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We prove the convergence of a finite volume scheme for the Richards equation S(p): —
div (A(B(p))(Vp — pg)) = 0 together with a Dirichlet boundary condition and an initial

condition in a bounded domain Q2 x(0,7"). We consider the hydraulic charge u = % —z as

the main unknown function so that no upwinding is necessary. The convergence proof is
based on the strong convergence in L? of the water saturation 8(p), which one obtains by
estimating differences of space and time translates and applying Kolmogorov’s theorem.
This implies the convergence in L2 of the approximate water mobility towards A(B(p))
as the time and mesh steps tend to 0, which in turn implies the convergence of the
approximate pressure to a weak solution p of the continuous problem.

Keywords: Richards equation, Finite volume scheme, Kolmogorov’s theorem.

1. The Richards equation

When modelling the two phase flow of air and water in a soil, it is often realistic
to assume that the air is at the atmospheric pressure; this assumption yields a
simplified model (see Richards?* or Bear® p. 487) which is often used by hydrologists
and known as the Richards equation, namely

Bp)i(w,t) — div(A(B®) (VP —pe) )(@.H) =0, (5,) € QxRF,  (L1)

where p is the water pressure and  is a bounded open domain of IRd(d =1,2,3).
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The function S is the water storage capacity, the function A is the water phase
mobility, the real value p > 0 is the water density and g is the gravity acceleration.
We prescribe a Dirichlet boundary condition, namely

p(z,t) = p(z,t), (x,t) €002 x R™. (1.2)
We also prescribe an initial condition for the water pressure
p(z,0) =po(z), z€. (1.3)

Approximation methods of the equations (1.1)-(1.3) are frequently made by consid-
ering (see e.g. Alt et al !, Yin?®, Eymard et al 1°) the term div (A(8(p))(Vp — pg))
as the sum of a diffusion term div (A(8(p)) Vp) and a convective term div (A(8(p))pg)-
The diffusion term is rewritten as AH (p), with H' = Aof, and a change of unknowns
is made, using the reciprocal function of H (this change of functions is called the
Kirchoff transform). A drawback of this method is that one should use an upstream
weighting scheme in the discretization of the convective term (Forsyth et al '* or
Eymard et al 19) in order to preserve the stability of the scheme, therefore degrad-
ing the order of convergence. In this paper, we consider another approach in the
modelling of water flow through soils; it consists in introducing the hydraulic charge
u, defined by

p(=, 1)

u(z,t) = Yy

— z(z) for all (z,t) € Q x (0,T), for all T > 0, (1.4)
where g denotes the modulus of g and the function z(z) is the projection of point
z on the vertical axis, oriented by g/g.

With a simple adimensionalisation, one may assume that p g = 1 and one may then
rewrite equation (1.1) as follows:

Blu+ 2)i(z,t) — div(A(B(u +2)) w) (z,8) =0, (z,t)eQxRT. (L5

In (1.5), only a diffusion term appears so that the numerical approximation will not
involve any upwinding. A natural space for studying solutions of equation (1.5) is
the space L?(0,T; H'(Q)), and therefore the trace of the function u on 99 is well
defined. In order to simplify the notation, we shall denote a function u defined on
Q and its trace defined on 9 (whenever it exists) by the same symbol; hence the
boundary condition may be written as:

u(z,t) = u(z,t), for all z € 9N and a.e. t > 0. (1.6)

In (1.6), the function 4 = p — z is defined on the boundary 99 x (0,T) as the trace
of a function @, which belongs to H!(Q x (0,T)). We prescribe an initial condition
on u

u(z,0) = uo(z), z € Q, (1.7)
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where ug(z) = po(z) — z(x). We denote by (P) the problem given by (1.5), (1.6)
and (1.7). We shall make the following assumptions.

Hypotheses H

(H1) the domain Q C R? is polygonal in a general sense (that is polygonal if d = 2
and polyhedral if d = 3),

(H2) uo € L2(Q),

(H3) A is a Lipschitz-continuous function defined on IR with Lipschitz constant
L > 0, such that there exists A, > 0 with A > A,

(H4) B is a nondecreasing Lipschitz continuous function, with Lipschitz constant
Lg >0, such that there exist B1 € IR and Bs € R with fr < 8 < Bs,

(H5) we HY(Q x (0,T)), for all T > 0.

Definition 1.1 Under Hypotheses H, a function u is said to be a weak solution of
Problem (P) if

u—uEL20TH0(Q)) )
/ | {86, + 2(0) ~ Bluo(a) + #(2) } v, ) da e =

/ / )+ Z(x))) Vu(z,t) Vi(z, t)} dz dt,

for all ¢ € L2(0 T; HA(Q))
such that ¢, € L°°( x (0,7)), ¥(.,,T) =0.

/

It follows from Otto?? that if @ only depends on the space variable, Problem (P)
has at most one weak solution in the sense of the above definition.

The discretization of the Richards equation was performed by means of the finite
difference method by Hornung'® and by means of the finite element method by
Knabner??. Kelanemer!® and Chounet et al ® implemented a mixed finite element
method and Folkovic et al 12 applied a finite volume scheme with a mesh which is
constructed as dual to a finite element mesh, and which is adapted according to an
error indicator.

Finite volume schemes have first been developed by engineers in order to study
complex coupled physical phenomena where the conservation of extensive quan-
tities (such as masses, energy, impulsion...) must be carefully respected by the
approximate solution. Another advantage of such schemes is that a large variety
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of meshes can be used. The basic idea is the following : one integrates the par-
tial differential equations in each control volume and then approximates the fluxes
across the volume boundaries. The finite volume method is one of the most popular
method in computational hydrology. Therefore it is interesting from a mathematical
point of view to present convergence proofs for this method.

