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1. Introduction
We consider in this paper the following ¢o tem satisfied by the unknown

scalar functions u and k: ‘

(S) —div(w(k)Vu)=f 1in Q, (1.1)

(S) —div(a(k)Vk) = v(k)|Vu’s in Q, (1.2)

(S) u=0 onoQR (1.3)

S) £=0 on 69.’. (1.4)

In this system, the ﬁ:mctlons v and a are real valued functions of £ which represent

in [3,10 1310 The variable k is the turbulent kinetic energy and the variable u an
“idealization” of the velocity of the flow. The interest in studying the mathematical
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system (S) lies in a better understanding of the interaction between an eddy diffusion
term like div(v(k)Vu) and the transfer of kinetic energy from large scales to small
scales defined by the term v(k)|Vu|>.

Note that in Eq. (1.2) the term modelizing the dissipation of small scales in the
right hand side of the equation was ignored. This term is equal to —k3/2/¢ where £ #0
is the mixing length of the turbulence. This simplification gives rise to a simplified
mathematical presentation which does not change the nature of the difficulties and the
mathematical structure of the equations. (Of course, this is not the case when # goes
to zero. This question is not the aim of the present paper where ¢ # 0 is fixed and the
problems concerned with variations of # are investigated in [3].)

When @ and v are continuous bounded functions of k, existence of a solution (u,k)
to system (S) understood in distributional sense has been shown in [5,9-11]. Moreover,
the full incompressible system with a pressure term where u is the mean velocity field
of a flow is considered in [11]. In this work, existence of a distributional soh%i’;i@n is

~=proved in-the 2D evolution case and in-the 3D steady-state case. The.3D <yolution

case remains an open problem, even in the case of small initial data an
terms. In all situations, uniqueness is an open problem, except in [3]
of the solution for the scalar system (S) is proved under the ¢
viscosities remain bounded and close to a constant. '

When the eddy viscosities are not bounded functions of %; the question is more
delicate from the mathematical point of view, but more reahstlc from the physical
point of view. Indeed, both eddy viscosities v and @ are.of the form C + £vk for C
a constant, and / the turbulence mixing length. Existence of a solution (u,k) to the
scalar system (S) has been shown by Clain and Touzani in the 2D case [6]. The main
point there consists in proving that under a.g condition for v and a (which is
satisfied in the physical case), the kinetic turbulent energy k¥ remains bounded, which
reconduces one to the case of bounded ddy viscosities. Unfortunately. the result is not
proved in the vector case with pressure, t seems that there is no hope to prove
the same estimate in the 3D case, even for the scalar system (S).

In [10, Chapter 5], Lewandowski and Murat proved the existence of a renormal-
ized solution to the scalar system (S) without neither growth conditions on the eddy
viscosities nor restnctlons on the dimension. The notion of renormahzed solutlon

[12], following the work of DiPerna and Lions (see for instance [7,8], and more ref-
erences therein).” Unfortunately, this notion cannot be extended to a realistic fluid
dynamic problem bec"éuse of the pressure term. Thus, it remains to find a natu-
ral notion of solu ion to system (S) which can be extended to real situations as
those descnbed by Navier—Stokes equations. This is the aim of the present
paper. <.

The natural notion is what we call ¢ ‘energy solutions” (see Definition 2.2 below). The
idea is derived first from the natural estimate v(k)|Vu|?* € L'(Q), which holds for any
“a priori solution” (u,k) of (S), and from the fact that for every function v such that
v(k)| Vo> € L'(Q), one has v(k)VuVve L'(Q). Thus the natural function space for
Eq. (1.1) is the space of those functions v€ H}(Q) such that vw(k)|Vv|* € L'(Q),
equipped with the obvious norm, from which the natural variational formulation for
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Eq. (1.1) follows, whereas Eq. (1.2) holds in the sense of the distributions (see Def-
inition 2.2 below). The surprising feature in Definition 2.2 is that the space of test
functions depends on the variable k. This space should be large enough, and in par-
ticular, we want it to be the adherence of smooth functions with compact support. For
that, we remark that under condition (2.9) (see below) on the eddy viscosities a and
v, added to the hypothesis that v/(k) is bounded for k£ near 0 (see (2.10) below), one

s +/v(k)€ H(Q). We note that condition (2.9) is satisfied by a and v of the form
C + ¢k, but unfortunately the condition (2.10) is not verified. Thus one has to replace
C+¢Vk by C+/\Ve+k, e >0, for small values of k. On the other hand, we prove
that if 5 > 1 and v/b € H'(Q), then smooth functions with compact support are dense
in the weighted Sobolev space

