K ∈ M, we consider in Scheme (22),(23) the test function δt(n+ 1

2
)v(n) and

sum on n = 0, . . . , N − 1. We may then pass to the limit (thanks to the consistency of ∇̃D), and
we get that the pair (ū, p̄) is a weak solution of the problem, in the sense of Definition 1.1. This
step follows some common ideas with Lemma 3.4 in Section 3.

3 Approximation by a gradient scheme

We now turn to the approximation of Problem (6)-(11) by an approximate gradient scheme. We recall
that the family of approximate gradient schemes provides a generic framework for the approximation of
various linear or nonlinear problems [7, 9].

3.1 The mesh and the discrete operators

We present here the framework of gradient discretisations for diffusion problems with homogeneous
Dirichlet boundary conditions. This framework enables us to consider schemes applying on general
meshes (neither orthogonality nor conformity conditions are needed).

Definition 3.1 (Gradient discretisation for homogeneous
Dirichlet problems)
A gradient discretisation for homogeneous Dirichlet problems D is defined by D = (XD,0,ΠD,∇D),
where:

1. the set XD,0 of discrete unknowns is a finite dimensional vector space on R,

2. the linear mapping ΠD : XD,0 → L2(Ω) is the reconstruction of the approximate function,

3. the linear mapping∇D : XD,0 → L2(Ω)d is the discrete gradient operator.

The discrete gradient operator∇D must be chosen such that ‖ · ‖D defined by ‖w‖D = ‖∇Dw‖L2(Ω)d is
a norm on XD,0.

The associated gradient scheme is the application of these operators to a given (diffusion) problem. Our
aim is to prove the convergence of an approximate gradient scheme for Problem (6)-(11) if the under-
lying gradient discretisation is coercive, consistent, limit-conforming, compact and piecewise constant,
according to the following definitions, in which D denotes a gradient discretisation for homogeneous
Dirichlet problems in the sense of Definition 3.1.

Definition 3.2 (Coercivity) Let

CD = max
w∈XD,0\{0}

‖ΠDw‖L2(Ω)

‖w‖D
. (25)
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A sequence (Dm)m∈N of gradient discretisations for homogeneous Dirichlet problems is said to be co-
ercive if there exists CP ∈ R+ such that CDm ≤ CP for all m ∈ N.

Definition 3.3 (Consistency) Let SD : H1
0 (Ω)→ [0,+∞) be defined by ϕ ∈ H1

0 (Ω) 7→ SD(ϕ) with

SD(ϕ) = min
w∈XD,0

(‖ΠDw − ϕ‖L2(Ω) + ‖∇Dw −∇ϕ‖L2(Ω)d).

A sequence (Dm)m∈N of gradient discretisations for homogeneous Dirichlet problems is said to be con-
sistent if

∀ϕ ∈ H1
0 (Ω), lim

m→∞
SDm(ϕ) = 0.

Definition 3.4 (Limit-conformity) . Let

Hdiv(Ω) = {ϕ ∈ L2(Ω)d,divϕ ∈ L2(Ω)},

and let WD: Hdiv(Ω)→ [0,+∞) be defined by U 7→WD(U), with

WD(U) = max
w∈XD,0\{0}

1

‖w‖D

∣∣∣∫
Ω

(
∇Dw(x) ·U(x) + ΠDw(x)divU(x)

)
dx
∣∣∣.

A sequence (Dm)m∈N of gradient discretisations for homogeneous Dirichlet problems is said to be limit-
conforming if

∀U ∈ Hdiv(Ω), lim
m→∞

WDm(U) = 0. (26)

Definition 3.5 (Compactness) A sequence (Dm)m∈N of gradient discretisations for homogeneous Dirich-
let problems is said to be compact if, for all sequence um ∈ XDm,0 such that ‖um‖Dm is bounded, the
sequence (ΠDmum)m∈N is relatively compact in L2(Ω).

