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Fisrt step for proving the convergence of approximate solutions for
the evolution compressible Navier-Stokes equations (which gives, in
particular, the existence of solutions, d = 3, p = ργ , γ > 3

2 ).



Stationary compressible Stokes equations

Ω is a bounded open set of Rd , d = 2 or 3, with a Lipschitz
continuous boundary, γ ≥ 1, f ∈ L2(Ω)d and M > 0

−∆u +∇p = f in Ω, u = 0 on ∂Ω,

div(ρu) = 0 in Ω, ρ ≥ 0 in Ω,

∫
Ω
ρ(x)dx = M,

p = ργ in Ω

Functional spaces : u ∈ H1
0 (Ω), p ∈ L2(Ω), ρ ∈ L2γ(Ω)

(different spaces for p and ρ in the case of Navier-Stokes if d = 3
and γ < 3)



Aim

Prove the existence of a weak solution to the compressible Stokes
equations by the convergence of a sequence (up to a subsequence,
since, up to now, no uniqueness result is available for this problem)
of approximate solutions given by a numerical scheme as the mesh
size goes to 0



Choice of the discrete unknowns

I Classical FE mesh of Ω with simplices (d = 2 or 3), the mesh
size is called h

I Discretization of u by Non Conformal FE: Crouzeix-Raviart
FE. uh ∈ Hh, non conformal approx. of (H1

0 (Ω))d

I Discretization of p and ρ by piecewise constant functions.
ph, ρh ∈ Xh, approximation of L2(Ω)

σ

K

Unknowns for uh:
uσ, σ ∈ {interfaces}(uσ ∈ Rd)

Unknowns for ph and ρh:
pK , ρK , K ∈ {simplices}



Discretization of momentum equation

uh ∈ Hh∫
Ω
∇huh : ∇hv dx −

∫
Ω

phdivhv dx =

∫
Ω

fv dx , for all v ∈ Hh

For v ∈ Hh and for K ∈ {simplices}, one has in K :

I ∇hv = ∇v

I |K |divhv =
∑

σ∈{interfaces of K} vσ · nK ,σ|σ|

nK ,σ is the normal vector to σ, outward K



Discretization of mass equation

For all K ∈ {simplices}, divK (ρhuh) + MK + SK = 0

I |K |divK (ρhuh) =
∑

σ∈{interfaces of K}

|σ|ρσuσ · nK ,σ with an

upstream choice for ρσ, that is
ρσ = ρK if uσ · nK ,σ ≥ 0
ρσ = ρL if uσ · nK ,σ < 0, σ = K |L

I MK = hα(ρK − M
|Ω|). It gives

∫
Ω ρhdx = M.

I |K |SK =
∑

σ=K |L hξσ
|σ|
hσ

(|ρK |+ |ρL|)ζ (ρK − ρL),
ζ = max(0, 2− γ)

Two parameters: 0 < α, 0 < ξ < 2.



Discretization of mass equation (2)

Upwinding and S replaces div(ρu) = 0 by
div(ρu)− hdiv(D|u|∇ρ)− hξdiv(Dρζ∇ρ) = 0.

Upwinding is enough to ensure (with M) existence of a positive
solution ρh, to the discrete mass equation, for a given uh. It allows
also to pass to the limit in the mass equation if ρh converges
weakly in L2(Ω) and uh converges in L2(Ω)d as h→ 0.

The stabilization term S , which leads to a very small diffusion
(taking ξ close to 2) but independent of u, is used for passing to
the limit in the EOS (p = ργ).

Discretization of the EOS: pK = ργK for all K



Existence of an approximate solution, convergence result

Existence of a solution uh, ph and ρh of the scheme can be proven
using the Brouwer Fixed Point Theorem.

For γ > 1, convergence of the approximate solution can be proven
in the following sense, up to a subsequence:

I uh → u in L2(Ω)d , u ∈ H1
0 (Ω)d

I ph → p in Lq(Ω) for any 1 ≤ q < 2 and weakly in L2(Ω)

I ρh → ρ in Lq(Ω) for any 1 ≤ q < 2γ and weakly in L2γ(Ω)

where (u, p, ρ) is a weak solution of the compressible Stokes
equations

For γ = 1, the same result holds, at least with only weak
convergences of ph and ρh



Proof of convergence, main steps

1. Estimate on the H1(Ω)-broken norm of uh

2. L2(Ω) estimate on ph and L2γ(Ω) estimate on ρh

These two steps give (up to a subsequence), as h→ 0,
I uh → u in L2(Ω) and u ∈ H1

