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Abstract. This paper proves the estimate ||ue — ulp1(g,) < Cce'/?,
where, for all € > 0, uc is the weak solution of (uc); + div(q f(ue)) —
A(p(ue)+eue) = 0 with initial and boundary conditions, u is the entropy
weak solution of u; + div(qf(u)) — A(p(u)) = 0 with the same initial
and boundary conditions, and C' > 0 does not depend on £. The domain
Q) is assumed to be regular and T is a given positive value.

1. INTRODUCTION

In the hydrogeological engineering setting, one has to model air-water
flows in soils. In several cases, the Richards approximation (in which the
air phase is assumed to be at the atmospheric pressure everywhere) cannot
be used, and a full two-phase flow model is used, writing both conservation
equations of air and water in the soils. Assuming that air and water phases
are immiscible and incompressible (the pressure variations are small enough
to justify this assumption), one considers for the sake of simplicity a prob-
lem in a horizontal domain and one also assumes that flows in soils can be
modeled using Darcy’s law:

ur(x,t) — div (ky (u(z, t)) VP, (z,t)) =0, (1.1)

(1 —w)e(z,t) — div (ke (u(z, t)) VP, (z,t)) = 0,

P,(z,t) — Py(z,t) = Pe(u(x,t)), forallz e Qandt >0, (1.3)
where
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e 1 € () denotes the space variable in the domain €2 and ¢ > 0 denotes
the time variable,

e the index w (resp. a) stands for the water phase (resp. the air phase),

e P,(z,t) is the pressure of phase p,

e u(z,t) € [0,1] denotes the saturation of the water phase (i.e., the
percentage of porous space occupied by the water phase) and 1 —
u(z,t) the saturation of the air phase,

e Pc(u) is the capillary pressure (Pc(u) is a regular function which is
decreasing and verifies Pc(1) = 0),

e k,(u) is the mobility of phase p. The function k() is regular, non
decreasing and verifies k,,(0) = 0, and the function k,(u) is regular,
non increasing and verifies k,(1) = 0.

In several practical applications, one has u(z,t) > U; > 0, and one can
assume that the water phase mobility is positive everywhere in 2. On the
contrary, the air phase cannot be assumed to be present in the whole domain,
and therefore in the general case, there exists T' > 0 such that, for all
t € (0,T), there exists a subdomain Ej(t) of © such that u(z,t) = 1 for
all x € F1(t). In order to explicit the consequences of the existence of such
a subdomain, one can exhibit a degenerate parabolic equation the solution
of which is u. Indeed, if we introduce the vector field q, defined for all
(z,t) € Q x (0,+00) by

a(z,t) = — (kw(u(z, 1)) VPy(z,t) + ko(u(z, 1))V Py(z, 1)), (1.4)
we get, by summing (1.1) and (1.2)
div q(z,t) = 0.
Extracting VP, and VP, from (1.4) and (1.3), we get

up(w,t) + div(q f(u))(z,t) — A(p(w))(z,t) = 0, (1.5)
in which the functions ¢ and f are defined by

b kw(s)ka(s) / kw (u)
o(u) = /u Fn(5) £ ka(s)PC (s)ds, and f(u) = T () + (1),
The negative function ¢ is non decreasing, since Pc¢’ < 0, and for practical
data we can observe that ¢ is equivalent to —(1 — u)® for some o > 1 as
u — 1, which characterizes a degenerate parabolic problem similar to the
“porous medium equation”. Thus, for ¢ € (0,T), we have ¢'(u) = 0 in Fy(t),
domain whose the boundary is free. It has been shown in [13] for instance
that the system of equations (1.1), (1.2) and (1.3) can successfully be ap-
proximated using a finite volume scheme, the location of the free boundary
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simply resulting from the local conservation of the fluid components. How-
ever, numerous engineers implied in soil mechanics prefer using some finite
element methods (coupled with finite element methods for the mechanical
behaviour of the porous skeletton) the convergence of which is only obtained
for ¢'(u) > € > 0 (see [17] for example). Therefore these engineers introduce
a function )
kuw(8)ka(s) /
ve(u) = /u mpc (s)ds + eu,

and then they use a finite element method to solve (1.5) with ¢, instead of
¢. It has been shown on a physical example (see [8] or [10]) that the error
committed by such a substitution is far from being negligible. It was thus of
a large interest to evaluate this error and its order as a function of €. This
is one of the objectives of the present paper.

Another motivation to study such a perturbation of a nonlinear degenerate
parabolic equation is the study of the convergence of numerical schemes. In-
deed, it is well known that a discretization of a conservation law (hyperbolic
or convection dominated parabolic equations) yields a numerical diffusion
term which is a discrete analog of a continuous term of the form —eAu. We
were recently able to prove the convergence of finite volume approximations
to (1.5) towards an entropy weak solution [13]. However, the rate of con-
vergence is not yet known, and the obtention of such an error estimate is
under study. The error estimate in the case of a continuous diffusion per-
turbation is hoped to shed some light on the means to obtain the discrete
error estimate.