Definition 3.6 (Piecewise constant function reconstruction) Let D be a gradient discretisation in the
sense of Definition 3.1, and I be the finite set of the degrees of freedom, such that XD,0 = RI . We say
that ΠD is a piecewise constant function reconstruction if there exists a family of open subsets of Ω,
denoted by (Ωi)i∈I , such that

⋃
i∈I Ωi = Ω, Ωi ∩ Ωj = ∅ for all i 6= j, and ΠDu =

∑
i∈I uiχΩi for all

u = (ui)i∈I ∈ XD,0, where χΩi is the characteristic function of Ωi.

Remark 3.1 Note that ‖ΠD · ‖L2(Ω) is not requested to be a norm on XD,0. Indeed, in several schemes,
some degrees of freedom are involved in the reconstruction of the gradient of the function, but not in that
of the function itself. Hence it can occur that some of the Ωi are empty.

Definition 3.7 (Space-time discretisation)
We say that (D, δt) is a space-time gradient discretisation of Ω×]0, T [ if

• D = (XD,0,ΠD,∇D) is an approximate gradient discretisation of Ω in the sense of Definition 3.1,

• we have t(0) = 0 < t(1) . . . < t(N) = T , and we denote the discrete time step by δt(n+ 1
2

) =

t(n+1)−t(n) for n = 0, . . . , N−1, and we let δt =
(
δt(n+ 1

2
)
)
n=0,...,N−1

and |δt| = maxn=0,...,N−1 δt
(n+ 1

2
).

10
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3.2 Definition of the scheme

Let (D, δt) be a space-time discretisation of Ω×]0, T [ in the sense of Definition 3.7 such that ΠD is a
piecewise constant function reconstruction in the sense of Definition 3.6. We define the following scheme
for the discretisation of Problem (6)-(11) in the sense of Definition 1.1. For a given interpolation u(0) of
uini, we seek (u(n+1), p(n+1)), n = 0, . . . , N − 1, such that, for any w ∈ XD,0 and n = 0, . . . , N − 1,
we have:

u(0) ∈ XD,0, u(n+1) ∈ XD,0, p(n+1) ∈ XD,0,

δ
(n+ 1

2
)

D u = ΠD
u(n+1) − u(n)

δt(n+ 1
2

)
,

∫
Ω

(
δ

(n+ 1
2

)

D uΠDw − (f1(ΠDu
(n+1))v

(n+1)
D −∇Dψ(u(n+1))) · ∇Dw

)
dx

=

∫
Ω

(f1(c) s+ − f1(ΠDu
(n+1)) s−)ΠDw dx,

−
∫

Ω
v

(n+1)
D · ∇Dw dx =

∫
Ω

( s+ − s−)ΠDw dx

v
(n+1)
D = −M(ΠDu

(n+1))∇Dp(n+1).

(27)

As in the case of the TP scheme, we use the notations ΠD, ∇D and vD for the definition of space-
time dependent functions (see (24)). It is worth noticing that, in Scheme (27), the convection term is
approximated by f1(ΠDu

(n+1))v
(n+1)
D and no upstream weighting. The following convergence proof

can be extended to upstream weighting discretizations provided that a scheme dependent construction of
the discrete Darcy fluxes is given (see [3] for the SUSHI scheme, and [5] for the Vertex Approximate
Gradient scheme). We prove below the convergence of the scheme, but contrary to the TP scheme, no
L∞ bound on ΠDu

(n+1) is known.
We finally introduce the function

Ψ(s) =

∫ s

0
ψ(x)dx, ∀s ∈ R, (28)

which is used several times in the convergence proof. We then have from the Assumption (12h),

Ψ(s) =

∫ s

0
(ψ(x)− ψ(0))dx ≤ Lψ

∫ s

0
xdx = Lψ

s2

2
, (29)

and, from Assumption (12i),

Ψ(s) ≥
∫ s

0
ψ(x)

ψ′(x)

