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1 Introduction

We study the problem
{

∂tu(t, x) + ∂x(f(u))(t, x) + g[u(t, ·)](x) = 0 t ∈]0,∞[ , x ∈ R
u(0, x) = u0(x) x ∈ R,

(1.1)

where f ∈ C∞(R) is such that f(0) = 0 (there is not loss of generality in assuming
this), u0 ∈ L∞(R) and g is the non-local (in general) operator defined through the
Fourier transform by

F(g[u(t, ·)])(ξ) = |ξ|λF(u(t, ·))(ξ) , with λ ∈]1, 2].

Remark 1.1 We could also very well study a multi-dimensional scalar equation,
that is to say on RN instead of R. All the methods and results presented below
would apply; but this would lead to more technical manipulations so, for the sake
of clarity, we have chosen to fully describe only the mono-dimensional case.

The interest of such an equation (namely Equation (1.1)) was pointed out to us
by Paul Clavin in the context of pattern formation in detonation waves. The study
of detonations leads, in a first approximation, to nonlinear hyperbolic equations.
As it is well known, the solutions of such equations may develop discontinuities
in finite time. A theory of existence and uniqueness of (entropy weak) solutions
to Equation (1.1) with g = 0, in the L∞ framework, is known since the work of
Krushkov ([Kru70], see also [Vol67]). The case of a parabolic regularization (of a
nonlinear hyperbolic equation) is often considered and used to prove the Krushkov
result; it corresponds to (1.1) with λ = 2. In this case, existence and uniqueness of
a solution is also well known along with a regularizing effect. However, it appears
that the choice of λ = 2 is not quite natural, at least for the problem of detonation
(see [CD02], [CH01], [CD01]) where it seems more natural to consider a nonlocal
term as g[u] with λ close to 1 but greater than 1 (although the case λ = 1 is also of
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interest but more complicated). This term corresponds to some spatial fractional
derivative of u of order λ. The main motivation of this paper is therefore to prove
existence and uniqueness of the solution to (1.1) in the L∞ framework as well as
a regularizing effect (a regularizing effect which is well-known in the case λ = 2,
as it is said above). In particular, the solution will be C∞ in space and time for
t > 0. We also prove the so called “maximum principle”, namely the fact that the
solution takes values between the maximum and the minimum values of the initial
data, and a property of “L1 contraction” on the solutions, which is the fact that,
for any time, the L1 norm of the difference of two solutions with different initial
data is bounded by the L1 norm (if it exists) of the difference of the initial data.

A major difficulty is due to the nonlocal character of g[u] if λ ∈]1, 2[; this
prevents the classical way to prove the maximum principle, which leads to an L∞

a priori bound on the solution (a crucial estimate to obtain global solutions). It
is interesting to notice that the hypothesis λ ≤ 2 is necessary for the maximum
principle. Indeed, the maximum principle is no longer true in general for λ > 2.
However, the regularizing effect is still true for λ > 2, a property which is probably
not verified if λ < 1. The case λ = 1 is not so clear and needs an additional
work. Indeed, for the study of detonation waves, our result has to be viewed as a
preliminary result or, at least, as a study of a very simplified case. Realistic models
are much more complicated. In particular, it seems that λ is actually depending
on the unknown and, even if λ > 1, λ is probably not bounded from below by some
λ0 > 1. The possibility to generalize our result to such a case is not manifest.

We first prove (Section 4) the uniqueness of a “weak” solution (solution in the
sense of Definition 3.1 below). Then, assuming the existence of a “weak” solution,
we prove (Section 5) the regularizing effect (the equation is then satisfied in a
classical sense). The results of these two sections are in fact true for any λ > 1.
In Section 6, the existence result is given, using a splitting method. The use of
splitting methods is classical, in particular to define numerical schemes, but is not
usual to prove an existence result as it is done here. In this section, the central
argument is the proof of the maximum principle (which is limited to λ ≤ 2).

Here is our main result.

Theorem 1.1 If u0 ∈ L∞(R), then there exists a unique solution u to (1.1) on
]0,∞[ (in the sense of Definition 3.1, see below). Moreover, this solution satisfies:

i) u ∈ C∞(]0,∞[×R) and all its derivatives are bounded on ]t0,∞[×R for all
t0 > 0,

ii) for all t > 0, ||u(t)||L∞(R) ≤ ||u0||L∞(R) and, in fact, u takes its values between
the essential lower and upper bounds of u0,

iii) u satisfies ∂tu+∂x(f(u))+g[u] = 0 in the classical sense (g[u] being properly
defined by Proposition 5.2).
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iv) u(t) → u0, as t → 0, in L∞(R) weak-∗ and in Lp
loc(R) for all p ∈ [1,∞[.

Remark 1.2 In the course of our study of (1.1), we will also see that, if u0 ∈
L∞(R) ∩ L1(R), then the solution u to (1.1) satisfies, for all t > 0: ||u(t)||L1(R) ≤
||u0||L1(R).

We will also see that (1.1) has a L1 contraction property: if (u0, v0) ∈ L∞(R)
are such that u0 − v0 ∈ L1(R), then, denoting by u and v the solutions to (1.1)
corresponding to initial conditions u0 and v0, we have, for all t > 0: ||u(t) −
v(t)||L1(R) ≤ ||u0 − v0||L1(R).

2 Properties of the kernel of g

Using the Fourier transform, we see that the semi-group generated by g is formally
given by the convolution with the kernel (defined for t > 0 and x ∈ R)

K(t, x) = F−1
(
e−t|·|λ

)
(x) =

∫

R
e2iπxξe−t|ξ|λ dξ = F

(
e−t|·|λ

)
(x).

The function ξ ∈ R→ e−t|ξ|λ being real-valued and even, K is real-valued (in the
sequel, we consider only real-valued solutions to (1.1)).

The most important property of K is its nonnegativity. For the sake of com-
pleteness, we give here a sketch of the proof of this result, but notice that it is a
well-known result since a rather long time now. We refer to the work of Lévy for
example [Lév25]. Also notice that we study the question of the non-negativity of
the kernel K because it is the issue at stake in the analysis of a maximum principle
for the equation ut + g[u] = 0. From this point of view, we shall make reference
to the work of Courrège and coworkers (see [BCP68] and references therein) who
give a characterization of a large class of pseudo-differential operators satisfying the
positive maximum principle and also, more recently, to the work of Farkas, Jacob,
Schilling [FJS01] (see also Hoh [Hoh95]).

Lemma 2.1 If λ ∈]0, 2] then, for all (t, x) ∈]0,∞[×R, we have K(t, x) ≥ 0.

Proof of Lemma 2.1
If λ = 2, it is well-known that K(t, x) = (π/t)1/2e−

π2
t ξ2

, which implies the
result. Assume now that λ ∈]0, 2[ and let f(x) = A|x|−1−λ1R\]−1,1[(x), with A > 0
such that

∫
R f(x) dx = 1. Since f is even with integral equal to 1, we have

F(f)(ξ) = 1 +
∫

R
(cos(2πxξ)− 1)f(x) dx = 1 + A|ξ|λ

∫

|y|≥|ξ|

cos(2πy)− 1
|y|1+λ

dy.

Since cos(2πy) − 1 = O(|y|2) on the neighborhood of 0 and λ < 2, the dominated
convergence theorem gives

∫

|y|≥|ξ|

cos(2πy)− 1
|y|1+λ

dy → I :=
∫

R

cos(2πy)− 1
|y|1+λ

dy < 0 as ξ → 0.
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Hence, F(f)(ξ) = 1− c|ξ|λ(1 + ω(ξ)) with c = −AI > 0 and limξ→0 ω(ξ) = 0.
Define fn(x) = n1/λf ∗f ∗ · · · ∗f(n1/λx), the convolution product being taken n

times. By the properties of the Fourier transform with respect to the convolution
product, we have, for all ξ ∈ R,

F(fn)(ξ) =
(
F(f)(n−1/λξ)

)n

=
(
1− cn−1|ξ|λ(1 + ω(n−1/λξ))

)n

→ e−c|ξ|λ

as n → ∞. Since (F(fn))n≥1 is bounded by 1 (the L1-norm of fn for all n ≥ 1),
this convergence is also true in S ′(R) and, taking the inverse Fourier transform, we
see that fn → F−1(e−c|·|λ) = K(c, ·) in S ′(R) as n →∞. fn being nonnegative for
all n, we deduce that K is nonnegative on {c}×R; the homogeneity property (2.1)
below concludes then the proof of the lemma.