2. MATHEMATICAL FORMULATION AND RESULTS

We now complete the mathematical formulation of the problem presented
in the previous section. Let Q be a bounded open subset of R, (d = 1,2
or 3) with a regular (C?) boundary denoted by 9. Let T € R*, and
Qr = Q2 x (0,T7). Let u be the entropy weak solution of the following
problem :

up(x,t) + div(q f(u))(z,t) — Alp(u))(z,t) =0, for ae. (z,t) € Qr, (2.1)
with initial condition:
u(z,0) = up(z) for a.e. x € Q. (2.2)
and boundary condition:

u(z,t) = u(z,t), fora.e. (z,t) € 00 x (0,7T). (2.3)
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Note that for this mathematical study, we could replace the convective term
q(x,t)f(u) by the more general term F(u,x,t). An advantage of this par-
ticular case is that it leads to easier notations though it involves the same
tools as the general framework.

One supposes that the following hypotheses, globally referred in the fol-
lowing as hypotheses H, are fulfilled (hypotheses H are satisfied for a large
number of problems including the one which is presented in the introduction
of this paper, and in particular can apply to purely hyperbolic problems, i.e.
¢ = 0, or Stefan-like problems, i.e., ¢’ = 0 on some intervals).

Hypotheses H

(H1) The boundary 99 of § is of class C?,

(H2) The initial condition ug belongs to L>(Q)NBV (2) and the boundary
condition u belongs to L (92 x (0,7")), and is the trace of a function
of H'(Qr) (also denoted by u); let U € R be such that —U < ug < U
a.e. in Qand —U <u<Ua.e. in  ;

(H3) ¢ is a nondecreasing Lipschitz—continuous function,

(H4) f is a Lipschitz continuous function,

(H5) q € C1(Q x [0,7]),

(H6) div(q(z,t)) = 0 for all (x,t) € R? x (0,T), where

d
. dq
div(q(e, 1) = Y 2
i=1 ¢

q(z,t).n(x) =0, fora.e. (z,t) € 90 x (0,T), (2.4)
(where n(x) denotes, for a.e. z € 9€, the normal to 9 at point z,
outward to 2).
Because of the presence of a nonlinear convection term, the expected
solution of Problem (2.1)-(2.3) is an entropy weak solution in the following
sense which was introduced by several authors [5], [16].

(z,t), and

Definition 2.1 (Entropy weak solution). Under hypotheses H, a function
u is said to be an entropy weak solution to Problem (2.1)-(2.3) if it verifies,
for all T > O:

we L¥(Q x (0,T)), (2.5)
olu) — pln) € L0, T; H}(92), (26)

and
| [tutet)inte. )+ eute,0)ate.0) - oo, (27)

T
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—VoO(u)(z,t) - Vw(m,t)}dxdt + /Qn(uo(x))w(x, 0)dx > 0,
Vi eC, vneC*RR), 7" >0, =1'()f(), 0 =n'()¢(-),
where C = {¢p € C°(R?xR), ¢ > 0and ¢ = 0 on (9Qx (0, T))UQx ({T})}.

Remark 2.1. Thanks to condition (2.4), there is no need to take the bound-
ary conditions into account in the entropy inequality (2.7). A non homoge-
neous boundary condition stands without condition (2.4) in [16], using the
trace of the weak solution u on the boundary, thus following the classical
Bardos-Leroux-Nédélec formulation [1]. Carrillo gives a weak entropy for-
mulation (see [5]) in the case of a homogeneous Dirichlet boundary condition
on 092 without condition (2.4).

In the present work, we prove an estimate of order €!/® between the en-
tropy weak solution u of (2.1) and the entropy weak solution wu. of the fol-
lowing regularized problem:

(ue)e(z,t) + div(q.f(u))(x, t) — A(go(u) + 5u) (z,t) =0,

for a.e. (z,t) € Q@ x (0,T). (2.8)

In the case Q = R?, the existence of the entropy weak solution is proven in
[3] by using a regularization of the problem in the “general kinetic BGK”
framework to yield estimates on translates of the approximate solutions. In
[7], some explicit estimates for the continuous dependence with respect to
the data of the solutions in the semi-group sense as introduced in [2] are
given: these estimates yield an estimate between u and u. of order £'/2 in
the case of the problem we consider here (our estimate is of lower order
because of the boundary conditions).