Lψ
dx ≥ ψ(s)2

2Lψ
≥ A2s2 − 2B2

4Lψ
. (30)

Lemma 3.1 (discrete L2 estimates) Under Hypotheses (12), let (D, δt) be a space-time gradient dis-
cretisation of Ω×]0, T [ which is coercive in the sense of Definition 3.2 and such that ΠD is a piecewise
constant function reconstruction in the sense of Definition 3.6. Then there exists C1 > 0, only depending
on Lψ, M , M , A, B, CP > CD, Cini > ‖uini − ΠDu

(0)‖L2(Ω), ‖s+‖L2(Ω), ‖s−‖L2(Ω), such that, for
any solution (u, p) to this scheme,

‖ΠDu‖L2(Ω×]0,T [) ≤ C1, (31)
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‖vD‖L2(Ω×]0,T [)d ≤ C1, (32)

‖∇Dψ(u)‖L2(Ω×]0,T [)d ≤ C1. (33)

As a consequence, there exists at least one solution (u, p) to the scheme.

PROOF. For a given time iteration n > 0, we let w = p(n+1) in the second equation of (27) which leads
to ∫

Ω
M(ΠDu

(n+1))|∇Dp(n+1)|2 dx =

∫
Ω

( s+ − s−)ΠDp
(n+1) dx.

Using hypothesis (12g)-(12d) and the Cauchy-Schwarz inequality, we have

M‖∇Dp(n+1)‖2L2(Ω) 6 (‖s−‖L2(Ω) + ‖s+‖L2(Ω))‖ΠDp(n+1)‖L2(Ω).

Using (25) we have

‖∇Dp(n+1)‖L2(Ω) 6 Cp(‖s−‖L2(Ω) + ‖s+‖L2(Ω))
1

M
.

Finally using the definition of v(n+1)
D and (12g) we have

‖v(n+1)
D ‖L2(Ω)d 6 Cp(‖s−‖L2(Ω) + ‖s+‖L2(Ω))

M

M
,

which proves (32).
We then let w = ψ(u(n+1)) in the first equation of (27), which leads to

∫
Ω
δ

(n+ 1
2

)

D uΠD(ψ(u(n+1))dx + ‖∇Dψ(u(n+1))‖2L2(Ω)

=

∫
Ω

(f1(c) s+ − f1(ΠDu
(n+1)) s−)ΠDψ(u(n+1)) dx+

∫
Ω
f1(ΠDu

(n+1))v
(n+1)
D · ∇Dψ(u(n+1))dx.

Using twice the fact that r1r2 6
1

4
r2

1+r2
2 which holds for any real numbers r1, r2 together with (25)-(12f)

and the Cauchy-Schwarz inequality, we have∫
Ω
δ

(n+ 1
2

)

D uΠDψ(u(n+1))dx +
1

2
‖∇Dψ(u(n+1))‖2L2(Ω)

6
(
Cp(‖s−‖L2(Ω) + ‖s+‖L2(Ω)) + ‖v(n+1)‖L2(Ω)d

)
.

Using the function Ψ defined by (28) and the equality∫ r2

r1

ψ(x)dx = Ψ(r2)−Ψ(r1) = ψ(r2)(r2 − r1)−
∫ r2

r1

ψ′(x)(x− r1)dx︸ ︷︷ ︸
>0

,

we obtain∫
Ω

ΠD(Ψ(u(n+1))−Ψ(u(n)))

δt(n+ 1
2

)
dx +

1

2
‖∇Dψ(u(n+1))‖2L2(Ω)

6
(
Cp(‖s−‖L2(Ω) + ‖s+‖L2(Ω)) + ‖v(n+1)‖L2(Ω)d

)
︸ ︷︷ ︸

=C2≥0

.
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We multiply by δt(n+ 1
2

) and sum on 0, . . . , N − 1, which gives

‖ΠDΨ(u(N))‖L1(Ω) +
1

2
‖∇Dψ(u)‖2L2(Ω×]0,T [)d ≤ C2 T + ‖ΠDΨ(u(0))‖L1(Ω),

which in turn yields, thanks to (29) and (30),

1

2Lψ
‖ΠDψ(u(N))‖2L2(Ω) +

1

2
‖∇Dψ(u)‖2L2(Ω×]0,T [)d ≤ C2 T +

Lψ
2
‖ΠDu(0)‖2L2(Ω).