Here are some other important properties of K:

∀(t, x) ∈]0,∞[×R , K(t, x) =
1

t1/λ
K

(
1,

x

t1/λ

)
. (2.1)

K is C∞ on ]0,∞[×R and, for all m ≥ 0, there exists Bm such that

∀(t, x) ∈]0,∞[×R , |∂m
x K(t, x)| ≤ 1

t(1+m)/λ

Bm

(1 + t−2/λ|x|2) .
(2.2)

(K(t, ·))t>0 is, as t → 0, an approximate unit
(in particular, ||K(t, ·)||L1(R) = 1 for all t > 0). (2.3)

∃K1 such that, for all t > 0, ||∂xK(t, ·)||L1(R) = K1t
−1/λ. (2.4)

∀(a, b) ∈]0,∞[ , K(a, ·) ∗K(b, ·) = K(a + b, ·)
and K(a, ·) ∗ ∂xK(b, ·) = ∂xK(a + b, ·). (2.5)

Proof of these properties
Equation (2.1) is obtained thanks to the change of variable ξ = t−1/λη in the

integral defining K.
The regularity of K is an immediate application of the theorem of derivation

under the integral sign. To prove the second part of (2.2), we write ∂m
x K(1, x) =∫

R(2iπξ)me−|ξ|
λ

e2iπxξ dξ; since λ > 1, the first two derivatives of ξ → ξme−|ξ|
λ

are
integrable on R and we can make two integrations by parts to obtain ∂m

x K(1, x) =
O(1/x2) on R; ∂m

x K(1, ·) being bounded on R, we deduce the estimate of (2.2) for
t = 1; the general case t > 0 comes from the case t = 1 and (2.1).

Since K(1, ·) ≥ 0, we have ||K(1, ·)||L1(R) =
∫
RK(1, x) dx = F(K(1, ·))(0) =

e−|0|
λ

= 1 and (2.3) is thus a consequence of (2.1).
The estimate (2.4) comes from the derivation of (2.1) and from the change of

variable y = t−1/λx in the computation of ||∂xK(1, ·/t1/λ)||L1(R).
The identity (2.5), which translates the fact that the convolution with K(t) is

the semi-group generated by g, can be directly checked via Fourier transform.

4



Let us also give some continuity results related to K.

Lemma 2.2 i) If u0 ∈ L1(R), then t ∈ [0,∞[→ K(t, ·) ∗ u0 is continuous
[0,∞[→ L1(R) (with value u0 at t = 0).

ii) Let T > 0 and (t0, x0) ∈]0, T [×R. If v ∈ Cb(]0, T [×R), then

a) for all s0 > 0, K(s, ·) ∗ v(t, ·)(x) → K(s0, ·) ∗ v(t0, ·)(x0) as s → s0,
t → t0 and x → x0,

b) K(s, ·) ∗ v(t, ·)(x) → v(t0, x0) as s → 0, t → t0 and x → x0.

All these properties are either classical results of approximate units or consequences
of the estimate in (2.2) (with m = 0) and of the dominated convergence theorem.
We do not give a precise proof of these results.

3 Definition and first properties of the solutions

The idea, to study (1.1), is to search for a solution to ∂tu + g[u] = −∂x(f(u))
using Duhamel’s formula: a solution to this equation is formally given by u(t, x) =
K(t) ∗ u0(x)− ∫ t

0
K(t− s) ∗ ∂x(f(u(s, ·)))(x) ds. By putting the derivative of f(u)

on K, we are led to the following definition.

Definition 3.1 Let u0 ∈ L∞(R) and T > 0 or T = ∞. A solution to (1.1) on
]0, T [ is a function u ∈ L∞(]0, T [×R) which satisfies, for a.e. (t, x) ∈]0, T [×R,

u(t, x) = K(t, ·) ∗ u0(x)−
∫ t

0

∂xK(t− s, ·) ∗ f(u(s, ·))(x) ds. (3.1)

The following proposition shows that all the terms in (3.1) are well-defined.

Proposition 3.1 Let u0 ∈ L∞(R) and T > 0. If v ∈ L∞(]0, T [×R), then

u : (t, x) ∈]0, T [×R→ K(t, ·) ∗ u0(x) +
∫ t

0

∂xK(t− s, ·) ∗ v(s, ·) ds

defines a function in Cb(]0, T [×R) and we have, for all t0 ∈]0, T [, all x ∈ R and all
t ∈]0, T − t0[,

u(t0 + t, x) = K(t, ·) ∗ u(t0, ·)(x) +
∫ t

0

∂xK(t− s, ·) ∗ v(t0 + s, ·)(x) ds. (3.2)
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Proof of Proposition 3.1
Step 1: first term of u.
Since u0 ∈ L∞(R) and, for t > 0, K(t, ·) ∈ L1(R), K(t, ·) ∗ u0 is well-defined

and, by Young’s inequalities for the convolution and (2.3), we have

∀(t, x) ∈]0,∞[×R , |K(t, ·) ∗ u0(x)| ≤ ||u0||L∞(R). (3.3)

Let t0 ∈]0, T [ and x0 ∈ R; for all 0 < t0 < T < ∞, by (2.2), we can write

∀(t, x, y) ∈]t0, T [×R× R , |K(t, x− y)| ≤ C1

C2 + |x− y|2 (3.4)

where C1 > 0 and C2 > 0 only depend on (t0, T ). We have |y − x0|2 ≤ 2|y −
x|2 + 2|x0 − x|2, so that |y − x|2 ≥ 1

2 |y − x0|2 − |x0 − x|2. For all x ∈ R such that
|x− x0|2 ≤ C2/2, for all t ∈]t0, T [ and all y ∈ R, (3.4) gives

|K(t, x− y)| ≤ C1

C2 + 1
2 |x0 − y|2 − |x0 − x|2 ≤

C1

(C2/2) + 1
2 |x0 − y|2 = F (y)

with F ∈ L1(R). Since u0 is bounded and K is continuous, the theorem of conti-
nuity under the integral sign gives the continuity of (t, x) → K(t, ·) ∗ u0(x).

Step 2: the second term of u.
Define G : R× R→ R and H : R× R→ R by: for all x ∈ R,

G(t, x) = ∂xK(t, x)1]0,T [(t) if t > 0 , G(t, x) = 0 if t ≤ 0 ,

H(t, x) = v(t, x) if t ∈]0, T [ , H(t, x) = 0 if t ∈ R\]0, T [.

We notice that G ∈ L1(R× R); indeed, by Fubini-Tonelli’s theorem and (2.4),
∫

R×R
|G(t, x)| dxdt ≤ K1

∫ T

0

t−1/λ dt =
λK1

λ− 1
T 1− 1

λ < ∞. (3.5)

The function H is clearly in L∞(R×R), being bounded by ||v||L∞(]0,T [×R). Thus,
denoting by ? the convolution in R×R, G?H is well-defined, bounded and uniformly
continuous on R× R; moreover, by (3.5),

||G ? H||Cb(R×R) ≤ ||G||L1(R×R)||H||L∞(R×R) ≤
λK1

λ− 1
T 1− 1

λ ||v||L∞(]0,T [×R). (3.6)

By Fubini’s theorem, one checks that, for all t ∈]0, T [ and all x ∈ R, G ? H(t, x) =∫ t

0
∂xK(t − s, ·) ∗ v(s, ·)(x) ds, and the second term of u is thus continuous and

bounded on ]0, T [×R.
We notice that, thanks to (3.3) and (3.6),

||u||Cb(]0,T [×R) ≤ ||u0||L∞(R) +
λK1

λ− 1
T 1− 1

λ ||v||L∞(]0,T [×R). (3.7)
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Step 3: To prove (3.2), we make the change of variable τ = t0 + s in the last
term of this equation, we use Fubini’s theorem (thanks to (2.4)) to permute the
convolution by K(t, ·) and the integral sign in u(t0, ·) and we apply (2.5).