In the case of bounded domains, the existence of the entropy weak solution
is proved in [5] and [16]. In [16], the proof of existence uses strong BV
estimates in order to derive estimates in time and space for the solution of
the regularized problem (2.8). In [5], the existence of a weak solution is
proved using semigroup theory (see [2]), and the uniqueness of the entropy
weak solution is proved using techniques which have been introduced by
Krushkov [15] and extended by Carrillo. It is now well known that Krushkov
entropies are a good way to obtain an error estimate on nonlinear scalar
hyperbolic problems, see e.g. [12, 6, 18]. It is however not so easy, to extend
the use of the Krushkov entropies to the hyperbolic-parabolic case because
of the diffusion term. This is a major breakthrough in Carillo’s work [5].
Following this work, we shall prove here the following theorem :
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Theorem 2.1 (Error estimate). Under hypotheses H, for all e > 0, let u. €
L2(0,T; HY(2)) be the unique weak solution of the problem (2.8) with initial
condition (2.2) and boundary condition (2.3). Let u € L>(Qr) be the unique
entropy weak solution of Problem (2.1)-(2.3) in the sense of Definition 2.1.
Then there exists C' > 0, which depends only on Q, T, ug, u, q, f and ¢
such that, for all e > 0,

lue — ullpr gy < Ce'/. (2.9)

The proof of this estimate follows the same steps than those of the proof
of the error estimate of [12] for the finite volume approximations of nonlinear
hyperbolic conservation laws (in which case ¢ = 0).

The first step is to prove the following lemma :

Lemma 2.1 (Measure estimate). Under hypotheses H, let ¢ > 0 and let
ue € L2(0,T; H(Q)) be the unique weak solution of the problem

(ue)e(x,t) + div(q.f(ua)) (x,t) — A(go(ua) + Eug) (z,t) =0,

for a.e. (x,t) € Q x (0,T), (2.10)

with initial condition (2.2) and boundary condition (2.3). Let m. be the mea-
sure of density €|Vue|. Let u € L>®(Qr) be the unique entropy weak solution
of Problem (2.1)-(2.3) in the sense of Definition 2.1. Then there exist C; > 0
and Cy > 0 which only depend on Q, T, ug, @, f, ¢ and q, such that, for
all a > 0,

/ [|u5(x,t) —u(x, t)|e(z, t) + (f (ue(z, t) Tu(z, t)) (2.11)

T

— flus(a ) Lu(z, 1))@, ) - Vib(a, 1)

— Vig(uo) (@, 1) — ()@, )| - Vib(a, )| dadt

> ~C1a(|Vlloo + [belloo + [ lloc + 10 0)lloo + 1A%]2)
— om(@n)(e 4 vy.0),

a
for all functions ¥ € CY(Qr) such that ¢ > 0, Ay € L*(Qr), ¥(-,T) = 0
and Y (z,t) =0 for all (x,t) € Qr with d(x,00Q) < a.

Remark 2.2. The measure estimate (2.11) of Lemma 2.1 is important for
its own sake. Indeed, when transposed to the discrete setting of the numer-
ical scheme of [12], it may yield some error indicators which are useful for
automatic refinement procedures, see [14].
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The proof of Lemma 2.1 is given in Section 3. The second step in the
proof of Theorem 2.1 consists in making an adequate choice for the function
¥ in (2.11) of Lemma 2.1. This will be done in Section 4.

3. PROOF OF LEMMA 2.1

Throughout the paper, we shall denote by C; various real positive values
which only depend on Q, T', ug, 4, f, ¢ and q.

Let us assume that hypotheses (H) hold. Let € > 0 and let u (resp. uc)
be the entropy weak solution to (2.1), (2.2), (2.3) (resp. (2.8), (2.2), (2.3)).
Let us define the function ¢ to be a primitive of \/¢/. With some slight
adaptations of the results of [5], the following estimates on u and wu. hold :

—U <u(z,t) <U, for ae. (z,t) € Qp, (3.1)
—U <uc(zx,t) <U, for ae. (z,t) € Qp, (3.2)
| (Vetute.t))duds < (33)
/ (V¢ (ug(z,t)))2dedt < Cs, (3.4)

/ (Cu(z,t +5)) — C(u(z,t))?dzdt < s Cy, Vse (0,T), (3.5)
Qx(0,T—s)

/ (Clue(z,t +5)) — C(ue(x,t)))2dadt < s Cy, Vs € (0,T), (3.6)
Qx(0,T—s)

lull v (@) < Cs. (3.7)

AIWM%MMﬁg%, (38)
T

uell BV (@r) < Cs- (3.9)

Let us then multiply (2.8) by ¢(z,t)n (us(z,t)) and integrate on Qr; we
obtain

| [t t)nte ) + @(us(o 1) ate ) - Vet (3.10)
— VO(ue)(z,t) - Vip(z,t) — " (u(z, 1)) (V(u)(x, 1) *)(x, t)
n gn(us(x,t))m(x,t)}dmdt + /Q (o (2))(x, 0)dz > 0,

Vi eC, Ve C*(R,R), " >0, =1'()f'(), 0 =1'()¢().
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We shall use two inequalities which are both consequences of (3.10) in order
to obtain the measure estimate of Lemma 1.

The first inequality is obtained by taking, in (3.10), entropies p such that
i =1n' o, where n is itself a C? convex function. This yields

/ (e (o, 1), 1) + e, ), 1) - Ve, ) (3.11)

T

= Vi(p(ue) (1)) - V(. t) — 0" (p(ue) (2, 1)) (Vo(ue)) (2, 1) (w, 1) | dudt

+ / nuo(@))p(z,0)dz > — sup  Jif(s)
Q

|
selp(—U),p(U)] Qr
Vi eC,¥ne C*(R,R), 1" >0, 1/ =1 (¢(), v =0/ (0()f'(-),

Vi (, 1) |dme (2, 1),

where m. is the measure of density £|Vu.|. This inequality will be used
when u. “acts parabolic”, that is when ¢(u.) is not constant, so that the
diffusive term does not vanish.

