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Fisrt step for proving the convergence of approximate solutions for
the evolution compressible Navier-Stokes equations (which gives, in
particular, the existence of solutions, d =3, p=p7, v > %)



Stationary compressible Stokes equations

Q is a bounded open set of RY, d = 2 or 3, with a Lipschitz
continuous boundary, v > 1, f € L2(Q)d and M >0

—Au+Vp=FfinQ, u=0on 02,
div(pu) =0 in Q, p>0 in Q, /p(x)dx:M,
Q
p=p’inQ

Functional spaces : u € H}(Q), p € L?(Q), p € L(Q)

(different spaces for p and p in the case of Navier-Stokes if d =3
and v < 3)



Aim

Prove the existence of a weak solution to the compressible Stokes

equations by the convergence of a sequence (up to a subsequence,
since, up to now, no uniqueness result is available for this problem)
of approximate solutions given by a numerical scheme as the mesh
size goes to 0



Choice of the discrete unknowns

» Classical FE mesh of Q with simplices (d =2 or 3), the mesh
size is called h

» Discretization of u by Non Conformal FE: Crouzeix-Raviart
FE. up € Hp, non conformal approx. of (H3(2))?

» Discretization of p and p by piecewise constant functions.
P, ph € Xp, approximation of L2(Q)

Unknowns for wup:
Uy, o € {interfaces}(u, € RY)

K Unknowns for p, and pp:
Pk, pk, K € {simplices}




Discretization of momentum equation

UhEHh

/ Vhup : Vpvdx — / prdivpv dx :/ fv dx, for all v € Hy
Q Q Q

For v € Hy and for K € {simplices}, one has in K:
» Vyov=Vv
o ‘K|dthV = Zoe{interfaces of K} Vo * nK:U‘O—‘

nk - is the normal vector to o, outward K



Discretization of mass equation

For all K € {simplices}, divk(pnun) + Mk + Sk =0

> |K|divk (ppup) = Z |o|potis - Nk & with an
o&{interfaces of K}
upstream choice for p,, that is

Pa:PKifUU'nK,UEO
po =pLif uy - Nk, <0, 0 =K|L

> My = h%(pk — IQ\) It gives [, padx = M.
> K|Sk = ki hs 12 (k| + o)) (ox — po),
C — max(O./ 2 * /)

Two parameters: 0 < «, 0 < & < 2.



Discretization of mass equation (2)

Upwinding and S replaces div(pu) = 0 by
div(pu) — hdiv(D|u|V p) — hdiv(Dp*Vp) = 0.

Upwinding is enough to ensure (with M) existence of a positive
solution py, to the discrete mass equation, for a given up. It allows
also to pass to the limit in the mass equation if pj, converges
weakly in L2(Q) and uj, converges in L2(Q)? as h — 0.

The stabilization term S, which leads to a very small diffusion
(taking & close to 2) but independent of u, is used for passing to
the limit in the EOS (p = p?).

Discretization of the EOS: px = pj, for all K



Existence of an approximate solution, convergence result

Existence of a solution up, py and pp of the scheme can be proven
using the Brouwer Fixed Point Theorem.

For v > 1, convergence of the approximate solution can be proven
in the following sense, up to a subsequence:

> up — uin L2(Q)9, u e H}(Q)Y
> pp — pin L9(Q) for any 1 < g < 2 and weakly in L?(Q)
> pp — pin L9(Q) for any 1 < g < 2 and weakly in L?7(Q)

where (u, p, p) is a weak solution of the compressible Stokes
equations

For v =1, the same result holds, at least with only weak
convergences of p, and pp



Proof of convergence, main steps

1. Estimate on the H'(Q2)-broken norm of uj,
2. L2%(Q) estimate on pj, and L%7(Q) estimate on pp,

These two steps give (up to a subsequence), as h — 0,
> up — uin L2(Q) and v € H}(Q)
> pn — p weakly in L2(R)
> pp — p weakly in L?(Q)
3. (u, p, p) is a weak solution of —Au+ Vp = f, div(pu) =0
p=>0, [opdx =M
4. Main difficulty, if v > 1: p = p” and "“strong” convergence of
pn and pp



Preliminary lemma

p€LP(Q),y>1 p>0ae inQ uec (H}Q), div(pu) =0,
then:

/ pdiv(u)dx =0

Q

/ p div(u)dx =0
Q

The first result (and its discrete counterpart) is used for Step 4
(proof of p = p7)

The discrete counterpart (also true for v = 1) of the second result
is used for Step 1 (estimate for up)



Preliminary lemma for the approximate solution

Discretization of mass equation div(pu) =0 and [, pdx = M:
For all K € {simplices}, divkx(pnun) + Mk + Sk =0

One proves:

/ ppdivy updx < Ch?,
Q

/ phdth Uth < Ch*.
Q

C depends on Q, M and ~.

Ch® is due to My
< is due to upwinding and additionnal stabilization term Si.