As an immediate consequence of this proposition, we have:

Corollary 3.1 Let u0 ∈ L∞(R) and T > 0 or T = ∞. If u is a solution to
(1.1) on ]0, T [, then u ∈ Cb(]0, T [×R) and u satisfies (3.1) for all (t, x) ∈]0, T [×R.
Moreover, for all t0 ∈]0, T [ and all (t, x) ∈]0, T − t0[×R,

u(t0 + t, x) = K(t, ·) ∗ u(t0, ·)(x)−
∫ t

0

∂xK(t− s, ·) ∗ f(u(t0 + s, ·))(x) ds, (3.8)

i.e. u(t0 + ·, ·) is a solution to (1.1) on ]0, T − t0[ with u(t0, ·) instead of u0.

To conclude this study of the first properties of the solutions, we prove item iv)
of Theorem 1.1.

Proof of item iv) in Theorem 1.1
Suppose that u is a solution to (1.1) on ]0, T [. Since f(u) is bounded, we have,

for all (t, x) ∈]0, T [×R, by (2.4),
∣∣∣∣
∫ t

0

∂xK(t− s, ·) ∗ f(u(s, ·))(x) ds

∣∣∣∣ ≤ K1||f(u)||∞
∫ t

0

1
(t− s)1/λ

ds = Ct1−
1
λ

where C does not depend on t; hence, the last term of (3.1) tends to 0 in L∞(R)
as t → 0. By classical properties of the approximate units, the first term in the
right-hand side of (3.1) converges as wanted to u0 and the proof is complete.

4 Uniqueness of the solution

Theorem 4.1 Let u0 ∈ L∞(R) and T > 0 or T = ∞. There exists at most one
solution to (1.1) on ]0, T [ in the sense of Definition 3.1.

Proof of Theorem 4.1
Step 1: we first prove a local uniqueness result. Denote by LipR(f) a lipschitz

constant of f on [−R,R]. Let T1 > 0. For all u and v solutions to (1.1) on ]0, T1[
bounded by R, by (3.1) and (2.4), we have

|u(t, x)− v(t, x)| ≤ λK1

λ− 1
T

1− 1
λ

1 LipR(f)||u− v||∞ = k(T1, R)||u− v||∞.

There exists T0 > 0 only depending on R such that, if T1 ≤ T0, we have k(T1, R) <
1; for T1 ≤ T0, there exists therefore at most one solution to (1.1) on ]0, T1[ bounded
by R.
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Step 2: proof of the uniqueness result.
Let u and v be two solutions to (1.1) on ]0, T [. Take R = max(||u||∞, ||v||∞);

let T0 be given by Step 1 for R. By Step 1, since u and v are bounded by R, u = v
on ]0, inf(T, T0)[×R.

Let T ′ = sup{t ∈]0, T [ | u = v on ]0, t[×R} ≥ inf(T, T0), and suppose that
T ′ < T . By definition of T ′, and since u and v are continuous on ]0, T [×R, we
have u(T ′, ·) = v(T ′, ·) on R. By Corollary 3.1, u(T ′ + ·, ·) and v(T ′ + ·, ·) are two
solutions to (1.1) on ]0, T − T ′[ with the same initial condition u(T ′, ·) = v(T ′, ·).
These solutions being bounded by R, Step 1 shows that u(T ′ + ·, ·) = v(T ′ + ·, ·)
on ]0, inf(T0, T − T ′)[×R, which is a contradiction with the definition of T ′.

5 Regularizing effect

5.1 Spatial regularity

If we formally differentiate (3.1) with respect to x, we see that the spatial derivatives
of u satisfy integral equations; the following theorem gives some properties on these
integral equations.

Proposition 5.1 Let M > 0 and F : (t, x, ζ) ∈]0,M [×R × R → F (t, x, ζ) ∈ R be
continuous; we suppose that ∂xF , ∂ζF , ∂ζ∂xF and ∂ζ∂ζF exist and are continuous
on ]0, M [×R × R; we also suppose that there exists ω :]0,∞[→ R+ such that, for
all L > 0, F and these derivatives are bounded on ]0,M [×R× [−L,L] by ω(L).

Let R0 > 0 and R = (2 + K1)R0. Then there exists T0 > 0 only depending on
(R0, ω) such that, if T = inf(M, T0) and v0 ∈ L∞(R) satisfies ||v0||L∞(R) ≤ R0,
there exists a unique v ∈ Cb(]0, T [×R) bounded by R and such that

v(t, x) = K(t, ·) ∗ v0(x) +
∫ t

0

∂xK(t− s, ·) ∗ F (s, ·, v(s, ·))(x) ds. (5.1)

Moreover, ∂xv ∈ C(]0, T [×R) and, for all a ∈]0, T [, ||∂xv||Cb(]a,T [×R) ≤ Ra−1/λ.

Proof of Proposition 5.1
The idea is to use a fixed point theorem. Let, for T ∈]0,M [, ET = {v ∈

Cb(]0, T [×R) | ∂xv ∈ C(]0, T [×R) and t1/λ∂xv ∈ Cb(]0, T [×R)}, endowed with its
natural norm ||v||ET = ||v||∞+ ||t1/λ∂xv||∞. We define, thanks to Proposition 3.1,
ΨT : Cb(]0, T [×R) → Cb(]0, T [×R) by

ΨT (v)(t, x) = K(t, ·) ∗ v0(x) +
∫ t

0

∂xK(t− s, ·) ∗ F (s, ·, v(s, ·))(x) ds.

Step 1: the first term of ΨT (v) belongs to ET .
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The estimate (2.2) allows to see, as in Step 1 of the proof of Proposition 3.1,
that, by derivation and continuity under the integral sign, K(t, ·)∗v0 is derivable on
R and that (t, x) ∈]0, T [×R→ ∂x(K(t, ·) ∗ v0)(x) = ∂xK(t, ·) ∗ v0(x) is continuous.
By Young’s inequalities and (2.4),

||∂x(K(t, ·) ∗ v0)||Cb(R) ≤ K1t
−1/λ||v0||L∞(R), (5.2)

which proves that (t, x) ∈]0, T [×R→ K(t, ·) ∗ v0(x) belongs to ET .

Step 2: we prove that, if v ∈ ET , the second term of ΨT (v) belongs to ET .
Define H(t, x) =

∫ t

0
∂xK(t−s, ·)∗F (s, ·, v(s, ·))(x) ds. Let t ∈]0, T [ and s ∈]0, t[.

The function x ∈ R→ F (s, x, v(s, x)) is in C1
b (R). We can thus differentiate under

the integral sign to see that ∂xK(t − s, ·) ∗ F (s, ·, v(s, ·)) is C1 with derivative
∂xK(t− s, ·)∗ (∂xF (s, ·, v(s, ·))+∂ζF (s, ·, v(s, ·))∂xv(s, ·)). Moreover, for all x ∈ R,

|∂xK(t− s, ·) ∗ (∂xF (s, ·, v(s, ·)) + ∂ζF (s, ·, v(s, ·))∂xv(s, ·))(x)|
≤ K1||∂xF (·, ·, v(·, ·))||∞

(t− s)1/λ
+
K1||∂ζF (·, ·, v(·, ·))||∞||v||ET

s1/λ(t− s)1/λ
. (5.3)

This last function is integrable with respect to s ∈]0, t[, and we can thus apply the
theorem of derivation under the integral sign to see that

∂xH(t, x)

=
∫ t

0

∂xK(t− s, ·) ∗ (∂xF (s, ·, v(s, ·)) + ∂ζF (s, ·, v(s, ·))∂xv(s, ·))(x) ds.(5.4)

If ∂xv was bounded, the continuity of ∂xH would be a consequence of Proposition
3.1. We thus approximate ∂xv by bounded functions to conclude. Take 0 < δ < T
and define wδ ∈ L∞(]0, T [×R) by

wδ(t, x) = ∂xF (t, x, v(t, x)) + ∂ζF (t, x, v(t, x))∂xv(t, x)1[δ,T [(t).