In section 2, we introduce the finite volume scheme and define the approximate
problem. Then we prove in section 3 the existence and uniqueness of the discrete
solution ur, to this problem. The existence and uniqueness proof is based on
the fact that the semigroup corresponding to B(u(.,t) + z(.)) satisfies a contraction
property.

In section 4, we derive a priori estimates. We prove an estimate on u7 j in a discrete
L?(0,T; H'(Q)) norm. We then deduce estimates on differences of space translates
of ur i, and on differences of space and time translates of S(ur 1 + 2), which imply
that the sequence {B(ur +2)} is relatively compact in L*(Q2 x (0,7)). Basic
ingredients that we use to obtain these estimates are discrete forms of the Poincaré
inequality and of trace theorems that we recall at the end of section 2.

From these estimates, we deduce in section 5, for any sequence of approximate
solutions, the existence of a subsequence which converges to a function

u € L?(0,T; H'(R2)) weakly in L*(Q x (0,T)) and such that {B(ur + 2)} con-
verges to a function 3 strongly in L?(Q x (0,T)) as the mesh and time steps tend
to 0. Finally, we prove that § = B(u + z), where u is a weak solution of Problem
(P). In the case that 4 = 4(x), the limit u is the unique weak solution of Problem
(P) and the whole family of approximate solutions converges to u.

For references on the convergence of the finite volume method for elliptic equations
we refer to e.g. Heinrich!'®, Herbin'®, Lazarov et al 2!, Mishev?2, Eymard et al 8,
Eymard et al ®, Eymard et al 7, Gallouét et al '4; for linear or nonlinear parabolic
equations we refer to Baughman et al 2, Herbin'”, Eymard et al 8, Eymard et al °
and Eymard et al 1°; see also Feistauer et al !! for the convergence of a coupled
finite-volume finite-element scheme for a semilinear parabolic equation.

2. The numerical scheme

In this section, we construct approximate solutions of Problem (P). To this purpose,
we introduce a notion of admissible finite volume mesh (see also Eymard et al 8or
Eymard et al 9).

Definition 2.2 (Admissible meshes) Let Q be an open bounded polygonal sub-
set of R?. An admissible finite volume mesh of Q, denoted by T, is given by a family
of “control volumes”, which are open polygonal convex subsets of Q (with positive
measure), a family of subsets of Q contained in hyperplanes of R? denoted by &
(these are the edges of the control volumes), with strictly positive length, and a
family of points of  satisfying the following properties (in fact we also denote by
T the family of control volumes):
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(i) The closure of the union of all the control volumes is €;

(ii) Forany K € T, there exists a subset £ of € such that 0K = K\K = U,¢cg, 0.
Furthermore, £ = Ukc7€K.

(iii) For any (K, L) € T? with K # L, either the length of KNLisOor KNL =7
for some o € £, which will then be denoted by K|L.

(iv) The family of points (zx)ke7 is such that zx € K (for all K € T) and, if
o = K|L, it is assumed that the straight line (zx, 1) is orthogonal to o.

In the sequel, the following notations are used. The mesh size is defined by size(7) =
sup{d(K), K € T} where §(K) denotes the diameter of the control volume K. For
any K € T and o € £, m(K) is the area of K and m(o) the length of o. The set of
interior (resp. boundary) edges is denoted by E;nt (resp. Eeut), that is Einy = {0 € &;
o ¢ 00} (resp. Eext = {0 € &; 0 C 0N}). For all K € T and o € k, we denote
by dk,, the Euclidean distance between zx and o; the ”transmissibility” through
m(o)
dK,a
Let & € (0,T) be the time step and ((K)ke7, (0)sece, (#x)KeT) be an admissi-
ble mesh. A semi-implicit finite volume scheme may be defined by the following
equations:

o is defined by 7k, = . We finally set zx = z(zk), for all K € T.

e = i [ wo(@)ts

wh = Bluk + 2K), (2.9)
forall K e T.
,wn+1 — Wk n n n
m(K)%K - Z TK7UA(/LUK)(’U/O_+1 - uK+1) = 05
78K (2.10)

wigtt = Blut + zk),
forall K € T and n € IN.

where the values (u?!),c¢ are obtained from the Dirichlet boundary conditions
on the boundary edges and from the conservation of fluxes on the internal edges:

1 1 (n+1)k ~ 3
uptt = (o) /nk /Uu(x,t)d'y(m)dt,

for all o € Eeuy,

> (2.11)
Ko Awk) (gt —uf) + 7,0 Aw}) (ug™ —uft) =0,

for all o € €y with 0 = K|L and n € IN, )
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where we denote by dvy the d — 1-dimensional Lebesgue measure on edges.

Remark 2.1 Note that scheme (2.9)-(2.11) is in fact a cell-centered finite volume
scheme using a harmonic average of mobilities for all internal edges. Indeed, for an
i AMwi)ui™ + 7o A(w] Juit

Tk, o AMw}k) + 70,0 A(wF)
Therefore the discretization scheme (2.10) can be rewritten in the more standard
form

internal edge 0 = K|L, (2.11) leads to uf,”'l =

w?(—i_l - ’U}% n
m(K)—F——F — > Fgp=0, foralKeT, (2.12)
L,K|LEEK

where the expression of the flur Fg ; from K to L at time step n is given by

" TR AW TLoAWE) (i1 sty (2.13)

= —Uu
LT g o Awl) + 110 A(w})  F K

If there exists a solution to (2.9)-(2.11), one may then build an approximate solution
urk : 2% (0,T) — R for u, by

ur i(z,t) =utt, forallz € K and t € (nk,(n + 1)k), (2.14)
and wr : Q@ x (0,T) — IR for B(u + 2) by

wr g (z,t) = Wit = B! + 2k), for all z € K and t € (nk,(n + 1)k). (2.15)

We shall make an intensive use of the following remark:

Remark 2.2 (Discrete integration by parts) Let (ax)keT, (r)sce and
(Fr,0)keT,ccex be real values such that Frx, + Fr, = 0 for all 0 € Eipy with
o=K|L and a, =0 for all 0 € Eeyy, then

dax Y Frkoe= > Y (ax —a,)Fk,. (2.16)
KeT o€ék KeTo€elk

We also recall the following discrete Poincaré inequality.