This proves (33). Finally by using (25) and the hypothesis (12i) we obtain (31).
As in the case of the TP scheme, from these estimates, we get existence of a solution by a topological
degree argument (see also [14]). �

Lemma 3.2 (Estimate on the time translates) Under Hypotheses (12), let (D, δt) be a space-time
gradient discretisation of Ω×]0, T [ which is coercive in the sense of Definition 3.2 and such that ΠD is a
piecewise constant function reconstruction in the sense of Definition 3.6. Then there exists C2 > 0, only
depending on Lψ, M , M , A, B, CP > CD, Cini > ‖uini − ΠDu

(0)‖L2(Ω), ‖s+‖L2(Ω), ‖s−‖L2(Ω), such
that, for any solution (u, p) to this scheme,

‖ΠDψ(u)(·, ·+ τ)−ΠDψ(u)(·, ·)‖2L2(Ω×(0,T−τ)) ≤ C2(τ + |δt|),∀τ ∈]0, T [. (34)

For the proof of this lemma we refer to [9, Lemma 2.3] where the term ∇Dζ(um) in the proof of the
mentioned paper is here replaced by∇Dψ(um)− f1(ΠDu

m)vmD (this holds thanks to (12f)-(32)-(33)).

Lemma 3.3 (Compactness of approximate solution) Let Hypotheses (12) be fulfilled. Let (Dm, δtm)m∈N
be a sequence of space-time gradient discretisations, such that the associated sequence of approximate
gradient approximations is limit–conforming (Definition 3.4) and compact (Definition 3.5, it is then co-
ercive in the sense of Definition 3.2), and such that, for all m ∈ N, ΠDm is a piecewise constant function
reconstruction in the sense of Definition 3.6 and |δtm| → 0 as m → ∞. For any m ∈ N, let um
be a solution to Scheme (27), such that ‖uini −ΠDmu

(0)
m ‖L2(Ω) → 0 as m → ∞. Then there exists

ū ∈ L2(Ω×]0, T [) and p̄ ∈ L2(0, T ;H1
0 (Ω)) and a subsequence of space-time gradient discretisations

again denoted (Dm, δtm)m∈N such that, as m→∞,

1. ψ(ΠDmum) converges to ψ(ū) ∈ L2(0, T ;H1
0 (Ω)) in L2(Ω× ]0, T [), (and therefore ΠDmum

converges in L2(Ω×]0, T [) to ū),

2. ∇Dmψ(um) converges to∇ψ(ū) weakly in
L2(Ω× ]0, T [)d,

3. ΠDmpm converges to p̄ ∈ L2(0, T ;H1
0 (Ω)) weakly in L2(Ω×]0, T [),

4. ∇Dmpm converges to∇p̄ weakly in L2(Ω×]0, T [)d.

PROOF. We list here the main ideas of the proof for each item.

1. We use Lemma 3.2 on the time translates, the compactness of (Dm)m∈N and the discrete Aubin-
Simon Theorem as in [9]. The strong convergence of ΠDmum results from the fact that ψ is strictly
increasing,

2. Based on the previous point, the estimate (33) and the limit–conformity of (Dm)m∈N.
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3. and 4. result from the estimate (32), the Hypothesis (12g), the coercivity and the limit-conformity
of (Dm)m∈N.