Denoting Aδ(t, x) =
∫ t

0
∂xK(t − s, ·) ∗ wδ(s, ·)(x) ds, (5.4) allows to see that, for

all t0 ∈]0, T [, Aδ → ∂xH uniformly on [t0, T [×R as δ → 0; since, by Proposition
3.1, Aδ is continuous on ]0, T [×R, we deduce that ∂xH is continuous on ]0, T [×R.
Moreover, by (5.4) and (5.3) and the change of variable s = tτ in the integrals on
]0, t[, we have, for all (t, x) ∈]0, T [×R,

|∂xH(t, x)|
≤ C0K1

(
||∂xF (·, ·, v(·, ·))||∞t1−

1
λ + ||∂ζF (·, ·, v(·, ·))||∞||v||ET t1−

2
λ

)
(5.5)

where C0 = max(
∫ 1

0
(1 − τ)−1/λ dτ,

∫ 1

0
τ−1/λ(1 − τ)−1/λ dτ), which proves that

H ∈ ET .
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If v is bounded by R, the properties of F along with (5.2), (5.5) and (3.7), give

||ΨT (v)||ET
≤ ||v0||L∞(R) +

λK1

λ− 1
T 1− 1

λ ω(R)

+K1||v0||L∞(R) + C0K1ω(R)
(
T + T 1− 1

λ ||v||ET

)
. (5.6)

Step 3: fixed point.
We take, as in the proposition, R = (2 + K1)R0 and we denote, for T > 0,

BT (R) the closed ball in ET of center 0 and radius R. Let T0 > 0 be such that

R0 +
λK1

λ− 1
T

1− 1
λ

0 ω(R) +K1R0 + C0K1ω(R)
(
T0 + T

1− 1
λ

0 R
)
≤ R (5.7)

K1ω(R)
(

λ

λ− 1
T

1− 1
λ

0 +
λ

λ− 1
T0 + C0RT

1− 1
λ

0 + C0T
1− 1

λ
0

)
< 1 (5.8)

(by definition of R, such a T0 exists and only depends on (R0, ω)).

Let T = inf(M, T0). Take v0 ∈ L∞(R) bounded by R0. Thanks to (5.6) and
(5.7), ΨT sends BT (R) into BT (R). Let (u, v) ∈ BT (R). u and v are bounded by
R and we have thus, for all (t, x) ∈]0, T [×R, by (2.4) and the properties of F ,

|ΨT (u)(t, s)−ΨT (v)(t, x)| ≤ K1
λ

λ− 1
T 1− 1

λ ω(R)||u− v||∞. (5.9)

By (5.4) and the properties of F , we also have, for all (t, x) ∈]0, T [×R,

t1/λ|∂xΨT (u)(t, x)− ∂xΨT (v)(t, x)|
≤ K1ω(R)

(
λ

λ− 1
T + C0T

1− 1
λ ||u||ET

+ C0T
1− 1

λ

)
||u− v||ET

. (5.10)

The properties (5.9), (5.10) and (5.8) ensure that ΨT is contracting on BT (R).
Therefore, ΨT has a unique fixed point v in BT (R); v is a continuous and bounded
solution to (5.1) such that ∂xv exists and is continuous on ]0, T [×R. Moreover,
since v ∈ BT (R), we have, for all a ∈]0, T [ and all (t, x) ∈]a, T [×R, |∂xv(t, x)| ≤
t−1/λ||v||ET ≤ a−1/λR, which is the estimate on ∂xv stated in the proposition.

The inequalities (5.9) and (5.8) ensure that ΨT is contracting on the ball in
Cb(]0, T [×R) of center 0 and radius R. Thus, ΨT can have only one fixed point in
this ball, which is the uniqueness result of the proposition.

Theorem 5.1 Let u0 ∈ L∞(R) and T > 0 or T = ∞. If u is a solution to (1.1)
on ]0, T [ in the sense of Definition 3.1, then u is indefinitely derivable with respect
to x. Moreover, for all n ≥ 0 and all t0 ∈]0, T [, we have

i) ∂n
x u ∈ Cb(]t0, T [×R),
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ii) for all t ∈]0, T − t0[,

∂n
x u(t0 + t, ·) = K(t, ·) ∗ ∂n

x u(t0, ·)−
∫ t

0

∂xK(t− s, ·) ∗ ∂n
x (f(u(t0 + s, ·))) ds

iii) if R ≥ ||u||Cb(]0,T [×R), there exists C only depending on (R, t0, n) such that
||∂n

x u||Cb(]t0,T [×R) ≤ C.

Proof of Theorem 5.1
We prove, by induction on n, that : u has spatial derivatives of order up to n

which are continuous and bounded by C(R, t0, n) on ]t0, T [×R for all t0 ∈]0, T [,
item ii) is satisfied on ]0, T − t0[×R for all t0 ∈]0, T [ and

∂n
x (f(u)) = Un + (1− δn,0)f ′(u)∂n

x u + δn,0f(u), (5.11)

where δn,0 is Krönecker’s symbol, U0 = 0 and, if n ≥ 1, Un = Gn((∂k
xu)k≤n−1)

with Gn regular.

The validity of the property at the rank n = 0 is a consequence of Corollary
3.1. We suppose the induction hypothesis true up to a rank n ≥ 0, and we prove
it for the rank n + 1.

Let b0 ∈]0, T [. Take b ∈]b0, T [ and define F : (t, x, ζ) :]0, T − b[×R × R →
−Un(b + t, x) − (1 − δn,0)f ′(u)(b + t, x)ζ − δn,0f(ζ). The function F satisfies the
hypotheses of Proposition 5.1, with (by induction hypothesis) ω only depending on
(R, b0, n); we also have ||∂n

x u||Cb(]b0,T [×R) ≤ R0 where R0 only depends on (R, b0, n).
Let T0 only depending on (R0, ω) (i.e. on (R, b0, n)) be given by Proposition 5.1.

By induction hypothesis, ∂n
x u(b + ·, ·) is continuous and bounded by R0 ≤ (2 +

K1)R0 and satisfies (5.1) on ]0, T−b[×R for the preceding F and with v0 = ∂n
x u(b, ·)

bounded by R0. Proposition 5.1 shows thus that ∂n+1
x u exists and is continuous

and bounded by (2 + K1)R0a
−1/λ on ]b + a, inf(T, b + T0)[×R; this is true for all

b ∈]b0, T [ and all a ∈]0, inf(T − b, T0)[. Since T0 does not depend on a or b, taking
t0 ∈]0, T [, b0 = t0/2 and a = inf(t0/2, T0/2) < T − b0, we notice that the intervals
{]b + a, inf(T, b + T0)[ , b ∈]b0, T − a[} cover ]b0 + a, T [⊃]t0, T [ and we deduce that
∂n+1

x u has the regularity and satisfies the estimates we wanted to obtain.
Let us prove the formula for ∂n+1

x u. By induction hypothesis,

∂n
x u(t0 + t, ·) = K(t, ·) ∗ ∂n

x u(t0, ·)−
∫ t

0

∂xK(t− s, ·) ∗ ∂n
x (f(u(t0 + ·))) ds. (5.12)

But we have just proved that ∂n
x u(t0, ·) ∈ C1

b (R); thus, we can write

∂x(K(t, ·) ∗ ∂n
x u(t0, ·)) = K(t, ·) ∗ ∂n+1

x u(t0, ·). (5.13)

The function (t, x) ∈]0, T − t0[×R→ ∂n
x (f(u))(t0 + t, x) and its first spatial deriva-

tive are continuous and bounded on ]0, T − t0[×R. The reasoning of Step 2 in the
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proof of Proposition 5.1 (with ∂n
x (f(u))(t0 + ·, ·) instead of F (·, ·, v(·, ·))) allows to

compute the spatial derivative of the last term in (5.12) by derivation under the
integral sign, and, thanks to (5.13), proves item ii) for ∂n+1

x u.
Property (5.11) for the derivative of order n+1 simply comes from the derivation

of this formula at rank n, and the induction is complete.

5.2 Temporal regularity

5.2.1 Preliminary: about the definition of g

The operator g has been formally defined by F(g[v])(ξ) = |ξ|λF(v)(ξ); it can be
shown that this definition makes sense for bounded functions, but we will not need
it and we prefer to give here a simple formula for g[v] which defines this operator
on C∞b (R).

Proposition 5.2 There exists (g1, g2) ∈ (L1(R))2 such that, for all v ∈ S(R),
g[v] = g1 ∗ v + g2 ∗ v(4). This formula allows thus to define g[v] for v ∈ C∞b (R)
(and this definition does not depend on the choice of g1 and g2 as above).

Proof of Proposition 5.2
Let χ ∈ C∞c (R) be even and equal to 1 on a neighborhood of 0. By linearity of

F−1, if v ∈ S(R),

g[v] = F−1(| · |λχF(v)) + F−1(| · |λ(1− χ)F(v)) (5.14)

(since F(v) ∈ S(R), all these terms are well-defined as inverse Fourier transforms
of integrable functions).