Lemma 2.1 (Discrete Poincaré inequality) Let (ax)keT, (as)sce be real val-
ues such that a, = 0 for all 0 € £.4¢. Let 7, be the “transmissibility” through o.
Then there exists a real value a > 0 depending only on 2 such that

Z Z Ko (as —ax)’ > a Z m(K)(ax)?. (2.17)
KeTo€Elk KeT
Proof. The proof is completely similar to that of the discrete Poincaré inequality
YY) mkular —ak)’ > a ) m(K)(ak)?,
KeTL,K|LeEk KeT

(see for instance Herbin'®, Eymard et al ®or Eymard et al 8).00
We will also need the following result on the local averages of an H' function. The
proof is given in Eymard et al 7.
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Lemma 2.2 Let Q be an open bounded subset of IR¢, @ € H'(Q) (recall that we
denote the trace of a function by the same notation as the function itself ). Let T
be an admissible mesh (in the sense of Definition 2.2) such that, for some ¢ > 0, the
inequality dx,, > (J(K) holds for each control volume K € 7 and for all o € &k,
and let M € IN be such that card(éx) < M for all K € T. We define, for all
KeT,

Ug = ﬁ /Kﬂ(:ﬂ) dz, (2.18)
and for all o € &
Uy = (o) /017,(:17) dy(z). (2.19)

There exists C((, M,d) € R™*, depending only on ¢, M and d, such that

S 5 e (@ — k) < CC M, d) [[all - (2.20)

KeTo€lk

Remark 2.3 (Definition of %, on internal edges.) Note that this lemma uses
Uy as the average value of the trace of 4 on the internal edges, which is different from
the definition which is given elsewhere in this article. We remark that this lemma
will always be sufficient since it is possible to first eliminate the values at the edges
given by the continuity of fluzes, and then apply the Cauchy-Schwarz inequality in
order to introduce the averages of the traces on the internal edges.

3. Existence and uniqueness of the solution to the scheme

Lemma 3.3 Under hypotheses (H), let 7 be an admissible mesh of Q2 in the sense
of definition 2.2, k € (0,T) be the time step. Then there exists a unique solution
(u¥) keTnew and (u?),ce new to equations (2.9), (2.10), (2.11).

Proof. The proof of Lemma 3.3 is based upon an induction argument and a con-
structive method. Let n > 0 be given. We consider the sequences (u(f?) KeT €N,
(u((,lﬂ))(,eg,lem and (w%))KeT,lelN which are defined by

ug® = ul, wg©® = w}, (3.21)

and for all [l € IN by

N\

l n I+1 !
wl([() —wg + Lg (u% ) —ug())

m(K) ? -
3 TroAwi) @i —ult) =0, ¢ (3.22)
oK

wiet) = Blufett + zg), )
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where Lg is the Lipschitz constant of 8 and by

(14+1) _ , nt+1
Ug = Uy ’

for all o € Eeuy,
(3.23)
o Awl) (D — oDy 47y A(w]) (D — uf+D) =0,

for all o € &y with 0 = K| L.

First we show that the matrix corresponding to the linear system (3.22)-(3.23) is
invertible. Therefore this system defines for a given [ € IN a unique family of values

(W™ keer, @)y

Let (ak)ke7 and (as)sce be the solution of the following system of equations: for
al KeT

L
m(K)=2ax = Y 1o Awi)(@o - ax) =0, (3.24)
o€€k

a, =0,

for all o € E.44,
(3.25)
Tk, o MW )(ar — ak) + 70,0 A(w})(a, —ar) =0,

for all o € &y with 0 = K| L.

We multiply (3.24) by ax and sum the result over K € 7. We obtain using a
discrete integration by parts (see Remark 2.2),

% S m(K)ax + Y > i AMwk) (e, — ak)® =0,

KeT KeToelk

which implies that the families (ax)xe7 and (as)see are identically equal to zero,
so that the kernel of the matrix of the linear system (3.22)-(3.23) is reduced to {0}.

Next we prove that the sequences (ug?)KeT,le]N, (ug+1))ae8,lem and (wl(f())KeT,le]N

converge as | — 400 and we denote their limits by (Wit ) ke, (u?t!),ee and
(W) geT respectively. These limits satisfy equations (2.10)-(2.11) which proves

the existence of a solution to the scheme.

In order to show the convergence of the scheme, let us substract (3.22) at steps [
and [ — 1. This yields
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m(K) k -
> o Awi) (@l —ud) - @ —ufd)) = (3.26)

cEEK
-1 l 1 [
wg{ )—wg()+Lg<ug{)—ug{ ))

m(K) )

We multiply (3.26) by U%H) - u&? and sum the result over K € 7. Since uy " —

ug) =0 for all o € &, and
i AR (@) — uld) — (i — i)+
71, o AR (Wl —u®) — @Y —uP)) =0,

for all o € &,y with o = K|L, a discrete integration by parts (see Remark 2.2) may
be used to obtain

L (" - )’

> m(K) - +
KeT
>3 o Awi) (@l —ud) - @i —u)) = (327)

KeToeélx
w%ﬁl) — wf,? +Lg (ug? — u?{l)

Z m(K) A ) (u(ll('H) - u(I?) .