V ={ve H(Q),b|Vv|* € L'(Q)}

- 1/2
(/ b|Vu|2dx)
Q

(see Theorem 3.1 below). This result was suggested by a work of amayx and Fradon
[4], where an analytic proof of the analogous result in the full sp
we give here holds for every bounded domain with Lipschi
is rather different and shorter than the proof given in [4].
The main result of the present paper is Theorem 2:1=below, where existence of an
energy solution (u, k) to system (S) is proved. The study of energy solutions in the case
of an incompressible fluid equation with a pressare term is in progress. Uniqueness is
an open problem and seems to be a very difficult question, even if we conjecture that
the solution is unique. h
The paper is organized as follows. Section 2, we define the notion of energy
solution and we sketch the proof of the istence result. In Section 3, we prove the
density of smooth functions with lcompact upport in weighted Sobolev spaces under
the assumptions that the weight is gi‘ea‘fer than 1 and has its square root in H'(Q).
In Section 4, we prove the ori estimates we need for solving the problem. In
Section 5 we pass to the limit in the equations and complete the proof of the existence
result.

wous boundary, and

2. Energy solutigns to system (S): definition and main results

assume that
fel*(Q), ac¥(R), ve6'(R),
and

a(k),v(k) =6 >0, VkeR. 2.1)
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1  We denote by T, the truncation operator defined by

T (1)(x) & min(n, max(—n, u(x))).

3  Definition 2.1. Let b: 2 — R be a measurable function. For 1 < p < + oo, let
X?(b, O {uec WhP(Q): bVue (LP(Q))},
equipped with the norm
1l 5= [|ull s + 6V
5 When b LP(Q) we observe that ¥5°(Q) C X7(b,Q), and in this case we define the
space X[ (b, Q) as the closure of €:°(Q2) in X?(b,L2).

~ 7 Definition 2.2. Let d < 4. The couple (u,k) is an “energy solution” of (S ) iff‘}”and
5aly if v ekt s

d
(D) keW Q). Ya< SR @

D) Vwk)eH'(Q), (2.3)

(D) k=0, (2.4)

(D) T(k)cH)(R), VYneR' (2.5)

D) ueX;(v/vk),Q), (2.6)

(D) / v(k)VuVodx = / fod X2(\/v(k), Q), (2.7)
Q Q

(D) / a(k)VEV ¢ dx = o uffdpdx, Vo€ EX(Q). (2.8)

9 Observe that when‘d <4, one has H'(Q) C L4(Q), so that /v(k) € L*(Q), which
allows us to define:XZ(+/v(k), Q).
11 The main re ultuof the paper is the following:

Theorem?..'li.f: e that d < 4 and that there exists Cy > 0 and y > 1/2 such that

__.__Vk) < ﬁ, Vi > 1. (29)
2/ a(k)v(k) kv
13 Moreover, assume that
AC, e RY; Vke[0,1], V'(k)| < Ca. (2.10)

Then, system (S) admits at least one energy solution (u,k).



7

___results for bounded eddy viscosities. Thanks to the already mentioned works,o

9

11

13

15

17

19

NA 3594

ARTICLE IN PRESS

T. Gallouét et al. | Nonlinear Analysis 151 (1111 111111 5

Remark 2.1. Note that condition (2.9) is consistent with the physical model for which
(see for instance [10,13]) one has

wWk) =~ a(k) ~ C + ¢k
Indeed, in this case, one has, for large values of k

v 1
2\ a(kyv(k) 4k’
so that (2.9) holds with y=1. On the other hand, for k €[0,1],V/ (k) is not bounded.