Let h1 : ξ ∈ R → |ξ|λχ(ξ). The function h1 is C1 on R, C2 outside 0 and its
first two derivatives are integrable on R. We deduce, as in the proof of (2.2), that
F−1(h1)(x) = O(1/(1 + |x|2)) on R. Hence, F−1(h1) ∈ L1(R) and we can write
F(F−1(h1) ∗ v) = h1F(v), that is to say F−1(h1F(v)) = F−1(h1) ∗ v.

Let h2 : ξ ∈ R→ |ξ|λ(1−χ(ξ)); the function h?
2 : ξ ∈ R→ (2iπξ)−4h2(ξ) is C∞

and all its derivatives are integrable on R (the p-th derivative of h?
2 behaves, on a

neighborhood of the infinity, as |ξ|−4−p+λ and −4 + λ < −1 since λ ≤ 2); thus,
F−1(h?

2) ∈ L1(R) and

F(F−1(h?
2) ∗ v(4))(ξ) = h?

2(ξ)F(v(4))(ξ) = (2iπξ)4h?
2(ξ)F(v)(ξ) = h2(ξ)F(v)(ξ),

that is to say F−1(h2F(v)) = F−1(h?
2) ∗ v(4).

Identity (5.14) gives therefore g[v] = g1 ∗ v + g2 ∗ v(4), where g1 = F−1(h1) and
g2 = F−1(h?

2) are integrable on R (notice also that, since χ is even, h1 and h?
2 are

also even and real-valued, so that g1 and g2 are real-valued).
To prove that, if v ∈ C∞b (R), the definition of g[v] by this formula does not

depend on the choice of g1 and g2, we approximate v and its derivatives by functions
in C∞c (R); this will be of no use to us in the sequel, so we do not detail this step.
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The following proposition is quite natural, since K is the kernel associated to g.
But the reasoning followed to obtain K was formal, so we must prove this result.

Proposition 5.3 If v ∈ C∞b (R) then, for all x ∈ R, t ∈]0,∞[→ K(t, ·) ∗ v(x)
is C1. Moreover, for all t > 0 and all x ∈ R, we have d

dt (K(·, ·) ∗ v(x))(t) =
−g[K(t, ·) ∗ v](x).

Proof of Proposition 5.3
We notice that g[K(t, ·) ∗ v] makes sense since K(t, ·) ∗ v ∈ C∞b (R).
Suppose first that v ∈ S(R). The functions K(t, ·) and v are integrable on R, so,

by definition of K, K(t, ·) ∗ v = F−1(e−t|·|λF(v)). A derivation under the integral
sign shows that t ∈]0,∞[→ K(t, ·)∗v(x) is C1 and that, for all t > 0 and all x ∈ R,

d

dt
(K(·, ·) ∗ v(x))(t) = −F−1(| · |λe−t|·|λF(v))(x). (5.15)

Taking g1 and g2 as in the proof of Proposition 5.2, we can check, since K(t, ·)
and all the derivatives of v are integrable, that F(g[K(t, ·) ∗ v]) = | · |λe−t|·|λF(v),
that is to say g[K(t, ·) ∗ v] = F−1(| · |λe−t|·|λF(v)) and (5.15) concludes the proof
if v ∈ S(R)

Take now v ∈ C∞b (R). We can find a sequence (vn)n≥1 ∈ S(R) whose derivatives
are bounded in L∞(R) and converge to the corresponding derivatives of v.

Let x ∈ R; define Fn : t ∈]0,∞[→ K(t, ·) ∗ vn(x) and F : t ∈]0,∞[→ K(t, ·) ∗
v(x). By the convergence of (vn)n≥1 and the dominated convergence theorem, we
see that (Fn)n≥1 converges to F on ]0,∞[ and is bounded in L∞(]0,∞[). Therefore,
the convergence is also true in the sense of the distributions on ]0,∞[ and we have
F ′n → F ′ in D′(]0,∞[).

But, since vn ∈ S(R), we have seen that Fn is C1 and that F ′n(t) = −g[K(t, ·) ∗
vn](x) = −g1 ∗K(t, ·) ∗ vn(x)− g2 ∗K(t, ·) ∗ v

(4)
n (x). Hence, (F ′n)n≥1 converges to

−g1 ∗ K(t, ·) ∗ v(x) − g2 ∗ K(t, ·) ∗ v(4)(x) = −g[K(t, ·) ∗ v](x) and is bounded in
L∞(]0,∞[), which proves that F ′n → −g[K(t, ·) ∗ v](x) in D′(]0,∞[).

Identifying the limits of the derivatives of Fn, we find F ′(t) = −g[K(t, ·)∗v](x) in
D′(]0,∞[); since t ∈]0,∞[→ g[K(t, ·)∗v](x) = g1∗K(t, ·)∗v(x)+g2∗K(t, ·)∗v(4)(x)
is continuous (Proposition 3.1 with u0 = g1 ∗ v or u0 = g2 ∗ v(4)), we deduce that
F : t ∈]0,∞[→ K(t, ·) ∗ v(x) is in fact C1 on ]0,∞[, which concludes the proof.

5.2.2 Proof of the temporal regularity

Lemma 5.1 Let u0 ∈ L∞(R) and T > 0 or T = ∞. If u is a solution to (1.1)
on ]0, T [ in the sense of Definition 3.1, then u is derivable with respect to t and
∂tu + ∂x(f(u)) + g[u] = 0 on ]0, T [×R.
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Proof of Lemma 5.1
We can suppose that T is finite. Let t0 > 0, t ∈]t0, T [ and s ∈]0, t[. Using (3.4)

(and an equivalent estimate for ∂xK, obtained thanks to (2.2)), since f(u(t0 +s, ·))
is in C1

b (R), we see that ∂xK(t−s, ·)∗f(u(t0+s, ·)) = K(t−s, ·)∗∂x(f(u(t0+s, ·))).
Defining v : (t, x) ∈]0, T−t0[×R→ −∂x(f(u))(t0+t, x) ∈ R (which is continuous

and bounded, and has all its spatial derivatives continuous and bounded — see
Theorem 5.1), we write, by (3.8),

u(t0 + t, x) = K(t, ·) ∗ u(t0, ·) +
∫ t

0

K(t− s, ·) ∗ v(s, ·)(x) ds. (5.16)

Since u(t0, ·) ∈ C∞b (R), Proposition 5.3 shows that (t, x) ∈]0, T − t0[×R →
K(t, ·) ∗ u(t0, ·)(x) is derivable with respect to t, and has −g[K(t, ·) ∗ u(t0, ·)](x) as
derivative.

Proving the derivability of the second term of the right-hand side of (5.16)
is more troublesome (because K(t − s, ·) explodes as s → t). Fix x ∈ R and
δ0 ∈]0, T − t0[. Let δ ∈]0, δ0[ and, for t ∈]δ0, T − t0[, Hδ(t) =

∫ t−δ

0
K(t − s, ·) ∗

v(s, ·)(x) ds. Also denote H(t) =
∫ t

0
K(t − s, ·) ∗ v(s, ·)(x) ds. We have |Hδ(t) −

H(t)| ≤ δ||v||Cb(]0,T−t0[×R) ds, so that Hδ → H uniformly on ]δ0, T − t0[ as δ → 0.
The function φ : (t, s) ∈ {(t′, s′) ∈]δ, T − t0[×]0, T − t0[ | s′ < t′ − δ/2} →

K(t−s, ·)∗v(s, ·)(x) is continuous (Lemma 2.2 ii)-a)) and bounded. By Proposition
5.3, φ is derivable with respect to t and ∂tφ(t, s) = −g[K(t − s, ·) ∗ v(s, ·)](x) =
−g1 ∗K(t− s, ·) ∗ v(s, ·)(x)− g2 ∗K(t− s, ·) ∗ ∂4

xv(s, ·)(x); this formula and Lemma
2.2 ii)-a) show that ∂tφ is continuous and bounded (because, by continuity under
the integral sign, (s, x) → g1 ∗v(s, ·)(x) and (s, x) → g2 ∗∂4

xv(s, ·)(x) are continuous
and bounded on ]0, T − t0[×R). These properties allow to prove that Hδ is C1 on
]δ0, T − t0[ and that

H ′
δ(t) = K(δ, ·) ∗ v(t− δ, ·)(x)−

∫ t−δ

0

g[K(t− s, ·) ∗ v(s, ·)](x) ds.