KeT

Next we prove that

2 2
(wgl(—l) _ wl(r? + Lg (ugl() — uy{_l)) > < (Lg (ug? — U([l(_l)) ) . (3-28)

Indeed, if we develop the left-hand-side of (3.28) and simplify, we obtain the equiv-
alent inequality

2
(w%ﬁl) - wﬁ?) —-2Lg (w%ﬁl) - w§?) (ugl(fl) - u&?) <0. (3.29)
Since f is nondecreasing, inequality (3.29) is equivalent to the inequality

(w%_l) — wﬁ?)z <2Lg ‘wy(_l) - wﬁ?‘ ‘u%_l) - u&? , (3.30)

which is satisfied since 8 is Lipschitz with Lipschitz constant Lg. Applying the
Poincaré inequality (Lemma 2.1) to the second term of the left-hand-side of (3.27)
and the Cauchy-Schwarz inequality to the right-hand-side, we finally obtain with
(3.28), after simplification
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o) (1)

KeT 1 (3.31)
Lg W _ -0\
T Zmeo (ufd - i)
We deduce from (3.31) that there exists a positive value U™ such that
1
2 2
(Z m(K) (ug? - uglgl)) ) <urctt,
KeT
her C—i tisfies 0 < C' < 1. Therefore for all K € T, ( )
where —Lﬁ+kAmasases erefore for a uKlelN
is a Cauchy sequence (the Cauchy residual tends to zero uniformly) so that it
converges. In view of (3.23), we also obtain the convergence of (uf,’“’),em for all

o € £. The respective limits u™! and u?+! satisfy equations (2.10)-(2.11); this
shows the existence of the solution to these equations.

We finally show the uniqueness of these solutions. Let ux and vk be two solutions
of (2.10). We subtract equation (2.10) for vk from equation (2.10) for ug. It leads

to
- Z TK,aA(U)?()(('U,a - Uo’) - (UK - ’UK)) =
o€lK -
m(K)ﬂ(vK+ZK);/8(UK+ZK). (3.32)

where
Uy — Ve =0,
for all o € E,.44,

T, AWk ) (us — uk) + 71,0 A(WE)(Us — ur) =0,

Tk, e MW ) (Ve — V&) + TL,0 A(W]) (v —vL) =0,
for all o € &y with 0 = K|L.

7
We multiply (3.32) by (ux — vk) and sum the result over K € 7. Using a similar
argument to the one yealding (3.31) and applying the discrete Poincaré inequality
(Lemma 2.1), we obtain

(Ama) Z m(K)(ux —vg)? <0.
KeT

This proves the uniqueness of the solution of (2.10) and concludes the proof of
Lemma 3.3.0

4. A priori estimates



Approzimation by the finite volume method of an elliptic-parabolic equation 11

4.1. Space translates estimate

The space translates estimate is based on the following lemma.

Lemma 4.4 (L?(0,T; H'(Q)) estimate) Under hypotheses (H), let 7> 0 and T
be an admissible mesh of Q in the sense of Definition 2.2, k¥ € (0,T) be the time
step. Let ¢ > 0 be such that

dK o
(< — (4.34)
f&l 3(K)’
and M > 0 such that
M > . 4.
> max card(&k) (4.35)

Let (u%)keTnew and (u?™),ce new be the unique solution of equations (2.9),
(2.10) and (2.11). Let (@%") ke new and (@77!)yee new be given for all K € T
and for all n € IN by

(n+1)k
ﬁ”“ / / a(z,t) dz dt,

b /(n+1)k /
Uy u(s,t) dsdt,
km nk - , (4.36)

for all o € gezt,

o Mwi) (@g ™ — af) + 100 A(w) @yt —apth) =0,

for all o € &,y with 0 = K|L, )

where we recall that the function @ denotes a function of H( x (0,7)) whose
trace on 01 is the function 4 given by the boundary condition (1.6); let @7 be the
piecewise constant function defined by

ur (z,t) = upt! for x € K and t € [t tyq1)- (4.37)

(Note that, for o € Eins, the values @' are defined in order to satisfy the continuity
of the fluxes, and are not the average values of the trace of @ on o). Let us define
foralln € IN

,U?-i-l — u;H-l — ra;""‘l = O, for all o € ge:l:ta

ot =t — gt for all o € Eipe, (4.38)
ottt = uyl —artt, forall K € T, '
vT, k(:v t) = vt for all K € T and t € [nk, (n + 1)k).

Then there exists C; depending only on Q, T', {, M, ug, 4, A and 8 such that

[T/k]

SRS Y mreo i — o) < (439)

n=0 KeToElk
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and
(T/k]
kY Y s i ut ) < G, (4.40)
n=0 KeTo€fk

where we set, for all a € R", [a] = max{n € N, n < a}.

Proof. First we replace u™" (resp. u2*') by vit! + @%t (resp. v2*+! + a2+!) in
(2.10). This yields

n+1 —wn
m(K) S = 3 e A (™ — o) =
oEEK (441)
z TK«T wK n+1 _?{+1)7
o€efk
and
ot =,
for all o € £y,
(4.42)

T Awi) (it —vig™) + 71 o AwE) (0p ! — vyt =0,

for all o € &y with 0 = K|L.