�

Lemma 3.4 (Convergence of approximate solution) Under the same hypotheses as that of Lemma
3.3, and moreover assuming the consistency of (Dm)m∈N in the sense of Definition 3.3, then the pair
(ū,p̄) (whose existence is given by Lemma 3.3) is a weak solution of the Problem (6)-(11) in the sense of
Definition 1.1.

PROOF. Let m ∈ N, and let us denote D = Dm (belonging to the above subsequence) and drop some
indices m for the simplicity of the notation. Let g ∈ C∞c ([0, T )) and ϕ ∈ C∞c (Ω) , and let w ∈ XD,0 be
such that

w = argmin
z∈XD,0

SD(ϕ).

We first take as test function in the second equation of (27) the function δt(n+ 1
2

)g(t(n))w. Thanks to the
strong convergence of ΠDmum to ū, to the weak convergence of ∇Dmpm to ∇p̄ and to the consistency
of (Dm)m∈N, we get that (14),(15) hold (we use the fact that the set

T = {
q∑
i=1

gi(t)ϕi(x) : q ∈ N, gi ∈ C∞c [0, T ), ϕi ∈ C∞c (Ω)} (35)

is dense in C∞c (Ω × [0, T ))). We then take as test function in the first equation of (27) the function
δt(n+ 1

2
)g(t(n))w, and we sum the resulting equation on n = 0, . . . , N − 1. We get,

T
(m)
1 + T

(m)
2 + T

(m)
3 = T

(m)
4 , (36)

with

T
(m)
1 =

N−1∑
n=0

δt(n+ 1
2

)g(t(n))

∫
Ω
δ

(n+ 1
2

)

D u(x)ΠDw(x)dx,

T
(m)
2 =

N−1∑
n=0

g(t(n))

∫
Ω
f1(ΠDu

(n+1)(x))M(ΠDu
(n+1)(x))∇Dp(n+1)(x) · ∇Dw(x)dx,

T
(m)
3 =

N−1∑
n=0

g(t(n))

∫
Ω
∇Dψ(u(n+1))(x) · ∇Dw(x)dx,

and

T
(m)
4 =

N−1∑
n=0

g(t(n))

∫ t(n+1)

t(n)

∫
Ω

(f1(c(x))s+(x)− f1(ΠDu
(n+1)(x))s−(x))ΠDw(x)dxdt.

Writing

T
(m)
1 = −

∫ T

0
g′(t)

∫
Ω

ΠDu(x, t)ΠDw(x)dxdt − g(0)

∫
Ω

ΠDu
(0)(x)ΠDw(x)dx,
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we get, using Lemma 3.3 and the consistency of the discretisation, that

lim
m→∞

T
(m)
1 = −

∫ T

0
g′(t)

∫
Ω
ū(x, t)ϕ(x)dxdt − g(0)

∫
Ω
uini(x)ϕ(x)dx.

We also immediately get, using the convergence of ΠDmum to ū in L2(Ω×]0, T [), that

lim
m→∞

T
(m)
3 =

∫ T

0
g(t)

∫
Ω
∇ψ(ū(x, t)) · ∇ϕ(x)dxdt.

and

lim
m→∞

T
(m)
4 =

∫ T

0
g(t)

∫
Ω

(f1(c(x))s+(x)− f1(ū(x, t))s−(x))ϕ(x)dxdt.

Similarly, we also have

lim
m→∞

T
(m)
2 =

∫ T

0
g(t)

∫
Ω
f1(ū(x, t))M(ū(x, t))∇p̄(x, t) · ∇ϕ(x)dxdt.

Hence we get that (13) holds. Thanks again to the density inC∞c (Ω×[0, T )) of the set T defined by (35),
we conclude the proof that (ū,p̄) is a weak solution of the Problem (6)-(11) in the sense of Definition 1.1.
�

Lemma 3.5 (Strong convergence of global pressure) Under the same hypotheses as that of Lemmas
3.3 and 3.4, which prove that (ū,p̄) is a weak solution of the Problem (6)-(11) in the sense of Definition
1.1, we have that, as m→∞,

1. ΠDmpm converges to p̄ strongly in L2(Ω×]0, T [),

2. ∇Dmpm converges to∇p̄ strongly in L2(Ω×]0, T [)d.