Estimate on uy,

Taking up as test function in the discrete momentum equation

/thh : Vyup dx—/ prdiva(up) dx_/ f - updx.
Q Q Q

But p, = p}, a.e., Discrete mass equation and preliminary lemma
gives [ ppdiv(up) dx < Ch®.
This gives an estimate on up:

1
(/Q Vhup - thhdx)i = HuhHLb < (.



Estimate on pj, (inf-sup condition)

Let g € L2(Q) s.t. [, qdx = 0.
Then, there exists v € (H3(Q))9 s.t.

div(v) = g a.e. in Q,

IVli(rr@ye < Collglliz),

where C only depends on 2.



Estimate on py,

my = ﬁ fQ pndx, there exists v, € Hp, dth(Vh) = pp — Mp.

Taking vy, as test function in the discrete momentum equation:

/thh:thhdx—/phdivh(vh)dx:/ f-vpdx.
Q Q Q

Using [, divp(vs)dx = 0:

/(ph — mh)zdx = /(f v — Vup : Vvg)dx.
Q Q

Since |[vall1,6 < Callph — malli2(q) and [Jul[1,5 < Ci, the preceding
inequality leads to:

Ph = ma|[120) < G-

where C3 only depends on f and on 2.



Estimates on py and py,

Iph = mnll2) < G.

1
/p;dxz/phdle\/l
Q Q

Ipnlle2) < Cai

Then:

where C only depends on f, M, v and Q.

pn = pj, a.e. in Q, then:

lonll () < G5 = CV



Convergence of up, pn, pr (weak for py and pp)

Thanks to the estimates on up, pp, pp, it is possible to assume (up
to a subsequence) that, as h — 0:

up — u in L2(Q)? and v € H}(Q)?,
pr — p weakly in LZ(Q),

pn — p weakly in [2(Q).



Passage to the limit on the equations, except EOS
momentum equation :
—Au+Vp=1finQ, u=0on 01,

mass equation (up converges in L? and pj, weakly in L2):
div(pu) =0 in Q,
L'-weak convergence of pj, gives positivity of p and convergence of
total mass:
p >0 in Q, / p(x)dx = M.
Q
Question (if v > 1):

p=p"inQ7

Idea : prove fQ phppdx — fQ ppdx and deduce a.e. convergence
(of pp and pp) and p = p”.



V : V = divdiv + curl - curl
For all &, v in H3(Q)¢,

/Q Vi T = /Q S5 () () - / curl(@) - curl(v).

Q

Assuming, for simplicity that uy € H3 () and
—Aup+Vpy=fy € L2(Q), f, — f in L% as h — 0. The weak
form of —Aup + Vpp = f;, gives for all v in H&(Q)d

/Q div(up)div(7) + /Q curl(uy) - curl(7) — /Q ondli (7)) = /Q -

Choice of v ? v = ¥, with curl(vy) = 0, div(v,) = pp and v,
bounded in H} (unfortunately, 0 is impossible).

Then, up to a subsequence,

Vi, — v in L2(Q) and weakly in H}(R),

curl(v) = 0, div(v) = p.



Proof using v, (1)

/Q div(up)div(7y)+ /Q sl )l (7 — /

Q

phdiV(Vh):/ fh~Vh.

Q

But, div(vs) = pp and curl(v,) = 0. Then:

[ taivten) = pr)on= [ s

Convergence of f, in L2()9 to f and convergence of ¥, in L2(Q)

tov:
[im /(div(uh) —ph)ph :/ f-v.
h—0 Jo Q

d



Proof using v, (2)
But, since —Au+ Vp = f:

/Q div(u)div(v) + /Q curl(u) - curl(v) — /Q pdiv(v) = /Q fov.

which gives (using div(v) = p and curl(v) = 0):

/Q(div(u) —p)p:/Qf- v

lim /Q(ph—div(uh))phdxz/Q(p—div(u))pdx.

h—0

Then:

Finally, the preliminary lemma gives [, ppdiv(us) < Ch® and
Jq pdiv(u) = 0 (since divk(pnun) — Mk — Sk = 0 for all K and
div(pu) = 0) at least for a subsequence

Iim/phphdxg/ppdx.
h—0 Jo Q

Unfortunately, it is impossible to have v, € H&.



Curl-free test function

Let B be a ball containing Q2 and wy, € H&(B), —Awp = pp,

Vh = VWh

> vy € (HYQ)?,
> div(vp) = pp a.e. in Q,
» curl(vp) =0 a.e. in Q,
> [Vall(Hr(a)ye < Collpnlli2(q), where Co only depends on Q.
Then, up to a subsequence,
v, — v in L2(Q) and weakly in H1(Q),
curl(v) = 0, div(v) = p.
(Remark : [[va[|(12(q))¢ < Collpnllmi(a))



Proving [o(pn — div(up))prpdx — [o(p — div(u))ppdx

Let p € C°(R) (so that vy € HE(Q)?)). Taking v = vy

Jo div(up)div(vap)dx + [ curl(uy) - curl(vap)dx — [o padiv(vae) dx
= fQ fh o (tho) dx.