Multiplying (4.41) by kvt!, summing over K € T and over n = 0,...[T/k] and
using a discrete integration by parts (see Remark 2.2), thanks to (4.42), we obtain

B; + B, = B3 (4.43)
where
[T/k] )
=) > mE) wp — wi g,
n=0KeT
[T/k]

=D kY Y mroAWR) W v, > (4.44)

n=0 KeTo€Elk

[T/K]
=Y EY Rt Y moAwi) @t —apth).
n=0 KeT oc€EK /

Let us first study B;. We remark that

(i —wi) (ui" — A = wi i — wiufe + wiuk — wicu
+ w}@u’}é‘l w}?‘lﬂﬁ"'l.
(4.45)
Since
[T/k] [T/k] [T/k]
Z (wKurIL{—i-l n+1 n+1 Z wKun—i-l Z wKuK
—~ (4.46)

T/k T/k]+1
+ w%uK—w[K/ 1+1U[K/ 1+
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we finally have that B; = By; — Bys where

[T/k]
Bu= 3 m() w3 wiku — i) —ufdo)
KeT i
_ —Nn
Bis= 3 m(K)wlf/HH g/ +E[T/k] £ m( %
KeT KeT
— Z m(K)wlal
KeT
Let us now turn to By;. From the definition of w}, we have that
n41
Uge
wik (uEt —ul) = / B(ul + zk) dE. (4.47)
Uk
We introduce the integral function gg (& fo s + zk)ds and add and subtract

qr (uP) — g (ulk) to the right-hand- s1de of (4.47). We obtain

nt1
Uk

wic (ui™ —ul) = qre(u™) — QK(U%)—/ (B(E+2K) = Buk +2x))dE. (4.48)

n
K

n+1
Since 3 is nondecreasing, the term f UK (B(E+ 2k ) — B(uk + 2K ) )dE is nonnegative.

Therefore w} (up™ — ul) < qr(u n+1)

By > Z ( [T/k]+1 [T/k]+1 _ qK(u[ff/k]“) + qK(u(}() . wg{u%) . (4.49)
KeT

— gi (u}) and we obtain

Using Hypothesis (H4) and the definition of gx, we have that

1
0 < €A(E+2r) —a(©) = [ (B(E+20) = Blo+ 1)) dn < L €212

Using these equalities with £ = ug/ I+ and ¢ = uY%, one obtains from (4.49) that:

Lg
By >0- —‘* > m( 22 = uollzeo). (4.50)
KeT

Let us now handle B;s. We set 8y = max(—pr,8s). Using Hypothesis (H4), we
apply the Cauchy-Schwarz inequality to the first term of Bi, and obtain

2
( > mE )i ’“]“> < B Yo mK) 3 m(E) (g

KeT KeT KeT

—[ /k]+1

From the definition of @ , we have that
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K[T/K]+k 2
[T/k] +1 _ .
E m(K)( E / ( /k u(:c,t)dt) d

KeT ket (T/k]

Since u € H'(Q2x(0,T)), it may be shown that the function ¢ — [, u(x,t)dz belongs
to H'(0,T). Therefore, since H'(0,T) is continuously imbedded in C([0,T]) (see
e.g. Brezis?), it is easily shown that there exists C(T') € IR, depending only on T,
such that

Z (K )( [T/kHl <C // *(z,t) + G (z,1)) drdt.

KeT
Therefore
2
( > mE)wid M al ’“]“) < Bm@ CD) al3n nomry.  (451)
KeT
In the same way, we have that
2
( > m(K)w%ﬂk) < B m(Q) C(T) a3 ox 0,1 (4.52)
KeT

Applying the Cauchy-Schwarz inequality to the second term of By gives

2

[T/K] _gnt T/ (g — gty

K 2 K
ST kS m( T <BUTm(®) Y m(K) Y K
n=1 KeT KeT n=1

Since the function @ik : ¢ — [, @(, t)dz belongs to H'(0,T), it is Holder continuous
with exponent 1/2; more precisely (see Brezis*), one has, for any ¢ > 0:

i (t) —dr(t+ k)| < \/E”ﬂK”Hl(t,t-i-k)-
Hence, thanks to k € (0,T") and to hypothesis (H5), we have

2
(T/k]
SRS m( L“KH < B2, Tm(Q) ||a||? (4.53)
2 2 = Pm H(2x(0,2T))" :
n=1 K¢

Therefore, from (4.51), (4.52) and (4.53) there exists C'(8,Q,T'), depending only on
B, Q@ and T, such that

(Bi2)? < C(B,9,T) llall3 x (0,21)- (4.54)

Finally, we get the existence of Cy > 0, depending only on Q, T'; ug, u and § such
that
By > —Ch. (4.55)
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We now turn to the study of Bs. Since v?*! =0 for all o € &+ and
i o Awl) (@2 — @) + 1 s A(w) (@t — @ty = 0 for all 0 € Eipy with
o = K|L, we have using Remark 2.2 that

(T/k]

= D kY D TroAwi) @t — A (R - opth. (4.56)

n=0 KecToEk
We then apply the Cauchy-Schwarz inequality to obtain

[T/k]

(Bs)> < By Y kY Yt Awh)@pt!t —aptt)? (4.57)

n=0 KeToEfk

Since 3 is bounded (Hypothesis (H4)) and since A is a continuous function, there
exists a constant A s which is independent of size(7) and k such that

Awg) <Ay, forall Ke T andn=0,..,[T/k]. (4.58)
Therefore in view of Lemma 2.2, we have that
(B3)* < By A C(¢, M, d) ||| 720 141,51 (0 (4.59)
We return to (4.43). Substituting inequality (4.55) yields
B, < B3 + C. (4.60)
In view of (4.59) and since 2> < ax + b implies = < a + v/b, we have that

B, <C. (4.61)

Hypothesis (H3) states that A > A,, > 0. Hence (4.61) implies exactly (4.39).
Moreover, from the definition of vr j (see (4.38)), we have that

[T/k] [T/k]
Zkz Z TKO' n+1 n+1 < QZkZ Z TKO' n-‘rl n+1)2
n=0 KeToEEk Z"/](g)] KeToelk

+ 2) EY Y o (aptt — At

n=0 K€EToEEx
(4.62)

In view of Lemma 2.2, (4.40) immediately follows from (4.62) which concludes the
proof of Lemma 4.4.0

Several consequences can be drawn from Lemma 4.4.