The function (s, x) ∈]0, t[×R → g[K(t − s, ·) ∗ v(s, ·)](x) = g1 ∗ K(t − s, ·) ∗
v(s, ·)(x) + g2 ∗ K(t − s, ·) ∗ ∂4

xv(s, ·)(x) is continuous and bounded (Lemma 2.2
ii)-a)); thus, by Lemma 2.2 ii)-b), we see that H ′

δ converges on ]δ0, T − t0[ to

F : t ∈]0, T − t0[→ v(t, x)−
∫ t

0

g[K(t− s, ·) ∗ v(s, ·)](x) ds

while remaining bounded in L∞(]δ0, T − t0[). Since Hδ uniformly converges on
]δ0, T − t0[ to H, we deduce that H ′ = F in D′(]δ0, T − t0[). Since g[K(t − s, ·) ∗
v(s, ·)] = g1∗K(t−s, ·)∗v(s, ·)+g2∗K(t−s, ·)∗∂4

xv(s, ·), the same reasoning as in Step
2 of the proof of Proposition 3.1 (with K instead of ∂xK and (t, x) → g1 ∗ v(t, ·)(x)
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or (t, x) → g2 ∗ ∂4
xv(t, ·)(x) instead of v) shows that F is in fact continuous. Hence,

δ0 being arbitrary, H is C1 on ]0, T − t0[ and H ′ = F .

Coming back to (5.16), we see that u(t0 + ·, ·) is derivable with respect to t on
]0, T − t0[×R and that

∂tu(t0 + t, x) = −g[K(t, ·) ∗ u(t0, ·)](x)− ∂x(f(u))(t0 + t, x)

−
∫ t

0

g1 ∗K(t− s, ·) ∗ v(s, ·)(x) + g2 ∗K(t− s, ·) ∗ ∂4
xv(s, ·)(x) ds.

(5.17)

The time t0 being arbitrary, this gives the temporal derivability of u on ]0, T [×R.
We now prove that the right-hand side of (5.17) is −∂x(f(u))− g[u].

Let t ∈]0, T − t0[. By Fubini, we have
∫ t

0

g1 ∗K(t− s, ·) ∗ v(s, ·) + g2 ∗K(t− s, ·) ∗ ∂4
xv(s, ·) ds

= g1 ∗
[∫ t

0

K(t− s, ·) ∗ v(s, ·) ds

]
+ g2 ∗

[∫ t

0

K(t− s, ·) ∗ ∂4
xv(s, ·) ds

]
.

(5.18)

With the same reasoning as in Step 2 of the proof of Proposition 5.1 (with K
instead of ∂xK and v instead of F (·, ·, v(·, ·))), we prove by induction that (t, x) ∈
]0, T − t0[×R → ∫ t

0
K(t − s, ·) ∗ v(s, ·)(x) ds is indefinitely derivable with respect

to x, has all its spatial derivatives continuous and bounded on ]0, T − t0[×R and
satisfies, for all m ≥ 0,

∂m
x

(∫ t

0

K(t− s, ·) ∗ v(s, ·) ds

)
=

∫ t

0

K(t− s, ·) ∗ ∂m
x v(s, ·) ds.

Thus, by (5.18),
∫ t

0

g1 ∗K(t− s, ·) ∗ v(s, ·) + g2 ∗K(t− s, ·) ∗ ∂4
xv(s, ·) ds

= g1 ∗
[∫ t

0

K(t− s, ·) ∗ v(s, ·) ds

]
+ g2 ∗ ∂4

x

[∫ t

0

K(t− s, ·) ∗ v(s, ·) ds

]

= g

[∫ t

0

K(t− s, ·) ∗ v(s, ·) ds

]
.

This equation, combined with (5.17) and (5.16), shows that u satisfies ∂tu +
∂x(f(u)) + g[u] = 0 on ]t0, T [×R for all t0 > 0, which concludes the proof.

Item i) of Theorem 1.1 is a direct consequence of Theorem 5.1, Lemma 5.1 and
Proposition 5.2 (as well as the theorem of continuity under the integral sign and
Young’s inequalities which show that, if v ∈ Cb(]t0, T [×R) and w ∈ L1(R), then
(t, x) ∈]t0, T [×R→ w ∗ v(t, ·)(x) is continuous and bounded).
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6 L∞ estimate and global existence

We construct here a solution to (1.1) on ]0,∞[ which is bounded by ||u0||L∞(R) and
satisfies the maximum principle, thus concluding the proof of Theorem 1.1.

We assume, in the three following subsections, that u0 ∈ C∞c (R) (in fact, we
just need u0 ∈ L1(R) ∩BV (R)).

6.1 Construction of an approximate solution by a splitting
method

Let δ > 0. We construct, by induction, a function uδ : [0,∞[×R→ R the following
way: we let uδ(0, ·) = u0 and, for all n ≥ 0, we define

• uδ on ]2nδ, (2n + 1)δ]×R as the solution to ∂tu
δ + 2g[uδ] = 0 (1) with initial

condition uδ(2nδ, ·), that is to say uδ(t, x) = K(2(t − 2nδ), ·) ∗ uδ(2nδ, ·)(x)
for (t, x) ∈]2nδ, (2n + 1)δ]× R.

• uδ on ](2n+1)δ, 2(n+1)δ]×R as the (entropy) solution to ∂tu
δ+2∂x(f(uδ)) =

0 with initial condition uδ((2n + 1)δ, ·).
Since ||K(t, ·)||L1(R) = 1 for all t > 0, the regularizing operator does not increase

the L∞ norm (in fact, K being nonnegative, the maximum principle is satisfied),
the L1 norm and the BV semi-norm; it is a well-known result that the hyperbolic
operator has the same properties. Moreover, the solutions to both equations are
continuous with values in L1(R) (this is what states Lemma 2.2-i) for the reg-
ularizing equation). We have therefore defined uδ ∈ C([0,∞[;L1(R)) such that
uδ(0, ·) = u0,

∀t ≥ 0 , ||uδ(t, ·)||L∞(R) ≤ ||u0||L∞(R) , ||uδ(t, ·)||L1(R) ≤ ||u0||L1(R)

and |uδ(t, ·)|BV (R) ≤ ||u′0||L1(R),
(6.1)

(in fact, uδ takes its values between the minimum and maximum values of u0) and,
for all n ≥ 0,

uδ(t, ·) = K(2(t− 2nδ), ·) ∗ uδ(2nδ, ·) for all t ∈]2nδ, (2n + 1)δ],

uδ satisfies ∂tu
δ + 2∂x(f(uδ)) = 0 on ](2n + 1)δ, 2(n + 1)δ]× R.

(6.2)

By (2.2) (which also gives, through (2.1), estimates on the time derivatives of
K) and the fact that uδ(2nδ, ·) ∈ L∞(R), we see that, for all n ≥ 0, uδ is C∞ on
]2nδ, (2n + 1)δ]× R. Moreover,

||∂xuδ((2n + 1)δ, ·)||∞ = ||∂xK(2δ, ·) ∗ uδ(2nδ, ·)||∞ ≤ K1||u0||∞(2δ)−1/λ.

1The factor 2 comes from the fact that we solve the regularizing equation (and the hyperbolic
equation) on half of the total time, so we must give it twice more weight.
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Hence, the time of regularity of uδ on ](2n + 1)δ, 2(n + 1)δ]× R is at least

T ∗ ≥ 1
2||f ′′(uδ((2n + 1)δ))∂xuδ((2n + 1)δ)||L∞(R)

≥ C0δ
1/λ

where C0 does not depend on δ or n (we have used (6.1) to bound f ′′(uδ((2n+1)δ))).
For δ small enough, this time of regularity is thus greater than δ.

The parameter δ being destined to tend to 0, we can always suppose that it is
small enough (let us say δ ≤ δ0) in order that uδ is regular on ]2nδ, (2n + 1)δ]×R
and on [(2n+1)δ, 2(n+1)δ]×R for all n ≥ 0 (the BV estimate of (6.1) turns then
into a L1 estimate on the first spatial derivative).

Remark 6.1 It is also possible to construct uδ via a classical splitting method, i.e.
to solve the regularizing equation (without the factor 2) on [kδ, (k + 1)δ] and then
use the value thus obtained at t = (k + 1)δ to solve the hyperbolic equation (still
without the factor 2) on [kδ, (k + 1)δ] once again (and not on [(k + 1)δ, (k + 2)δ]).
All the following reasoning can be done with such a construction; however, since
the function thus defined is not continuous on [0,∞[, more work is to be done.