Then, one has to replace w(k) ~ C + ¢k'? by v(k) ~ C + ¢(k + &)V/? when k €[0,1]
for some ¢ > 0.

The proof of Theorem 2.1 is based on the compactness method and the o o

" that there exists (ttn, ky) such that

(Sn)  — div(alkn)Vitr) = f in @, (2.11)

(Sn)  — div(an(kn)Vhn) = Tulon(k) | Vua[?] i @, (2.12)

(Sn)  (un)jo =0, (2.13)

(Sn)  (kn)jae =0, (2.14)

where

a,(k)2T,(a(k)) and

The first and second equations in(S,) holds in the classical weak sense. Notice that
k, > 0 a.e. in Q (see [10]). The main work is taking the limit in the equations. To do
this, it is crucial to prove the strong convergence in L'(£2) of the sequence

Tn[vn(kn)lvun|2]; :

a point which constitutes*‘fthe major difficulty in those kind of problems. As already
mentioned in the introduction, the main tools to prove this strong convergence are:

o the boundedness of "/ Vu(kn)||zn under assumptions (2.1), (2.10) and (2.9) (see
LeInma 4 ;),v

e The weighted Sobolev space characterization (see Section 3) which states that

X3(b,Q) = Hy(Q) N X>(b, Q)
for any weight b € H'(Q), satisfying
b(x) > & > 0.
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3. A density result for a weighted Sobolev space

The goal of this section is to prove that if
beH'(Q) and b(x) =6>0 VxeQ, 3.1)
then
X2(b,Q) = Hy(Q) N X*(b, Q). (3.2)
Throughout this Section, (3.1) is assumed to be satisfied. For the sake of simplicity,
we shall put
V(@) = X*(b, Q) N Hy (Q).
Notice that thanks to Poincaré inequality, the space ¥} can be equipped W1th the
equivalent norm

When we are only using the space V3, we shall use this norm w1thout ‘ ntigning it.

We remark at first that if b is larger than J, then
X3(5,2) C Vy(Q).
Indeed, it is clear that
O|Vllwzy < 1BVPll2ye YV € 62 (2).

The inverse embedding is more delicate to prov:
result. '

(3.3)

d is éiven by the following

Theorem 3.1. Let Q be a Lipschitz open su
such that ;

b(x)=2d>0 VxeQ.
Then €2°(L2) is dense in Vb(Q)_ wi

in R? and let b be a H'(Q) function

ct to the || - || norm.

The proof of Theorem 3 1s dIVlded in three steps (and subsections).

1. Density of L>®(Q) A V3 Q) in Vb(Q)

2. Dens1ty in L”(Q)ﬂVb(Q) of L®(Q2)NV3(L2) functions with compact support included

3. Den51ty of %“"’(Q) in the set of L>°(Q2) N V(L) functions with compact support
included ‘in Q

3.1. First step: density of L() N Vy(2) in Vy(2)
Lemma 3.1. Let Q be a Lipschitz open subset in RY and let b be a measurable
function such that
b(x)=2d>0 Vxel.
Then L>°(Q2) N Vp(Q) is dense in Vy(£2).
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1  Proof. Let uc V,(2) and set
def

U = Tn(14).

For proving Lemma 3.1, we will show the two following points:

3 e u, € L(Q)N Vy(Q),
o {u,}nen converges to u with respect to the | ||xz-norm.First, by definition of the
5 truncature one has

lu| if |u| <n, Vu if |u| <

n  otherwise. 0 otherwise.
It follows that

[un] <7 and  b|Vu,| < B[V ELZ(Q)

2 e —

SO

7 almost every where in Q. It is easily deduced that u, € L*°(Q2)N Vb(Q)
The sequence {u,,},,eN is now shown to converge to u. Because G <5 < b(x),
9  Vy(Q) C H}(Q). In particular, |Vu| is finite almost everywhere in-Q. Consequently,

Vu,S5Vu. (3.5)

By (3.4), (3.5) and Lebesgue dominated convergence theorem, we deduce that

11 {u}nen converges to u with respect to the norm | .