PROOF. Letm ∈ N, we denoteD = Dm (belonging to the suitable subsequence) and drop some indices
m for the simplicity of the notation. We then let w = ΠDp

n+1 in the last two equations of (27), mutliply
by δt(n+ 1

2
) and sum the resulting equation on n = 0, . . . , N − 1. We obtain

N−1∑
n=0

δt(n+ 1
2

)

∫
Ω
M(ΠDu

(n+1)(x))∇Dp(n+1)(x)·∇Dp(n+1)(x) dx =

N−1∑
n=0

δt(n+ 1
2

)

∫
Ω

( s+(x)− s−(x))ΠDp
(n+1)(x) dx

This can be rewritten as follow∫ T

0

∫
Ω
M(ΠDu(x, t))∇Dp(x, t) · ∇Dp(x, t) dxdt =

∫ T

0

∫
Ω

( s+(x)− s−(x))ΠDp(x, t) dxdt

Using the weak convergence of ΠDp (Lemma 3.3), we have,

lim
m→∞

∫ T

0

∫
Ω

( s+(x)− s−(x))ΠDp(x, t) dxdt =

∫ T

0

∫
Ω

( s+(x)− s−(x))p̄(x, t) dxdt

Moreover, since (ū,p̄) is a weak solution (Lemma 3.4),∫ T

0

∫
Ω
M(ū(x, t))∇p̄(x, t) · ∇p̄(x, t) dxdt =

∫ T

0

∫
Ω

( s+(x)− s−(x))p̄(x, t) dxdt

15
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Thus,

lim
m→∞

∫ T

0

∫
Ω
M(ΠDu(x, t))∇Dp(x, t)·∇Dp(x, t) dxdt =

∫ T

0

∫
Ω
M(ū(x, t))∇p̄(x, t)·∇p̄(x, t) dxdt

On the other hand, we have∫ T

0

∫
Ω
M(ΠDu(x, t))(∇Dp(x, t)−∇p̄(x, t)) · (∇Dp(x, t)−∇p̄(x, t)) dxdt =∫ T

0

∫
Ω
M(ΠDu(x, t))∇Dp(x, t) · ∇Dp(x, t) dxdt

− 2

∫ T

0

∫
Ω
M(ΠDu(x, t))∇Dp(n) · ∇p̄(x, t) dxdt

+

∫ T

0

∫
Ω
M(ΠDu(x, t))∇p̄(x, t) · ∇p̄(x, t) dxdt

Then, by using the strong convergence of ΠDu, the weak convergence of∇Dp and the hypothesis (12g),
we have,

lim
m→∞

∫ T

0

∫
Ω
M(ΠDu(x, t))(∇Dp(x, t)−∇p̄(x, t)) · (∇Dp(n) −∇p̄(x, t)) dxdt︸ ︷︷ ︸

>M‖∇Dp−∇p̄‖2L2(Ω×]0,T [)d > 0

= 0

This prove the strong convergence of∇Dp.

Let us now turn to the strong convergence of ΠDp to p̄. For a.e. t ∈ (0, T ), let ûm(t) be defined by

p̂m(t) = argmin
z∈XDm,0

(
‖ΠDmz − p̄(t)‖L2(Ω) + ‖∇Dmz −∇p̄(t)‖L2(Ω)d

)
.

By using that 0 ∈ XDm,0, we have

‖ΠDm p̂m(t)− p̄(t)‖L2(Ω) + ‖∇Dm p̂m(t)−∇p̄(t)‖L2(Ω)d ≤ ‖p̄(t)‖L2(Ω) + ‖∇p̄(t)‖L2(Ω)d .