6.2 Compactness result on the sequence (uδ)δ>0

Proposition 6.1 For all compact subset Q of R and all T > 0, {uδ , δ ∈]0, δ0]} is
relatively compact in C([0, T ]; L1(Q)).

Proof of Proposition 6.1
Let Q be a compact subset of R and T > 0. For all t ∈ [0, T ], we have, by

(6.1), ||uδ(t)||L1(R)∩BV (R) ≤ ||u0||W 1,1(R) (we omit the space variable in uδ); thus,
by Helly’s Theorem, {uδ(t, ·) , δ ∈]0, δ0]} is relatively compact in L1(Q)

We will prove the equicontinuity of {uδ , δ ∈]0, δ0]} in C([0,∞[;L1(R)); this im-
plies the equicontinuity in C([0, T ]; L1(Q)) and, thanks to Ascoli-Arzela’s theorem,
concludes the proof of the proposition.

It is classical that the solution to an hyperbolic equation is lipschitz-continuous
[0,∞[→ L1(R). Thanks to (6.1), we see that the lipschitz constant of uδ on [(2n +
1)δ, 2(n + 1)δ] does not depend on δ or n ≥ 0: there exists C0 such that, for all
δ ∈]0, δ0], for all n ≥ 0 and all (t, s) ∈ [(2n + 1)δ, 2(n + 1)δ],

||uδ(t)− uδ(s)||L1(R) ≤ C0|t− s|. (6.3)

Taking into account that uδ(s, ·) ∈ W 1,1(R) and the estimates of (6.1), some clas-
sical cuttings of integrals involving approximate units give, for all δ ∈]0, δ0], all
t > 0, all s ≥ 0 and all η > 0,

||K(t) ∗ uδ(s)− uδ(s)||L1(R) ≤ 2||u0||L1(R)

∫

|y|≥η

K(t, y) dy + η||u′0||L1(R). (6.4)
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Let us now prove the equicontinuity of {uδ , δ ∈]0, δ0]} in C([0,∞[;L1(R)). Let
δ ∈]0, δ0] and 0 ≤ t < s. Let p ≤ q be integers such that pδ ≤ t < (p + 1)δ and
qδ ≤ s < (q + 1)δ; because of the different behaviours of uδ (see (6.2)), we must
separate the cases depending on the parity of p and q; since all these cases are
similar, we study only one, for example p even and q odd.

The idea, to estimate ||uδ(s, ·)−uδ(t, ·)||L1(R) is to go from uδ(qδ) to uδ((p+1)δ)
by the following technique: on the intervals where uδ satisfies the regularizing
equation, we use the formula uδ(kδ) = K(2δ) ∗ uδ((k − 1)δ) (hence for k odd)
and, on the intervals where uδ satisfies the hyperbolic problem, we write uδ(kδ) =
uδ((k − 1)δ) + (uδ(kδ) − uδ((k − 1)δ)) (k even), the second term being estimated
by (6.3).

Applying this idea, using the semi-group property of the convolution by K(t)
and recalling that q is odd in our example, an induction allows to see that, for all
l ∈ [0, (q − 1)/2],

uδ(qδ) = K(2lδ) ∗ uδ((q − 2l)δ) +
l∑

j=1

K(2jδ) ∗ (uδ((q − 2j + 1)δ)− uδ((q − 2j)δ))

(if l = 0,
∑l

j=1(...) is null and K(2lδ) ∗uδ((q− 2l)δ) is replaced by uδ(qδ)). Taking
l = (q − p− 1)/2 ∈ [0, (q − 1)/2] (recall that q is odd and p is even and inferior to
q, thus p + 1 ≤ q) in this formula, we obtain

uδ(s) = uδ(s)− uδ(qδ) + K((q − p− 1)δ) ∗ uδ((p + 1)δ)

+
(q−p−1)/2∑

j=1

K(2jδ) ∗ (uδ((q − 2j + 1)δ)− uδ((q − 2j)δ)).

Since p is even, by definition of uδ on ]pδ, (p+1)δ] and (2.5), we have uδ((p+1)δ) =
K(2((p + 1)δ − t)) ∗ (K(2(t − pδ)) ∗ uδ(pδ)) = K(2((p + 1)δ − t)) ∗ uδ(t). We can
therefore write

uδ(s)− uδ(t) = uδ(s)− uδ(qδ)
+K((q − p− 1)δ + 2((p + 1)δ − t)) ∗ uδ(t)− uδ(t)

+
(q−p−1)/2∑

j=1

K(2jδ) ∗ (uδ((q − 2j + 1)δ)− uδ((q − 2j)δ)).

On [qδ, s] ⊂ [qδ, (q +1)δ] and each [(q− 2j)δ, (q− 2j +1)δ] for j ∈ [1, (q− p− 1)/2],
uδ satisfies the hyperbolic problem; thus, by (6.3) and (6.4), we have, for all η > 0,

||uδ(s)− uδ(t)||L1(R) ≤ C0|s− qδ|+ q − p− 1
2

C0δ

+2||u0||L1(R)

∫

|y|≥η

K((q − p− 1)δ + 2((p + 1)δ − t), y) dy + η||u′0||L1(R).
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But, since t < (p + 1)δ ≤ qδ ≤ s, we have (q − p − 1)δ = qδ − (p + 1)δ ≤ s − t,
2((p + 1)δ − t) ≤ 2(s− t) and s− qδ ≤ s− t. Using these bounds in the preceding
inequality, we obtain, for all δ ∈]0, δ0], for all 0 ≤ t < s and for all η > 0,

||uδ(s)− uδ(t)||L1(R) ≤
3C0

2
|s− t|

+2||u0||L1(R) sup
τ∈]0,3|s−t|]

∫

|y|≥η

K(τ, y) dy + η||u′0||L1(R)

(6.5)

(the same kind of formula can be obtained in the cases where p and q have other
parities than the ones considered here).

Since, for all η > 0, supτ∈]0,3|s−t|]
∫
|y|≥η

K(τ, y) dy → 0 as |s− t| → 0 (property
of an approximate unit), (6.5) gives the desired equicontinuity and concludes the
proof of Proposition 6.1.

6.3 Passing to the limit δ → 0

By Proposition 6.1, we can suppose, up to a subsequence, that, for all T > 0 and all
Q compact subset of R, uδ → u in C([0, T ]; L1(Q)) as δ → 0. For all t ≥ 0, uδ(t) →
u(t) in L1

loc(R), hence almost everywhere on R up to a subsequence. We deduce
thus from (6.1) and Fatou’s lemma that, for all t > 0, ||u(t)||L1(R) ≤ ||u0||L1(R),
that

∀t ≥ 0 , ||u(t)||L∞(R) ≤ ||u0||L∞(R) (6.6)

and that, as uδ, the function u takes its values between the minimum and maximum
values of u0. Still using Fatou’s lemma on subsequences (depending on s and t),
we see that (6.5) is satisfied for all (s, t) ∈ [0,∞[ with u instead of uδ; hence,
u ∈ C([0,∞[;L1(R)) and, since uδ(0) = u0 for all δ > 0, we have u(0) = u0.

We now show that u satisfies (1.1) if we use a formulation involving test func-
tions.

Proposition 6.2 For all γ ∈ C∞c (]0,∞[) and all ϕ ∈ S(R), we have
∫

R+×R
u(t, x)γ′(t)ϕ(x) + f(u(t, x))γ(t)ϕ′(x)− u(t, x)γ(t)g[ϕ](x) dxdt = 0. (6.7)

Proof of Proposition 6.2
Let δ ∈]0, δ0]. If p is an odd integer, uδ is a regular solution to ∂tu

δ +
2∂x(f(uδ)) = 0 on [pδ, (p + 1)δ] × R. Multiplying this equation by γ(t)ϕ(x) and
integrating by parts (recall that uδ is bounded and that ϕ ∈ S(R)), we find

0 = −
∫ (p+1)δ

pδ

∫

R
uδ(t, x)γ′(t)ϕ(x) + 2f(uδ(t, x))γ(t)ϕ′(x) dtdx

+
∫

R
uδ((p + 1)δ, x)γ((p + 1)δ)ϕ(x) dx−

∫

R
uδ(pδ, x)γ(pδ)ϕ(x) dx.