The second inequality is obtained by taking Kruskov entropies in (3.10) (in
order to so, one should notice that the term n”(u(x,t)) (V¢ (u)(z,t))%y(z, 1)
is non negative and can therefore be dropped out of the inequality). This
yields the following inequality, which will be used when u. “acts hyperbolic”,
that is when ¢(u.) is constant so that the diffusive term vanishes

[ [luetent) = wignta, ) + (Flusta )T (312)

T

— e ) L)), 1) - o, t) = Vip(ue) (@,1) — olw)| - Vib(a, 1) dodt

+ [ o) = wlo(e,0)de =~ [ [Voeldm(e.0), Y eC, ek
Q Qr

From the results of [5] (see also [13] in the discrete setting of numerical
schemes), one gets the convergence in L'(Q7) of u. to u as € tends to 0. Let
us now state the limit problems of (3.10), (3.11) and (3.12) as ¢ tends to 0.
Thanks to the estimate (3.4), one may show that:

e—0

timinf [ (e, t) (V<) (e, 1)) duds (3.13)
Qr

> ) b, 1) (V(C(u))(m,t))Qd:cdt, Vi € L®(Qr), ¥ >0,
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Hence, passing to the limit as ¢ — 0 in (3.10) yields:

| [t t)nte.t) + @uta,) atw0) - To.0) (3.14)

— VO(u) (1) - T, 1) — e, ) (VC (), 0) e, 1) dl
+ /Q n(uo(2))(z, 0)dz > 0,
Vi eC, Ve C*(R,R), " >0, =75'()f'(), 0 =1'()¢().

Similarly, passing to the limit in inequalities (3.11) and (3.12) yields:

[ [t 0)pntant) + viate 0)ate ) - Vi (3.15)

— Vnplu)(z, 1)) - Vib(a, 1) — o (ol . D)(Vip()) )0, ) e
+ /Q (uip (), 0)dz > 0,

Ve, vne CHRR),n" 20, 4 =1'((-), v =0 (0(:)) (),

and

[ [1utet) = wivntat) + (a7 (3.16)

— flulz,t) Le))a(z,t) - Vip(z,t) — V]p(u)(z,t) — ¢(k)| - Vi(2,t) | dzdt
+/ luo(z) — k|¢(z,0)dr >0,V ¢ € C, Vi € R.
Q

Let us define, for all § > 0, a regularization S5 € C'(R,R) of the sign
function given by:

S5(a) =-1, Va € (—OO, _5]7
Ss(a) = 32aa® v €[4, 4], (3.17)
Ss(a) =1, Va € [, +00).

On the set Ry, defined by
Ry ={a e R,vb e R\ {a}, ¢(b) # ¢(a)},

the function ¢ is “genuinely non constant”; the set (R \ R,) is countable,
since for all s€ (R \ Ry), there exists (a,b) €R? with a<b and ¢((a,b)) =
{s}, and therefore there exists at least one r € Q with r € (a,b) verifying

o(r) = s.



428 ROBERT EYMARD, THIERRY GALLOUET, AND RAPHAELE HERBIN

Let » € R, and let § > 0. Let us take in (3.11) the entropy function
defined by

Mé,n(a) = /a US,H(W(S))dS

for a € R, where 7 is a regularization of a Kruskov entropy:
a
Ns.(a) = / Ss(s — p(k))ds for a € R.
w(x)

Let v be the flux function associated to us,: for a € R,

vsi(a) = /a N5 (0(5)) f'(s)ds.

With this choice of entropy-flux pair, Inequality (3.11) may be written:

| [lueto) = sl ) + (el Tr) (318)

T

- f(uf(x’ t)J_Ii))q(l‘, t) ’ vw(ﬂj, t) - S5(‘P(u£)($’ t)
— (k) Vo(ue)(z,t) - Vip(, t)} dxdt

— [ [Sietut) = ) (Tile) P s, ) o

+/ luo(x) — K|Y(z,0)dx > A0, ue, K, ) —/ |Vi(x,t)|dme(z,t), Y € C,
Q

Qr

where A(J, ue, k,1) is defined by

A5, uz, K, ) :/ [(!ug(:c,t) — | —M(;,K(ua(x,t)))qpt(x,t) (3.19)

Qr

(e TR) — Fluelar ) Lw) — v, 1) (e, 1) - V(o 1) das
+ [ (juate) = ¥l = (o) (o, )
Let us now make 6 tend to 0 in inequality (3.18). Thanks to the dominated
convergence theorem, one gets that for all a € R, 5hmo nsx(a) = |la — p(K)|,
élimoug’,{(a) = |a — k| and 6lim0 vsi(a) = f(aTk) — f(alk). Hence the
passage to the limit in (3.19) as § tends to 0 yields:
6lim0A(6,u, K, ) = 0. (3.20)
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One may also write (3.12), for all k € R, as:

[ [Iuetast) = nlvatant) + (sl Tr) = e ) L))o, 0) - T(a.)