13

15

17

19 Lemma33. If b'ifé HE(Q) and u e L(Q) N Vy(Q) then buc H(Q).

Proof. The proef is based on the fact that ¢ € H!(Q) if and only if, its extension by

21 “belongs to H!(R?) (see for instance Theorem IX. 17, p. 171 in [2]).

- )def u(x) if xeQ,
0 if xe Q°.

23 We also know that all v € H'(Q) can be extended into a function in H!(R?) denoted
25 by . Lemma 3.3 is proved by extending, respectively, # and » on R? and by proving
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first that the product of the extensions is equal to bu, and secondly that it belongs to
HY(R%).
__® Product of the extensions coincides with bu. Indeed u is equal to zero in Q¢ then
bu is also equal to zero in Q2°. Moreover
ﬁ|Q —=u and 5|Q =b.
Therefore
- bu if xeQ
ub(x) = .
0 ifxel
which means exactly that bi = bu.
e Product of the extensions belongs to H'(R?). The product of two functions of
H'(R?) belongs to W(R?), so that the gradient of bii is well defined as a function.
-Moreover . _ -
. .~ uVb+bVu if xel,
V(ub)(x)=uVb+ bVu= .
if x e Q°.
Obviously
[%B| 2(rey = [|bull () < Ilullze]1Bllz22)
and
||V(ﬁg)||L2(Rd) = ||V(bu)|| 20y < [[ullzee ”V:b;HL%;(Q),\ Mullvyo)-
Because b€ H'(Q) and u € L°(R2) N Vp(2), diices that biz belongs to H'(R?).
Until now, we have proved that when 1(Q) and ue€L>°(Q) N V3(R2), then
buc H'(R?). Using once more the char terization of H}(2), we conclude that bu €
Hy(Q). '
Now we prove Lemma 3.2. Let" u:E L°°(Q) N V(). Construct a L°(£2) sequence
converging to u as follows. Let f € %2([0,00[;[0,1]) be such that
f(x)=0 VxE[O,l] x)=1VVx=22,
and set -
tn Zu(x) (nd(x)s,.k 7
where d(x) denotes the distance to the boundary of Q. We prove Lemma 3.2 in two -
steps: L
o u,c L°°(§2) ﬂ Vp(R2),
o {u,}nen converges to u in V.
(1) Because suppu, C {x € Q,d(x) > 1/n}, one has
supp u, C £, : (3.6)
which implies that u, has a compact support included in Q. Moreover, because u € L>(£2)
and f € L*°(R), u, € L*(L).
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1 In other words,
e L (). (3.7)
*- It remains to prove that u, € V,(Q2). By a direct calculation, one has
bVu, =bVu- f(nd)+ nbuf'(nd)Vd. (3.8)

3 The two terms of the right-hand side of (3.8) are bounded in L2(€Q). Indeed, | £z =1
and u € Vp(L2) leads to _
b[Vul f(nd) < || fllz=b| V| = bVl cI*(Q). (3.9)
5 On the other hand,

bunf'(nd)Vd = I;—”(ndf "(nd))Vd.
- - - ==t is well known-that

7 e Q being Lipschitz, d € WH>°(Q),
o ube Hy(Q2) (Lemma 3.3) implies

bu

d

9 Finally, because f € €°°([0,+ oo[;[0,1]) and f'(x)=0 = [0,1] U [2, 4+ oo, there
exists a constant C > 0 which does not depend on.# such that |nd f'(nd)| < C. We

11  deduce that

€ L(Q).

ub
|bun f'(nd)Vd| < C”Vd”LOO 7 (3.10)
Combining (3.8), (3.9) and (3.10) o
b|Vu,| < b|Vu| + C|Vd||L (3.11)
13 By (3.6), (3.7) and (3.11);o0ne concludes that u, € L° N V(<2).
(2) 1t is easily checked that' =
(3.12)

VbVu, —

15  because
——, f(nd(x)) = f'(nd(x)) =0.