Using a proof smilar to that given if ¢ = 1 (with additionnal terms
involving ), we obtain :

tim, [ (on = div(un))onpd = [ (p = div())poc



Proving [o(pn — div(up))prpdx — [o(p — div(u))ppdx
Let p € C°(R) (so that vpp € H}(Q)?)). Taking v = v,p:

Jo div(up)div(vae)dx 4 [ curl(up) - curl(vap)dx — [o padiv(vae) dx
= [o fn - (vhe) dx.

But, div(vhp) = pre + vi - Vi and curl(vap) = L(p)vh, where
L(p) is a matrix involving the first order derivatives of . Then:

Ja(div(un) — pr)pnpdx = [ fa - (vap)dx

— Jo div(up)vh - Vpdx — [ curl(up) - L(@)vh + [q Prvh - Vpdx.
Weak convergence of uj, in H}(2)¢, weak convergence of pj, in
L?(£2) and convergence of v, and f; in L%(Q)7:

limp—o [o(div(up) — pa)papdx = [ - (v)dx
— Jodiv(u)v - Vdx — [ curl(u) - L(¢)v + [ pv - Vdx.



Proving [o(pn — div(up))prpdx — [o(p — div(u))ppdx

But, since —Au+ Vp = f:

Jo div(u)div(ve)dx + [q curl( ) curl(vp)dx — [, pdiv(ve) dx
= o f - (vy)dx.

which gives (using div(v) = p and curl(v) = 0):

fQ(div(u) — p)ppdx = fQ f-(vp)dx
— Jo div(u)v - Vedx — [ curl(u) - L(p)v + [q pv - Vipdx.

Then:

I|m /(ph — div(up))prpdx = /Q(p — div(u))ppdx.

—0



Proving [o(pn — div(us))pndx — [o(p — div(u))pdx

Lemma : F, — F in D'(Q), (F,)nen bounded in L9 for some
q>1. Then F, — F weakly in L.

With F, = (pp — div(up))pn, F = (p — div(u))p and since v > 1,
the lemma gives

[ (on = aiv(nonx — | (p—div(u))po
Q Q



Proving [o phpndx — [ ppdx

[ (on = aiv(ononx — | (p—div(u))po.
Q Q

But since divk(ppup) + Mk + Sk = 0, div(pu) = 0, the
preliminary lemma gives:

/ div(up)ppdx < Ch®, / div(u)pdx = 0;
Q Q

Then:

Iim/phphdx</ppdx.
h—0 Jo Q



a.e. convergence of p, and py

Let Gy = (p) — p?)(pn — p) € L}(Q) and G, > 0 a.e. in Q.

Futhermore Gy, = (ph — p7)(pn — p) = Prpn — Prp — P pn + p7p
and:

/ Gpdx = / Phpndx — / prpdx — / P prdx + / p’pdx.
Q Q Q Q Q

Using the weak convergence in L?(Q) of pj, and pj, and
limp—o [q Prondx < [o ppdx:

Then (up to a subsequence), G, — 0 a.e. and then pp — p a.e.
(since y — y7 is an increasing function on R ). Finally:

pn — pin L9(Q) for all 1 < g < 27,
pr=p), — pY in L9(Q) for all 1 < g < 2,
and p = p7.



Additional difficulty for stat. comp. NS equations

Q is a bounded open set of RY, d = 2 or 3, with a Lipschitz
continuous boundary, v > 1, f € L2(Q)¢ and M > 0
—Au+div(pu®@u)+Vp=1Ffin Q, uv=0on 09,
div(pu) =0 in Q, p>0 in Q, / p(x)dx = M,
Q

p=p’in Q

d = 2 : no aditional difficulty

d = 3 : no additional difficulty if v > 3. But for v < 3, no
estimate on p in L?(9Q).



Estimates in the case of NS equations, % <v<3

Estimate on v : Taking u as test function in the momentum leads
to an estimate on u in (H3(Q)? since

/pu®u:Vudx:O.
Q

Then, we have also an estimate on v in L°(Q)? (using Sobolev
embedding).

Estimate on p in L9(2), with some 1 < g < 2 and g = 1 when
v = 3 (using Neas Lemma in some L instead of L?).

Estimate on p in L9(£2), with some % <g<6andg= % when
= 3 (since p = p7).

Remark : pu® u € L1(Q), since u € L5(Q)? and p € L2(Q) (and

i B

Lili2=0)



NS equations, v < 3, how to pass to the limit in the EOS

We prove
lim / phphdx = / pp’dx,
h—0 Jo Q
with some convenient choice of 6 > 0 instead of 6§ = 1.

This gives, as for § = 1, the a.e. convergence (up to a
subsequence) of p, and pp.