16  Approzimation by the finite volume method of an elliptic-parabolic equation

Corollary 4.1 Under hypotheses (H), let T > 0 and 7 be an admissible mesh of
Q in the sense of Definition 2.2, k € (0,7T") be the time step. Let { > 0 and M >0
be such that (4.34) and (4.35) hold. Let ur, be given by (2.9), (2.10), (2.11) and
(2.14) and let v be given by (4.36), (4.37) and (4.38).

Then there exists C' depending only on Q, T', {, M, ug, 4, A and 8 such that

||’U7’,k||L2(0,T;L2(Q)) <C, (4.63)
and that
||uT,k||L2(0,T;L2(Q)) <C. (4.64)

Proof. We first deduce (4.63) from Lemma 4.4 and the discrete Poincaré inequality
(Lemma 2.1). Therefore we deduce estimate (4.64) from the definition (4.38) of vy
and from Hypothesis (H5). O

Corollary 4.2 Under hypotheses (H), let T' > 0; let (7z)¢ew be a sequence of
admissible meshes of Q in the sense of Definition 2.2 such that size(7;) — 0 as
L — +00, (k¢)gewcm++ such that k, — 0 as £ — 4o00; assume that there exist
¢ > 0and M > 0 such that

. . dK o
< 7
< il o Sy
cEEx
and

M > sup max card(€k).
a le]lI\)IKGW (61)

Let w7, and vy, k, be the piecewise constant functions defined by (2.14), (2.9),
(2.10) and (2.11) and (4.38) with 7 = 7; and k = k. Then there exist subsequences
of (Te)eew and (k¢)gencm++, still denoted (7¢)eew and (k¢)eemv, such that wr, k,
(resp. vT, k, ) converges weakly in L?(0,7; L*(2)) to a limit u (resp. v) as £ tends
to +oo.

We also deduce from Lemma 4.4 the following results on differences of space trans-
lates.

Lemma 4.5 Under hypotheses (H), let T > 0 and 7 be an admissible mesh of Q
in the sense of definition 2.2, k € (0,7) be the time step. Let ¢ > 0 be given by
(4.34) and M > 0 be given by (4.35). Let (u%%)keTmen and (u?*),ce nemw be
the unique solution of equations (2.9), (2.10), (2.11). Let (@), (@?*'), (vpth),
(), (w), forall K € T, 0 € £, n € N be given by (4.36), (4.38). Let ur x, v7x
and wr, be respectively defined by (2.14), (4.38), (2.15), these definitions being
extended to IR? x (0,T) by zero outside of Q. Then there exists Cy depending only
on Q, T, (, M, ug, 4, A and 3, such that

o7k (- +157) = 07k (M T2 (0,my) < Co Il (1] + 2si7e(T)), (4.65)

lur k(- +n,7) = ur k(5 ) IL2@x 0,y < Calnl (Inl + 2size(T)), (4.66)
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and
lwr k(- +n,7) = wr k(s )lL2@x 0.y < C2 [l (In] + 2size(T)), (4.67)

for all n € RY.

Proof. The proofs of (4.65) and (4.66) are identical to those given in Eymard et
al Swhereas (4.67) immediatly follows from (4.66) and the Lipschitz continuity of

8.

We deduce from this lemma the following regularity on the limits of the subsequences
of approximate functions.

Corollary 4.3 (Regularity of the limits) Under the assumptions of Corollary
4.2 and using the same notations, the weak limits » and v of the subsequences

(U'Te,ke)ZE]N and (UTz,ke)ZEIN satisfy

v € L*(0,T; Hy(Q)), (4.68)

and

uw=v+a€ L*0,T; H(Q)). (4.69)

Proof. The assertion (4.68) immediately follows from Lemma 4.5 and Theorem 1 of
Eymard et al 8. It is clear from the definition of 4\ (see (4.37)), that ur, x, — @
in L2(Q x (0,7)) as £ — +oo. Since ut, k, = v7; k, + @7y ,k,, (4.69) follows. O

4.2. Time translates estimate

We first give a technical lemma which we use in the proof of the time translates
estimate.

Lemma 4.6 Let T > 0, 7 € (0,T), k € (0,T) and (a™)new be a family of non
negative real values. Then

(t4+7)/kK] [T/k]

T—r [
/ Yoo oarttat<rd et (4.70)
0 n=[t/k]+1 n=0
and for any ¢ € [0, 7]
T—7 [(t+7)/K] [T/k]
/ Z QO+ gy < 7 Z a™tt. (4.71)
O n=[t/k]+1 n=0

Proof. Let x be a function from INx IR xIR* into {0, 1} defined by x(n, t;,t2) = 1
if t1 < nk < t2 and else x(n,t;,t2) = 0. Then we have that
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T—7 [(t+7)/K] [T/k] T-7 (1/k] nk
/ Z a"ttdt < Za”“/ x(n,t,t+7)dt < Za”“/ dt
0 n=[t/k]+1 n=1 0 n=1 nk—1
(T/k]
<7 Z a™
n=1
which yields (4.70).
In order to prove (4.71), we remark that:
T_r [(t+7)/k] [T/K (manyk  [T/H
JRRED ST CEL LD S I SRR S TS L 2
0 p=[t/k]+1 m=0 Jmk n=0
and for all m € IN
(m+1)k [T/K] k [T/K]
/ Zx(n,t—g,t—C+7)dt :/ Zx(n—m,t—g,t—C+T)dt
mk n=0 0 n—o
(T/k] k—nk
=Y [ xemt= gt - g
—nk

n=0
S / X(—m,t—g,t—C-FT)dt

]Rf—mk
< / dt
CHr—mk
<7,

which concludes the proof. O

Lemma 4.7 Under hypotheses (H), let 7' > 0 and 7 be an admissible mesh of Q2
in the sense of definition 2.2, k € (0,T") be the time step. Let ¢ > 0 be given by
(4.34) and M > 0 be given by (4.35). Let wr be defined by (2.15), (2.9), (2.10),
(2.11), and extended by 0 outside of Q. Then there exists C3 depending only on 2,
T,(, M, ug, u, A and 8 such that

lwr k(- +7) = wr k() L2 @xor—ry < C37 Y7 € (0,T). (4.72)