The proof is :‘cvompleted by (3.11), (3.12) and Lebesgue dominated convergence
17  theorem. [J

3.3. Third step: density of €5°(€2)

19 Lemma 3.4. Assume bc H'(Q). Then the closure of €°(Q) in V() contains L ()N
Vi(£2).
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Proof. One uses a mollifier and equivalence between strong and weak density. Let
ue LX(Q)N V() and p € €F(L2) be such that

suppp C B(0,1),  p(x)=>1 onB(0,3),

p(x) =0 forxcR? and /B(O, p(x)dx = 1.
One defines

def 1 X
Pe=_ZP (—>
& &

def
Ug=1U * Pg.

and

Because u € L3°(Q2), one has u; € €.°(£2) for small values of &.

~ One shall prove that because (3.1) is satisfied and u € L°(2)N Vb(Q)'“the seq
{u;}¢>0 converges weakly to u. One starts by proving first the boundedness of {us}e>0
in V3, which is the main difficult point. For that, one writes -

bVu,=A, + B,,

where

On the other hand, because u€L°°(
CE [ 99— )l 1btx) 4

is bounded in (L?(Q))". B Caue

Co= [ IVph] o) = bs-+ )] b
B(0,¢) v

1y Schwarz inequality,

12
IV pu)PIbGx) — bx + 1) dh) ,

B(0,¢)

ng;dead/ (/ |V po(h)*|b(x) — b(x + h)? dk) dx
2 \JB(0,¢)
is bounded in R. By Fubini’s theorem

D, = Byed /B . IV pu(WP1BG) — b + 1) b
€
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and because b € H(Q),
16(x) — b(x + h)||r2@) < Co|A|

for a given constant C,. It follows that
D, < CyByé" / |A|?|V po(h)|* dh.
B(0,¢)
Finally, because
1 h
Vouh)= Vo (g) ,
one also has

D, < CyB &% +? / d—+2|Vp(h)|2dh = By / IVp(»)Pdy < oo,
B(0,¢) € B(0,1)

R e —_ - T =

which proves the boundedness of {u;}.~o in V5.

Using this bound for the sequence {u.}.~o and the fact that Vb(Q) is an Hilbert
space, one can extract’a subsequence (still denoted {u.}.>0) converging v
to some I. It remains to prove that / =u. For this, let ¢ € €°°(2) and remark first that
the weak convergence of u, implies that

/us¢dx—> / lpdx. (3.13)
Q Q
Moreover, u € L*(Q) and it is already known tha
u; — u strongly in L*(Q)
which implies
/uggbdx — / u¢ dx. (3.14)
Q Q

From (3.13) and (3.14) is dedu

almost everywhere
“proof of Lemma 3.4 is now complete because weakly closed subspaces and
strongly closed subspaces coincide. [

Combining Lemmas 3.1 and 3.4, one deduces that the strong closure of CZ°(Q)
in V3(Q) coincides with its weak closure, which is V;(€2); therefore every element
of V3(Q2) can be approached in norm by a sequence of functions in CZ°(€2) and
Theorem 3.1 is proved. [
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1 4. Approximate solutions and estimates

Recall that in Section 2 we introduced the approximate system

(S,) —div(v(k,)Vu,)=f 1in L, (4.1)
(Sn)  — div(an(kn)Vhy) = Tu[va(kn)| Vitn*] in €, (4.2)
(Sn)  (un)joe =0, (4.3)
(Sz) (k)o@ =0, (4.4)

3 where

= G@®EnLEE) ad vE) ELE).
Notice that &, > 0 a.e. in Q (see [10]).

5 The variational formulation of (S,) is:

(tns ) € CHY (@)Y % (45)

Vv € Hy(Q), / Vu(ky )V, - Vodx = / fodxs (4.6)
Q Q :

Vg € HA(Q), /Q )V - Ve = / B0l Va1 @7

Usual estimates on {u, }ney and {k,,},;é :age obtained as follows:

7 e Taking v =u, as test function in (4.5 , one obtains

||v,,(k,,)|Vu,,|2||L1 < C4(5 (4.8)
where the constant Cy(d; ") only depends on f and 4.
9 e Using Boccardo-Gallouét estimates (see [1]) one concludes that
di
Vp< 4 la) Ve dx < Cs(p. 1), (49)

where lim p_mucs(p, f)=o0.
11 The m‘ajn‘ and essential result of this section is the estimate for the eddy viscosity.