= Ss(iplue) (@, t) = () Vep () (x,1) - Vib(a, 1) dadt (3.21)
[ ote) = siote e > B ey ) = [ [0 ldme(a ),

YV ¢ € C, where for any u., any ¢ € C, k € R and 0 > 0, B(d, uc, k,?) is
defined by

B(8,ue, 1, ) = (3.22)

[ [9(1etu)w.0 = o] = malituc)w.0) - Vi, 0] doct

T

Remarking that for all ¥ € C, one has

Blo,ue, v, 9) = (3.23)
— [ (1otu) ) = o] = ot ) Ao, ),

yields that
5limOB(5, Ue, K, ) =0, forall ¢ € C,6 > 0 and kK € R. (3.24)

Let us now define the sets F,. = {(z,t) € Qr, u-(z,t) € Ry} and E, =
{(z,t) € Qr, u(x,t) € Ry} where u. and u have a “genuinely parabolic”
contribution, that is where ¢(u.) and ¢(u) are non constant. Let £ €
CP(R? x R x R? x R) such that, for all (z,t) € Q x [0,T), &(x,t,-,-) € C
and for all (y,s) € Q@ x [0,T), &(-,-,y,s) € C. Let us now use Kruskov’s
technique [15] of “dedoubling the variables” and take £ = u(y, s) in (3.18),
for (y,s) € E, (where u acts “parabolic”), and ¢ = £(-,-,y,s). Integrating
the result over E, yields:

[ Jluetont) = ulw.s)iotas o) + (st Tuly.s) (3.25)

— flus(z,t) Luly, s)))a(z,t) - Val(z,t,y, s) — Ss(e(ue)(x,t) — o(u)(y, s))
x Vo(ue)(x,t) - Vi€(a, t,y, ) — S5(p(ue)(z,t) — p(u)(y, 5))
X (V(p(us))z(x,t)f(x,t,y, 3)} dx dt dy ds
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—i—/Eu/Q’uo(x) —u(y, s)|&(x,0,y, s)dxdyds

Ey

> A ey uly, 5), Gy, ) dyds — / / Va (@, t,y, 8)|dme (z, t)dyds.
uw’ QT

Let us now take xk = u(y, s) in (3.21), for (y,s) € Qr \ E, (where u “acts
hyperbolic”, and ¥ = (-, -, y, s) and integrate over Qr \ E,; this yields

/Q \B / [|ue(rl:,t) —u(y, s)|&(x,t,y,s) + (f(ug(x,t)—l—u(y, s)) (3.26)

- f(us(x, t)L’U,(y, 8)))q($, t) ' vxf(xv t Y, S) - Sé((p(UE)(x7 t) - <P(U)(ya S))

X Vip(ue) (@) - Vit (w,t,y, 5) | dodt dyds

+/ / |U0(ZL’) —U(y,8)|£($,0,y, s)d:l:dyds
QT\Eu Q

> / B(57u87u(y78)7£('7'7y7 8))dyds
QT\Eu

_/ |Vx£(:17,t,y,s)|dm€(x,t)dyds
Qr\Eu JQr

Adding (3.25) and (3.26) gives

[ [luetet) = g oléate.tv.s) + (Flucta ) Tuty, )

(3.27)

- f(us(xﬂt)Lu(y? S)))q(x7t) ’ Va;f(l',t,y, S) - Sg(@(ug)(l',t) - QO(U)(:% S))

X Vp(ue)(z,t) - Vi&(z,t,y, 3)}dazdt dyds
[ [sitetu et - etuw.s)
x (Vip(ue))?(x, t)E(x, t,y, s)] dxdt dyds

' /QT /Q |uo(2) = uly, s)[€(x, 0, y, s)dxdyds

2/ A((S, Usau(% S)a{(’a’ayﬂ S)>dyd8+/ B((Sa U,U(y, 8)75('7'7y78))dyd8
Ey Q

T\Eu

- / Va2, t,y, )| dme (x, t)dyds.
7JQr
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One now exchanges the roles of u. and u, and add the resulting equations
(the only difference being in the right hand sides). This gives

T+ 15 + Tg((S) + T4(5) + T5((S) > T6(5) — T, (328)

where
Ty = / / |:|Us($,t) —u(y, 5)|(&(x, t,y,s) + &(z, t,y, s)) (3.29)

+ (fuc(z, ) Tu(y, s)) — flue(z, ) Lu(y, s)))
X (q(a:, t) - Vi€(z,t,y,s) +a(y,s) - Vyé(z,t,y, s))}dmdtdyds,

)
Ty = / /Q\uo(x) —u(y, s)|¢(x,0,y, s)dzdyds (3.30)
[ o) = s 1¢(o.t,0) e,

—— [ [ [sstetu)tet) - plu)(w.s) (331)