Proof. Let 7 € (0,T'); by definition of wr x, one has

T—7
. 2
lwr k(, +7)—wr &, NZ 2 x (0,7—7)) Z/O Z m(K) (wg((tJr )/k]ﬂ—w%/klﬂ) dt.
KeT

Since @ is Lipschitz continuous with constant Lg (Hypothesis (H4)), one has

T—1
w7 (e +7) = wr ks Mooz my) < / A(t) dt,
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with
t+71)/k -‘rl t/k]+1 t+7)/k]+1 t/k]+1
Lﬂz < [(t+7)/k] [K/] )(w‘[l({ )/ k] _w[K/] )
KeT
Noting that
(ernien e _ e
witT — wy/ = z (Wit —wi),
n={t/K]+1

using (2.10) and the definition of vy j (see (4.38)), one has

@) =
" - k1 [(t+7)/k]
Ly Y (a0 /) TN S e, AwR) (! — )
KeT n=[t/k]+1 o€EK
) /R4 /K41 e/
Ly Y (ol ) STk S e, M) (™ — ).
KeT n=[t/k]+1 oc€Ek
(4.73)

We perform a discrete integration by parts (see Remark 2.2) to both sums in the
right-hand side of (4.73). It leads to

A(t)z Lﬂz Z kZTKJ wK

KeTn=[t/k]+1 0€EEK
[(t+7)/k] ( (E[It{/k]—i-l _ a([;t/k]—i—l). )

- Ip Z Z k Z TK,o Mwi) (un+1 . uwk+1)

KeTn=[t/k]+1 o€k
[(t+7)/k] [(t+7)/kl+1 _ | [(¢+7)/k]+1
e Ly S S e (‘”K oy )
KeTn=[t/k]+1 o0€fk
[(t+7)/k]

- Lg Z Z k Z TK,o A [t/k]+1 _ v{[;s/k]-‘,—l) (ug-{-l _ u?{"'l)_

KeTn=[t/k]+1 oE€Ex

t+7)/k]
[(t+7)/ ] ( (@l /R _ gl /Ry )
(uptt — gt

(utt = )

(4.74)
Applying four times the inequality +2ab < a? + b2, we obtain
A(t) S % (Aﬁ(ta T) + Aﬁ(ta 0) + Av (ta T) + Av (ta 0)) +2 Lﬂ Au(t)a (475)
where
[(t+7)/k]

Aa(t,0) = > kYD 1k Aw ( [(t+6) /K41 _ 3?*””“)2,

n=[t/k]+1 KEToEEK

and
[(t+7)/k]

A0 = D kDD Tice Awk) (o7 [(t+a/k]+1)2’

n=[t/k]l+1 KEToEEK
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for § = 0 or @ = 7 and where

[(t+7)/k]

Aty = D kDD i Awk) (uptt —upth).

n=[t/k]+1 KEToEEK

Next we integrate Az(t,0) and A,(t,6) from 0 to T — 7. In view of (4.71) and of
the upper bound Ay of A(w%) (cf. (4.58)), we obtain

[T/k]

/T_T Aﬁ(taa) dt S TAM Z k Z Z TK,o ('L_I/;H_l _ ﬂ%+1)2,
0

n=0 KecTo€Elk

and

[T/k]

T—71
/ Av(t,G)dtSTAMZk Z ZTK,a (Ug+1_v171%+1)2‘
0

n=0 KEeToEEK

From Lemma 2.2, we finally deduce that

T—7
/0 Aa(t,0) dt < 7 Ay CC M, d) 1130 27,101 (4.76)

and from Lemma 4.4, we deduce that
T—1
/ Ay(t,0)dt < 1Ay Ch. (4.77)
0

Next we integrate A, (t) from 0 to T'— 7. In view of (4.70) and of (4.58), we obtain

T/k]

_r [ A
/T Au(t) dt S TAM Z k Z Z TK,o (U?+1 _ u%+1)2 )
0

n=0 K€ETo€EEk

From Lemma, 4.4, we deduce that
T—T1
/ Ay(t)dt <7 AN Ch. (4.78)
0

Finally we integrate inequality (4.75) and substitute estimates (4.76), (4.77) and
(4.78). This yields exactly (4.72).0

We then obtain the following result.

Corollary 4.4 Under the assumptions of Corollary 4.2, let w7, , be the piecewise
constant function defined by (2.15), (2.9), (2.10) and (2.11) with 7 = Ty and k = ky.
Then there exist a subsequence of (7¢)iew and (k¢)sencm++» Still denoted (7)remw
and (k¢)¢ew, and a function 8 € L2(0,T; L?()) such that

wr, k, converges to 3 strongly in L?(0,T;L?*(Q)) and a.e. in Q x (0,7T).
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Proof. In view of the space translates estimate (4.67) and of the time translates
estimate (4.72), this result is a direct consequence of Kolmogorov’s theorem (see
Brezis?, Theorem IV.25, page 72 and Eymard et al °, Lemma 3.5).

5. Convergence

Theorem 5.1 Under the assumptions of the corollaries 4.2 and 4.4 and with the
same notations, the sequence (u7; 1, )renv converges to a weak solution u of (1.5),(1.6)
and (1.7) weakly in L?(Q x (0,T')) as £ — +o0 and the sequence (w7, ,)eeN con-
verges to w = B(u + z) strongly in L%(2 x (0,T)) as £ — +00.