Lemma 41 Let d =3. Assume that v(k) is absolutely continuous on R and

13 e there exist K€ R" and y > 1/2 such that

V(k)
2+/a(k)v(k)

< |i—|1y for almost every k > 1, (4.10)
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1 e for almost every k€ RT,
0 < ¢ < min(a(k), v(k)), (4.11)
o there is a bound for V' for small values of k,
1C, € RY; Vke[0,1], |V(k)| < Ca. (4.12)

3 Then there exist a constant C(p,v,Q, f) > 0 such that

“ V vn(kn)”Hl < C(yavs ‘Q,f)

Proof. The estimate of {V+/vn(ky)}nen in (L*(2))? follows from the similar estlmate
5 where v, is replaced by v. By deﬁmtlon one has

_ vV Wk,) if v(k,) <n,

Vn otherwise.

TR

Tn(v(kn)) = {

5a(0) = (0) for

Then, because &, € Wol’l(Q), the truncature T, is a contracti ,
uch that

7  large enough, there exists a constant c(£2) depending only,

1v3alE) = V3 Olzz < @IVl

It is also clear that

IV Vu(lkn)| < |V/V(ky)| on Q.

9  Therefore there exists a constant C(v,£2

ending only upon v and Q such that

2y (4.13)

ble to deal with \/v(k,) instead of \/v,(k;,).

Thanks to (4.13), it is p
11 Write now

o

and notice t

- v(k) oy

13 According to (4.10),

V' (k) G
2\/ale (k)| K

dx:Z B; where Bjd;f / |V \/v(kr)[? dx

>0 i<k <j+1}
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if k, = 1. In particular, if j > 1

1
Bj < CIZ/ Ta(kn)lvkn|2 dx.
U<h<jt} k'

One deduces that, if j > 1, one has

C2
< / a(ky)| Vi, |* dx.
J7 Jyt<ity

Using the classical estimate satisfied for all j€N,

/ a(ky)| Vi[> dx < C(f) (4.14)
{i <k <j+1}

B;

(see for instance [10]), one deduce that

1
B; < CIC(Y) Zﬁ < + 00,

1 j=1

i

Il

J

this because y > 1/2..It remains to study the term Bo. For it, o e‘i:
(4.14) and (4.11) to obtain

1Bo| < Cz%f ). (4.16)
By (4.16) and (4.15) one has
/ |VA/v(k,)|? dx < C2C(f) Z < + 0. (4.17)
Q

jz

Combining (4.13) and (4.17) leads to.
” \% vn(kn)”H1 < C(y,v, 2, 1),

and the proof is achieved. [

5. Passing to the limit: pr Theorem 2.1

In order to prove Th'ebfem 2.1, one has to ensure that the sequence {uy,k,} converges
to an energy solution of system (S). This is the subject of this section. Firstly, thanks

.
Estimate<(4.8) combined to 6||u,||z < ||\/@n(kn) V|12 allows to extract a subse-
quence (still denoted {u,}.cn) such that

u, — u weakly in Hy,

2
strongly in LP(2), p < d—dz’ (5.1)
a.e. in Q.
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Results in [1] and the condition a(k) > & leads to the extraction of a subsequence (still
denoted {k;,}»en) such that

A(ky) — A(k) weakly in WhP(Q), p <

d__—la
strongly in L4(Q), g < ——= - d L (-2)
a.c. in Q,
where A(k) = [y a(k'ydk’ and
k., — k weakly in W,"P(Q), p < E_i—l’
~ strongly in LY(Q), g < — (53)

d—2’ —
a.e. in Q. ‘

Finally, by Lemma "21.1, one has
Vulk,) — g weakly in HY(Q),

strongly in LY(Q), g < ——= (54)

a.c. in Q.