X Viplue) (@) - (Vab(@,t,,5) + Vit (0.8,9,9))
+55(p(u)(y, 5) — plue)(,1))
X Vip(u)(y,5) - (Vat(@,t,y,5) + Vy£(w.t,y, 5) ) [dadidyds,

/ / [S3(p(ue)(z, 1) — £(u) (5. 5) (3.32)
x Vo(ue)(z,t) - Vy&(z, t,y,s) + Ss((u)(y, s) — o(u:)(z, 1))

x Ve(u)(y, s) - Vob(z, t, y, s)} drdtdyds,
[ [ [ n - ei.9) (3.3)

X (Vip(ue))* (2, D€ (@, 1.y, 5) | dudtdyds
-/ ) [  [S5etue)ant) — o)) (V)2 )¢ 1)y,
To0) = [ A2, 0(0,9). €. 5) s (3:34)

+/ B((Sau?u(yas)?g(':'7y73))dyds
QT\Eu
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+/ A(57 Ue, U(.ZU, L‘),ﬁ(x, ta ) ))dl‘dt—i—/ B((sv u, U(J), t)7 g(xa tv B ))dﬂl’dt,
E QT\EUE

Ug

T — / / Vab (@, t,y, 8)|dme (z, t)dyds. (3.35)
QrYQr

An integration by parts in (3.32) together with the fact that & vanishes on
0N x (0,T) x Q2 x (0,T) and on 2 x (0,T) x 9N x (0,T) yields that

o= [ / S4(p(ue) (2.1) — (u) (4, 5)) (3.36)
X €(2, 1,y $)Veplue) (2,1) - V() (1, 8) + Syp(u) (y, 5) — plue) (. )
x &(z,t,y,5)Vo(u)(y, s) - Vo(ue)(x,t) | dedt dyds.

Introducing Es = {(z,t) € Qr,¢(us)(x,t) = s} for all s € R, one has
Vp(ue) = 0 a.e. on Es (see [4] for instance). Since Q7 \ By, = Usep(r\R,,) Es;
and since (R \ R) is countable, the following equations hold:

Ve(us) =0, ae. on Qr \ E,_ (3.37)
Ve(u) =0, ae. on Qr \ Ey. (3.38)

Hence the terms T, and T5 may be written:
10 = [ [Siteluat) - plu)ls.s) (3.39)
Eue XEy
x &z, t,y, s)Vp(ue)(z,1) - Vio(u)(y, s) + S5(e(u)(y, s) — p(ue)(2, 1))
X &(z,t,y,s)V(u)(y,s) - Vo(ue)(z, )} dzdt dyds,

L) == [ [Sietue)t) - e)(y.s) (3.40)

X
(ue))?(z, )€z, 1y, 5) + Si(p(ue) (@, 1) — p(u)(y, )

X (Vep(ue)
x (Vo(u)?(y, s)E(z, t, v, s)} dzdt dyds.
Therefore,
70+ 750 == [ [ [Sileu)(e.0) - o) )ew ) GAD)

X (Vgo(ug)(x,t) — Vo(u)(y, s))Q] dxdt dyds <0, VY6 > 0.
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We may thus get rid of Ty + T5 in (3.28) and obtain :

T+ 15+ T3(6) > Tﬁ((;) —T%, Yo > 0. (342)
One can now let § tend to 0 in (3.42). This gives
/ / us(,£) = u(y, )| (€. Ly, 8) + Ex(a.1,9.)) (3.3
QT QT
(@,8) Tu(y, s)) — flus(z,t) Lu(y, s)))

(u
x( < ) Va(,4,9,5) + aly, 5) - Vib(w,t,1.5))
— (Valp(ue) (@) = e(w)(y, )| + Vylio(ue) (@, £) = p(u)(y: )]

(Vab(2,t,y,8) + Vyé(x,t,y, 5)) | dedt dyds

+ / ] /Q luo(x) — u(y, s)|€(x,0,y, s)drdyds

5)
)

T / ) /Q fun(y) — e, 0)|E(, £, 0)dydad

> - / Va2, t,y, ) dme (z, t)dyds.
QrYQr

Let us now take in (3.16) for z € Q, k= ug(z) and ¥ (y, s f &(x,0,y,7)dr.
Integrating the result on € leads to

L= 10005) = )] €,0,9:5) + (Futo ) Tun(w)) - (349
! T
— fuly.s) Luo(o))ats: )V, [ €Ge0.0.7)dr

T
= V@)~ plun(o)] - [ V€0, 7)dr]dydsd

+/ / uo(2) —uo(y)\/T§($70,y77)de$dy > 0.