Thus, since p̄ ∈ L2(0, T ;H1
0 (Ω)), we get by dominated convergence that

lim
m→∞

∫ T

0
‖ΠDm p̂m(t)− p̄(t)‖2L2(Ω) dt = 0,

and

lim
m→∞

∫ T

0
‖∇Dm p̂m(t)−∇p̄(t)‖2L2(Ω)d dt = 0.

We then have, thanks to the coercivity hypothesis,

‖ΠDm(pm − p̂m)‖L2(Ω×(0,T )) ≤ CP ‖∇Dm(pm − p̂m)‖L2(Ω×(0,T ))d .

16
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We thus get, thanks to the triangle inequality, that

‖ΠDmpm − p̄‖L2(Ω×(0,T )) ≤ CP ‖∇Dm(pm − p̂m)‖L2(Ω×(0,T ))d + ‖ΠDm p̂m − p̄‖L2(Ω×(0,T )),

which implies, thanks again to the triangle inequality,

‖ΠDmpm − p̄‖L2(Ω×(0,T )) ≤ ‖ΠDm p̂m − p̄‖L2(Ω×(0,T ))

+ CP (‖∇Dmpm −∇p̄‖L2(Ω×(0,T ))d + ‖∇Dm∇Dm p̂m −∇p̄‖L2(Ω×(0,T ))d).

We then get
lim
m→∞

‖ΠDmpm − p̄‖L2(Ω×(0,T )) = 0,

hence concluding the proof.
�

4 Discussion

The TP finite volume scheme and the approximate gradient scheme are two alternative ways of discretis-
ing a two phase flow problem in porous media. One of the main properties of the TP finite volume
scheme is that the resulting discrete diffusion operator is of the form∑

L∈M
τKL(uK − uL), (37)

where the transmissivities τKL are positive and such that τKL = τLK . Thanks to this form, the monotony
and natural L∞ bounds may be shown to hold. In the case of the two phase flow problem, this entails
that the approximate saturation remains bounded by 0 and 1. Moreover, it allows to get some stability
estimates by multiplying the conservation equation by a function of the unknown which differs from the
unknown involved in the second order term (for instance in Section 2, we multiplied (20) by uK while
the unknown in the second order term is ψ(u)). This latter technique has been used in the study of several
problems, as for instance for:

• the convergence of the discretisation of a nonlinear convection/degenerate diffusion equations [11],

• the convergence of the discretisation of a linear diffusion problem with singular right hand sides
or initial data [8],

• the approximation of two-phase flow in porous media, with dissolution or heterogeneous capillary
curves [4, 15, 16]

Note also that it is easy to implement an upstream weighting scheme for a convection term together
with the TP scheme, which ensures more stability. The main drawback is that the admissible meshes
in this case are restricted, especially in the 3D case, since we require the orthogonality condition for
the TP scheme to be consistent. This has led to the development of Multi-Point Flux Approximation
schemes [1], whose main drawback is the lack of robustness on too distorted meshes.
On the other hand, the generic framework of the gradient schemes includes a large number of recent
methods which remain robust on general meshes, in the sense that it provides convergent approxima-
tions using common properties which are satisfied by these methods. The convergence proof which is
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done here is therefore valid for any scheme of this family (finite element, mixed finite element, mimetic
method...). The main drawback of this analysis is the fact that the bounds [0, 1] on the discrete solution
cannot be imposed in this general setting; moreover, in order to obtain an estimate, in general one can
only use as test function the one which appear in the second order terms, using the fact that

∫
Ω |∇D · |

2

is a norm.
Ongoing research is active to obtain schemes that preserve the maximum principle. However it seems dif-
ficult to obtain a discrete diffusion term of the form (37) with positive transmissivities from a consistent
gradient on a general mesh; even though it is possible in certain cases, for instance for piecewise linear
finite element on triangular Delaunay meshes [17]. Nonlinear schemes have also been proposed [19,20];
however, the question of convergence of gradient schemes for the problems cited in the above list remains
open on general grids.
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