From the a.e. convergence in (5.3) and ), One ?’(ieduces that g = /v(k) € H(Q).
Taking the limit in the equations is performed in two steps. The first one concerns
nd its application), and as anyone can guess, the

Lemma 5.1. Let {b;}nen C L ) be a sequence converging strongly to b in L*(Q)
and such that b,(x) > 6 on Q. Let {uy}nen C H}(Q) be a sequence that b,Vuy, is
bounded in (LZ(Q))d Y hen there exists u€Vy and a subsequence (written with the

(5.5)

Proof. ?From b Vun one can extract a subsequence which converges weakly in (L*(2))?
to some (b ‘The hypothesis b, > § tells that the sequence u, is bounded in H 1(Q): one
can extract a subsequence whlch converges to some u € H'(Q). As b, — b strongly in
L*(Q), one deduces that

/ by Vi, dx — / bVuydx, Yy e(L®(Q))°.
Q Q
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1  This leads to
/ (¢ — bVu)pdx =0, Vye(L®(Q))~.
Q
Because ¢ € (L2(Q))? C (L1(RQ))? and

16Vul| 1@y < 1Bl 2yl Vull 2@y

3 it follows that $ = bVu almost everywhere on 2 and u € V. The strong convergence
of b, to b in L*(Q) leads to

/ P2Vu,V$dx= — / (b, V) (b,V$)dx — / B*VuVedx

- . 5 .cbecause b,Vu, — bVu weakly in (L>(2))* and b,V — bV ¢ strongl;un (Lz(.Q))d
and the proof of (5.5) is complete. [

7 One applies Lemma 5.1 with b, = 1/ vn(k,) and one concludg
and that

/ Wk)VuVedx = / fodx, VéeX(/vk),Q):-
Q Q
9  the last equality being a consequence of (3.2).

Lemma 5.2. Let bec H(Q) and f € L3(Q)..1
than 6, and converging to b,

uence {by}ncn C L°(Q), larger

11
o strongly in L*(Q) and
13 o weakly in H'(Q).
Let u, € H}(RQ), solution of

/ BVu, Ve, dx = |- fddx, Vo€ HI(Q). (5.6)

15 There exists u eV}, such that

b,Vu —-> qu strongly in (L*(Q))".

ProofT:gk;ng u, as test function in (5.6) leads to a bound in L*(Q) for b,Vu,.
17 We apply Lemma 5.1 and consider u as the weak limit in ¥} of the sequence (uy)scn-

The difficult point consists on proving the strong convergence. Let ¢ € €°(£2). By
19 Lemma 5.1,

/ b:Vu,Vpdx — / B2VuV¢dx.
Q Q
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Then
/bZVqu)dx:/fqbdx, Vo € €°(9).
Q Q

By Theorem 3.1, we have

/bZVqub dx = / fodx, Yo € XF(b,Q) = Vp(Q). (5.7)
Q Q
Taking ¢ =u in (5.7), we see that
/b2|Vu|2 dx:/fudx. | (5.8)
Q Jo

On the other hand, because u, — u strongly in L*(Q),

Combining (5.8) and (5.9) leads to
/bﬁIVunlzdx - / B?|Vul* dx.
Q Q

By (5.10) and Lemma 5.1, we conclude that b,Vu, — bVu s '
One applies Lemma 5.2 for taking the limit in the second
(5.2) implies

/ an(k) Vi,V dx — / a(k)VEV $ dx, v¢é}7 (Q), Vg >d. (5.11)

tyiin (L2(@)).
ion. For ¢ € €2°(Q),

(k) and one obtains

One applies Lemma 5.2 once more with b
V)| Vita|* — v(k)|Vu?  strongly’in L'(€2). (5.12)
It follows |

/ o) Vita[Ppdx — |-
Q :

Using (4.3) one conclude:
/a(k)Vka) dx =

and the proof ofTheorem 2.1 is now complete. [

/ W(K)|Vul>pdx, Vg >d and Vo€ Wy I(Q),
Q
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