Adding (3.43) and (3.44) gives
/ / e, 1) = uly, $)|(& (2, £, 5) + (3, 9)) (3.45)
QT QT

(2, ) Tuly, 5)) = flue(w,t) Lu(y, 5)))
( < ) Vat (2,1,9,5) + a(y:5) - V(1. .5))
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— (Valo(ue) (@) = o)y, 5)| + Vylp(ue) (@, ) = (u) (v, s>\)
Vot t99) + Vi€t o)) [dedtdyas + [ [ (7t 5) Tuof)
T

— F(uly, 5) Luo()))a, s) - Vy / E(a,0,y,7)dr

— V() (y, 5) — p(uo())] - / V€. 0.5, 7)dr] dydsda

//|u0 — up(y ]/ &(x,0,y, 7)drdxdy

! /QT /Q [uo(y) — ue(,t)|€(2,t,y,0)dydrdt

- / / Vab(, t,y, ) dme (x, t)dyds.
QrJQr

Some mollifiers in R and R? are now used. Let p € C®(R% R, ) and p €
C°(R,R4) be such that

{x e RY p(a) # 0} C{z € RY |2 <1}, {z € R;p(w) # 0} C[~1,0] (3.46)

and
/Rd p(x)dr =1, /Rp(x)dx =1 (3.47)

For some positive real values a and b which will be chosen later, let us define
Pa = adp( ) for all z € R? and p, = (%) for all z € R. In the remainder
of the paper, we shall denote by Q, = {x € Q,d(z,00) < a}.

One sets &(z,t,y,s) = ¥(x,t)pa(x — y)pp(t — s), where ¥ € C is such that
P(x,t) = 0 for all (x,t) € (2 x [0,7)) U (2 x (T —b,T)). Thus for all
(z,t) € 2 x[0,T), one has &(x,t,-,-) € C and for all (y,s) € 2 x [0,T), one
has £(+,-,y,s) € C. Note that &(-,-,-,0) = 0. One gets, from (3.45),

Ei+ Es+ Es+ Ey > —FEs, (3.48)

with

By = / / pa(x —y)pp(t — 8)|uc(z,t) — uly, $)|Ye(z, t)dedtdyds (3.49)
Br= [ [ [0t Tutw, ) - floetr. ) Luty ) (3.50)
% (pale = y)o(t = s)a(a, ) - Vo, 1)
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+ (@, Ot - s)(a(@,t) — aly, s)) - Vpale — ) ) [dedt dyds
[ [oate = wntt = ) (Valptu o) ~ )] (351)
+ Vyleue) @ 1) = p(u) (9, 5)| ) - V(1) | dadt dyds
Bi= [ [ [ty s) Tuo@) = Fluty. ) Luo(a)) (352)
! T
< aly,) - V@ 0Vpule ~y) [ pu(-r)dr
T
Y e(05) ~ pluo(e))] 0l 0)Voulo —v) [ po(—r)dr] dydsda

+/Q/Q|UO(JJ)—Uo(y)|w($,0)pa($_y)dl,dy

Es = / ; |Vaepa(x —y)(x,t)|pp(t — s)dme(z,t)dyds. (3.53)
One sets

D, :/ lue(x,t) — u(z, t)| Yz, t)dzdt (3.54)

Dy = /T[<f(u5(:c,t)'l'u(1:,t)) —f(ug(x,t)m(x,t))) (3.55)

w qz, 1) w(a;,t)]dxdt

D3 = —/ [V\gp(ug)(w,t) —p(u)(x,t)] - Vw(x,t)] dxdtdyds. (3.56)

Let
Va = supyepo,a) [ ) —ul- + ¥, )l @\0.x0,1)):
Vo = sup,eop) lu--) = ul, - + 1)l L1@xo,r-1)-
Then
|Er — D1| < C1(Va + Vo) [[9el oo (3.57)
and
|Ey — Da| < Co(Va + Vo) ([IVY oo + 14]l00), (3.58)

where one denotes by || - [|cc both the L>®(Q7) or L*°(2) norms, thanks to
the fact that f is Lipschitz continuous. This was proved in [11]) for f € C*
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but in fact the proof holds with no modification in the case of a Lipschitz
continuous f. Integrations by parts in (3.51) lead to

Bs= [ [ [me v —s) (3:59)
X |p(ue)(z,t) — o(u)(y, s)|Ap(z, t) | dedt dyds.

Let W, = sup{|l¢(u(-,-)) — ¢(u(- + y, )llr2@\ux01):¥ € B(0,a)} and
-’. 7_

Wy = sup{p(u(-,)) — @(u( - + 7)) 2o ). ™ € (0,)}. Then, by the
Cauchy-Schwarz inequality,

| Es — Ds| < C3(Wo + W) || Avpl2, (3.60)
where one denotes by || - || the L?(Q7) norm. Let
Vo,a = sup{||uo(-) — uo(- + y)HLl(Q\an(O,T))ay € B(0,a)}.