(6.8)
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If p is an even integer, then uδ(t) = K(2(t− pδ)) ∗ uδ(pδ) on ]pδ, (p + 1)δ]× R.
Since uδ(t) ∈ L1(R) for all t ≥ 0, Fubini’s theorem allows to write

F−1(uδ(t)) = F−1(K(2(t− pδ)))F−1(uδ(pδ)) = e−2(t−pδ)|·|λF−1(uδ(pδ)).

Writing ϕ = F−1(F(ϕ)) and g[ϕ] = F−1(| · |λF(ϕ)), since uδ(t) ∈ L1(R) for all
t ≥ 0, by Fubini’s theorem we can put the inverse Fourier transform on uδ and we
thus check that

∫ (p+1)δ

pδ

∫

R
uδ(t, x)γ′(t)ϕ(x)− 2uδ(t, x)γ(t)g[ϕ](x) dxdt

=
∫

R
uδ((p + 1)δ, x)γ((p + 1)δ)ϕ(x)− uδ(pδ, x)γ(pδ)ϕ(x) dx. (6.9)

Summing (6.8) on all odd integers p and (6.9) on all even integers p (notice
that, since the support of γ is compact, these sums are finite), the boundary terms
disappear (even for p = 0 since γ(0) = 0) and we find

∫

R+

∫

R
uδ(t, x)ϕ(x)γ′(t) dxdt

+
∫

R+

∫

R
2f(uδ(t, x))ϕ′(x)γ(t)(1− χδ(t)) dx dt

−
∫

R+

∫

R
2uδ(t, x)g[ϕ](x)γ(t)χδ(t) dx dt = 0

(6.10)

where χδ is the characteristic function of ∪even p ]pδ, (p + 1)δ].
Taking T ≥ max(supp(γ)), we have, for all A ≥ 0, thanks to (6.1) and (6.6)

∣∣∣∣
∫

R+

∫

R
uδ(t, x)g[ϕ](x)γ(t) 2χδ(t) dx dt−

∫

R+

∫

R
u(t, x)g[ϕ](x)γ(t) dx dt

∣∣∣∣

≤
∣∣∣∣∣
∫ T

0

∫ A

−A

(
2χδ(t)uδ(t, x)− u(t, x)

)
g[ϕ](x)γ(t) dx dt

∣∣∣∣∣ (6.11)

+3||u0||L∞(R)T ||γ||L∞(R+)

∫

R\[−A,A]

|g[ϕ](x)| dx (6.12)

Since g[ϕ] is bounded on R, uδ → u in C([0, T ];L1([−A,A])) and χδ → 1/2 in
L∞(]0,∞[) weak-∗ as δ → 0, we see that (6.11) tends to 0 as δ → 0. By Proposition
5.2, we have g[ϕ] = g1 ∗ ϕ + g2 ∗ ϕ(4) ∈ L1(R); hence, (6.12) tends to 0 as A →∞.
We deduce thus that, as δ → 0,

∫

R+

∫

R
uδ(t, x)g[ϕ](x)γ(t) 2χδ(t) dx dt →

∫

R+

∫

R
u(t, x)g[ϕ](x)γ(t) dx dt.
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The flux function f is lipschitz-continuous on [−||u0||L∞(R), ||u0||L∞(R)] so that,
by (6.1) and (6.6), f(uδ) → f(u) in C([0, T ];L1(Q)) for all T > 0 and all compact
subset Q of R. Therefore, with the same kind of reasoning as before, we can pass
to the limit δ → 0 in (6.10) to conclude that u satisfies (6.7).

We now prove that u is in fact a solution to (1.1) in the sense of Definition 3.1.
Recall that u ∈ C([0,∞[;L1(R)). By (6.6) and the local lipschitz-continuity

of f , we have f(u) ∈ C([0,∞[;L1(R)) (recall that f(0) = 0). We deduce, since
F−1 : L1(R) → Cb(R) is continuous, that t → F−1(u(t)) and t → F−1(f(u(t)))
are in C([0,∞[;Cb(R)) ⊂ C([0,∞[×R). Hence, for all γ ∈ C∞c (]0,∞[), the function

w(ξ) =
∫

R+
F−1(u(t))(ξ)γ′(t) + 2iπξF−1(f(u(t)))(ξ)γ(t)−F−1(u(t))(ξ)|ξ|λγ(t) dt ,

is continuous on R. Let ψ ∈ C∞c (R); applying (6.7) with ϕ = F−1(ψ) ∈ S(R) and
using Fubini’s theorem, we have

∫
R wψ = 0; the function ψ being arbitrary, this

implies w ≡ 0. Since this is true for all γ ∈ C∞c (]0,∞[), we deduce that, for all
ξ ∈ R, d

dt (F−1(u(·))(ξ)) = −|ξ|λF−1(u(·))(ξ) + 2iπξF−1(f(u(·)))(ξ) in D′(]0,∞[).
The right-hand side of this equation is a continuous function, and the equation is
therefore a classical ODE; thus, for all ξ ∈ R and all t ≥ 0,

F−1(u(t))(ξ) = e−t|ξ|λF−1(u0)(ξ) +
∫ t

0

2iπξe−(t−s)|ξ|λF−1(f(u(s)))(ξ) ds

= F−1(K(t) ∗ u0)(ξ)−
∫ t

0

F−1(∂xK(t− s))F−1(f(u(s)))(ξ) ds

= F−1(K(t) ∗ u0)(ξ)−
∫ t

0

F−1(∂xK(t− s) ∗ f(u(s)))(ξ) ds

By (2.4) and since f(u) ∈ C([0,∞[;L1(R)), Fubini’s theorem gives then

F−1(u(t))(ξ) = F−1(K(t) ∗ u0)(ξ)−F−1

(∫ t

0

∂xK(t− s) ∗ f(u(s)) ds

)
(ξ).

F−1 being injective on L1(R), we deduce that u satisfies (3.1) on ]0,∞[×R.

Here is a summary of what we have proved so far in this section.

Proposition 6.3 If u0 ∈ C∞c (R), then there exists a solution to (1.1) on ]0,∞[
which is bounded by ||u0||L∞(R) and takes its values between the minimum and
maximum values of u0.

6.4 Conclusion

We now prove that if u0 ∈ L∞(R), then there exists a solution to (1.1) on ]0,∞[
which satisfies item ii) in Theorem 1.1, which concludes the proof of this theorem.

21



Let u0 ∈ L∞(R) and take (un
0 )n≥0 ∈ C∞c (R) which converges a.e. on R to u0

and such that, for all n ≥ 1, un
0 takes its values between the essential lower and

upper bounds of u0; in particular, ||un
0 ||L∞(R) ≤ ||u0||L∞(R) for all n ≥ 0. Denote by

un a solution, given by Proposition 6.3, to (1.1) on ]0,∞[ with initial condition un
0

instead of u0; un is bounded by ||un
0 ||L∞(R) ≤ ||u0||L∞(R). This bound and Theorem

5.1 show that, for all t0 > 0 and all m ≥ 0, (∂m
x un)n≥1 is bounded on ]t0,∞[×R;

by Lemma 5.1 and Proposition 5.2, these bounds on the spatial derivatives imply
that (∂tu

n)n≥1 is also bounded on ]t0,∞[×R.
Hence, by Ascoli-Arzela’s theorem, up to a subsequence, we can suppose that

there exists u such that un → u on ]0,∞[×R. Since ||un||L∞(]0,∞[×R) ≤ ||u0||L∞(R),
we also have ||u||L∞(]0,∞[×R) ≤ ||u0||L∞(R) and, in fact, u takes (as each un) its
values between the essential lower and upper bounds of u0. The function un satisfies
(3.1) with un

0 instead of u0; passing to the limit n →∞ in this equation, thanks to
the dominated convergence theorem, we see that u is a solution to (1.1) on ]0,∞[.

Remark 6.2 Since both the hyperbolic and regularizing equations satisfy the prop-
erties given in Remark 1.2, it is quite obvious, on our construction of a solution to
(1.1), that (1.1) also satisfies the properties stated in Remark 1.2 (because we can
always choose approximations of the initial conditions by regular data which satisfy
the hypotheses of this remark).
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[Lév25] P. Lévy, Calcul des Probabilités, 1925.

[Vol67] A. I. Vol′pert, Spaces bv and quasilinear equations, Mat. Sb. (N.S.) 73
(115) (1967), 255–302.

23