Proof. Let (Ty, k¢)ee be a sequence of admissible meshes and time steps satisfying
the assumptions of Corollary 4.2. From the lemmas 4.4, 4.1, 4.5 and 4.7, and the
corollaries 4.2 and 4.4, we deduce that under the given assumptions, there exists a
subsequence of meshes and time steps that we denote again (7¢, k¢)seN, such that

(i) wpk convergesto wu weakly in L?(Q2 x (0,T)),

(i) wT,.k ~ converges to B strongly in L2(Q x (0,T)) } as { — +oo.
(5.79)

Using a result of Eymard et al '°, it is easily shown that

B=Bu+2) ae inQx(0,T). (5.80)

It remains to show that the limit u is a weak solution of Problem (P). For the sake
of simplicity, we set 7 = Ty and k = k;. Let T be a fixed positive constant and
¥ € ¥ where V¥ is defined by

T={peC»@@x[0,T]), y=00n02x[0,T], y =00n @ x {T}}, (5.81)

where C?%1(Q x [0,T]) is the set of functions with continuous second derivatives
with respect to = and continuous first derivative with respect to t. We multiply
Equation (2.10) by k¢ (zk,nk), and sum the result over n = 0,...[T/k] and K € T.
We deduce that

Te + Ao = 0, (5.82)
where
[T/k]
o= Y Y mK) (wit! - wic) vlaw,nk), (5.83)
n=0 KeT
and
[T/k]
Aor = Zk Z Z TK,o Mwik) (u;“rl - u?;rl) V(T ,nk). (5.84)

n=0 KeTo€Elk
The study of the discrete time derivative Ty is similar to that of Eymard et al 1°
and yields that

Tyg — — /Q Bluo(z) + 2(2)) $(z, 0) dx — / ' /Q Blu(z, £) + 2(x)) u(z, ) daz Sdts,s)



22 Approzimation by the finite volume method of an elliptic-parabolic equation

as £ — oo. Let us now study the space term Ag, of the definition. For (z,t) €
O xR, we set B = B(u(x,t) + 2(x)) and consider the terms

T
Ay = / / wr k(2 1) div(A(B) V) (. 1) da dt,
and
[T/k]

(n+1)k
Ay =D ) upt / / div(A(B) V) (x,t) du dt.

n=0 KeT

Since ur ), converges weakly to u in L*(Q x (0,T)) , we deduce that

{— 00

lim Aq _/ / u(z,t) div(A(B) V) (z, t) dz dt,

and that
lim |Alg - A24| =0.
{—ro0

Moreover we have that

[T/k] (n+1)k
Aoy = Z Zu”“ Z / /A (z,1))Vip(z,t) - nk,(2)dy(z) dt,
n=0KeT o€EK

and therefore, performing a discrete integration by parts (see Remark 2.2), we obtain

(T/k]

(n+1)k
Agp = Z Z Z (ugtt — utth) / /A z,1))Vi(z,t) - ng o (z)dy(z) dt.

n=0 KEToEEK

We set
(n+1)k
/ / B(z,t))dy(z) dt,

n _ Y@K, nk) —P(zs,nk)
K,o0 — d
K,o

and

7

where z, is the orthogonal projection of zx on o. Next we compare Agy to the
term

[T/k]

Asp = Zkz Z uptt — ul AR k,0Gk,0

n=0 KeToElk
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Applying the Cauchy-Schwarz inequality gives

(T/k] [T/k]
(Aoe = A3)? < D kY Y mro(ul™ —ud™)? Y k> > m(o)dk R,
n=0 KcToElk n=0 KeTo€Efk

with

%o = (s S 0, A, ) (Vib(a,0) o (@) — G, ) ()

Since ¢ € ¥, there exists a positive real value Cy, such that, for all K € T, for all
o € £k and for all n € IN, we have that

IV(z,t) - nk . (x) — Gk .| < Cy(size(T) + k).
Therefore, thanks to (4.40), we deduce that

lim (AQ[ — A3g) =

{—>00
Finally we prove that
lim (As — Age) = 0.
{—>o0

First we use a discrete integration by parts (see Remark 2.2) and the definition of
Tk,s to rewrite Agg in the form

(T/k]

Aoe= STk ST (i — urAWR)m(0) G -

n=0 KeTo€Efk

Since ¢ € ¥, there exists a bound G of |V#)| so that |Gka| < Gforall K €T,
o € £k, n € IN. Using the Cauchy-Schwarz inequality , we obtain

(T/k]

(Aor — A30)* < G*Byg Z k Z Z Tr,o (Wt —ulth)?, (5.86)

n=0 KeToefk

where we define By, by

(/K]

B = Zkz Z 0)dK .o AKG'_A(w?())2'

n=0 KeToElk

Using (4.40), it now suffices to prove that hm By = 0. We set

(n+1)k
/ / A(B )) dz dt.

B¢ < 2(By¢ + Bsy),

Then
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where
[T/k]
Bye=3 kY Y mo)drqs (N, — A%,
n=0 KeToEEk
and

(T/k]

B3g = Zkz Z dKa' AK _A(wK))2

n=0 KeToElk

We have that Z 0)dk,, = d m(K). Therefore the convergence of A(B(u + 2))
0€EEK
to A(B) for the L? norm implies that lim |Bsy| = 0.
£—00

Using the properties of H' functions recalled in Lemma 2.2 on the function A(3),
we finally obtain Bse < size(T)?Ca||A(B)||L2(0,1;11 () and hence elim |Bae| = 0.
—o0

The density of the set ¥ in the set of test functions {¢p € L2(0,T; H}(Q)), ¢ €
L>(Q x (0,7)), ¥(.,T) = 0} completes the proof of Theorem 5.1. O
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