Using the fact that [, |Vpa(z)|dr < %, and that the length of the time
support of pp is b, one gets

b
[Eal < Cro(Voa + )9 0)loo- (3.61)
Denoting by M. = m.(Qr),
|Es| < C'11Mg(||w||OO + [V 0)- (3.62)

a
Since ug € BV (1), there exists C12 in R such that : Vp, < Ciza. Using
the BV estimate (3.7), one gets V, < Ciza and V, < Cub. The translates
estimates (3.5) give W, < Cisa and W, < Ci6Vb. One concludes, using
(3.57)-(3.62), that

D1+ D2+ D3 = =Cira (Voo + [[4tlloc + [¥]lco + 19( 0)lloc)  (3.63)
b
— Cis(a+Vb) [|AY]2 - 2 190l = Cro b (Voo + [[9elloo + [I¥]le0)

1%]] 0o
— T 1Vih|oo)-

Let us now let b tend to 0 in (3.63). This gives
/Q [|u8(x,t) —u(x,t)| Pe(x,t) + (f(ue(z,t) Tu(x,t)) (3.64)
— f(ue(z, 1) Lu(z, t))a(z, t) - Vi (z, 1)
— Vi (ue) (@) = o(w)(z.t)| - Vib(a, 1) | dadt

— CooM,(
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> —Cna([[Vlloo + l[9elloc + 9]l + 19+ 0)lloo + [A%|2)

~ et (= 4 yoy))
One remarks that (3.64) applies for all functions ¢ € C'(Q7) such that
¥ >0, Ay € L2(Qr), ¥(-,T) = 0 and (x,t) = 0 for all x € Q, x (0,T).

This concludes the proof of Lemma 2.1.

4. CONCLUSION OF THE PROOF OF THEOREM 2.1

Let § >0and a >0 with 1 > 6 > a and § + 2a < rq where rq is such
that one has d(-, Q) € C?*(Qy,). The two values § and a will be chosen at
the very end of the proof.

Let the function g € C'(Ry,Ry) be defined by ¢”(s) = 0 for s € (0,a),
g"(s) = L for s € (a,2a), ¢"(s) = —3 for s € (2a,2a + 6), ¢"(s) = 0 for
s € (2a + 0,0), ¢'(s) = f(O,s) g"(t)dt, g(s) = f(07s) g'(t)dt. One can easily
verify the following properties : ¢’ > 0, sup,cg, ¢'(s) = 1, the support of
¢ is included in [a,d + 2a], g(s) = 0 for s € [0,a], ¢ is nondecreasing and
g(s) = 23 for s € [0 + 2a, o).

We shall take for ¢, in Lemma 2.1, the function defined by : ¢(x,t) =
(T — t)g(d(z,09)), for all (z,t) € Qp. This function satisfies the condi-
tions ¥ € CHQr), ¥ > 0, Ay € L*(Q7), ¥(-,T) = 0 and 9(z,t) = 0
for all z € Q4 and t € (0,7). Thanks to the property |Vd(-,00)| = 1,
one can easily check that |Viy(z,t)| = (T — t)¢'(d(z,090)), Ayp(z,t) =
(T—t)[g" (d(x,00))+¢'(d(z,0Q))Ad(z, 0)], and therefore, 1y < 0, |[¢)|00 =
[6(:0)lc = T6+ %, Ve = T, and [AU]l2 < Cy, using a < 8 < 1.
Therefore,

5 9/ lue (2, t) — ulz, t)|dwdt (4.1)
2 Qr

> / luc(z,t) — w(x, )| (2, t)dodt — Cazd?,
and, using condition (2.4)
[ (ot Tute, 1) = fluce, ) Lu(a, 1) 42)

x q(z,t) - Vip(z, t)dzdt| < Coyd?.
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Thanks to Hardy’s inequality, which writes [4]

/de<0 /(Vw(a:))2dx Vw € H}(Q)
o d(z, 002" =% | ’ o

by the Cauchy-Schwarz inequality and thanks to the L?(0,T; H'(f)) esti-
mates (3.3) one has

|l )  plu) (T - )dodt < Capa®”
Q2ex(0,T)
which also gives
/ |o(us)(@,t) — p(u)(z, t)|g" (d(z,00)(T — t)dwdt < Coev/a.
Q20 % (0,T)
There exists Cy7, such that, for § < Ca7, one has
| [lo(ue) . £) — plu)(. 1) (4.3)
Q5424%(0,T)

x ¢ (d(z, dQ)) Ad(a, 0Q)(T — t)] dxdt‘

1 Tt
<5/ o(ue) ) — (), ) 5.
Q5+2a (D T)

Therefore, using the expression of Ay and the properties of g, one gets

1 -
0 > —/ oliae)(,0) = o) (o, )| s
Qé+2a (0 T) 5

2

[ Jotue)(o.1) = (0o ot~ 2o/ .
On the other hand, one has
(Il el e+ O o 1AW ) — 22 (102
> —ng(\/5+ME(g+l)). (4.5)
Using (4.1), (4.2), (4.4), (4.5), Lemma 2.1 and dividing by 8, one gets
/ 1o (@, ) — u(z, £)|dadt < Cog(0 + Y2 f Me =), (4.6)
MY

One can now take in (4.6), a M2® and § = , for M. < 1. Using the
BV estimate (3.9) for u., Wthh reads M, < 0305, one gets

Jue — ullpr(Qp) < Caie'/®. (4.7)
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Condition a < 0 < Cy; is then satisfied for £ small enough. Since ||u. —
ul 1@y < Cs2, the error estimate is then proved for all € > 0.
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