0 (Ω)
I ph → p weakly in L2(Ω)
I ρh → ρ weakly in L2(Ω)

3. (u, p, ρ) is a weak solution of −∆u +∇p = f , div(ρu) = 0
ρ ≥ 0,

∫
Ω ρdx = M

4. Main difficulty, if γ > 1: p = ργ and “strong” convergence of
ph and ρh



Preliminary lemma

ρ ∈ L2γ(Ω), γ > 1, ρ ≥ 0 a.e. in Ω, u ∈ (H1
0 (Ω))d , div(ρu) = 0,

then: ∫
Ω
ρdiv(u)dx = 0∫

Ω
ργdiv(u)dx = 0

The first result (and its discrete counterpart) is used for Step 4
(proof of p = ργ)

The discrete counterpart (also true for γ = 1) of the second result
is used for Step 1 (estimate for uh)



Preliminary lemma for the approximate solution

Discretization of mass equation div(ρu) = 0 and
∫

Ω ρ dx = M:
For all K ∈ {simplices}, divK (ρhuh) + MK + SK = 0

One proves: ∫
Ω
ργhdivh uhdx ≤ Chα,

∫
Ω
ρhdivh uhdx ≤ Chα.

C depends on Ω, M and γ.

Chα is due to MK

≤ is due to upwinding and additionnal stabilization term SK .



Estimate on uh

Taking uh as test function in the discrete momentum equation∫
Ω
∇huh : ∇huh dx −

∫
Ω

phdivh(uh) dx =

∫
Ω

f · uh dx .

But ph = ργh a.e., Discrete mass equation and preliminary lemma
gives

∫
Ω phdiv(uh) dx ≤ Chα.

This gives an estimate on uh:

(

∫
Ω
∇huh · ∇huhdx)

1
2 = ‖uh‖1,b ≤ C1.



Estimate on ph (inf-sup condition)

Let q ∈ L2(Ω) s.t.
∫

Ω qdx = 0.

Then, there exists v ∈ (H1
0 (Ω))d s.t.

div(v) = q a.e. in Ω,

‖v‖(H1
0 (Ω))d ≤ C2‖q‖L2(Ω),

where C2 only depends on Ω.



Estimate on ph

mh = 1
|Ω|

∫
Ω phdx , there exists vh ∈ Hh, divh(vh) = ph −mh.

Taking vh as test function in the discrete momentum equation:∫
Ω
∇huh : ∇hvh dx −

∫
Ω

phdivh(vh) dx =

∫
Ω

f · vh dx .

Using
∫

Ω divh(vh)dx = 0:∫
Ω

(ph −mh)2dx =

∫
Ω

(f · vh −∇uh : ∇vh)dx .

Since ‖vh‖1,b ≤ C2‖ph −mh‖L2(Ω) and ‖uh‖1,b ≤ C1, the preceding
inequality leads to:

‖ph −mh‖L2(Ω) ≤ C3.

where C3 only depends on f and on Ω.



Estimates on ph and ρh

‖ph −mh‖L2(Ω) ≤ C3.

∫
Ω

p
1
γ

h dx =

∫
Ω
ρhdx = M

Then:
‖ph‖L2(Ω) ≤ C4;

where C4 only depends on f , M, γ and Ω.

ph = ργh a.e. in Ω, then:

‖ρh‖L2γ(Ω) ≤ C5 = C
1
γ

4 .



Convergence of uh, ph, ρh (weak for ph and ρh)

Thanks to the estimates on uh, ph, ρh, it is possible to assume (up
to a subsequence) that, as h→ 0:

uh → u in L2(Ω)d and u ∈ H1
0 (Ω)d ,

ph → p weakly in L2(Ω),

ρh → ρ weakly in L2γ(Ω).



Passage to the limit on the equations, except EOS

momentum equation :

−∆u +∇p = f in Ω, u = 0 on ∂Ω,

mass equation (uh converges in L2 and ρh weakly in L2):

div(ρu) = 0 in Ω,

L1-weak convergence of ρh gives positivity of ρ and convergence of
total mass:

ρ ≥ 0 in Ω,

∫
Ω
ρ(x)dx = M.

Question (if γ > 1):
p = ργ in Ω ?

Idea : prove
∫

Ω phρhdx →
∫

Ω pρdx and deduce a.e. convergence
(of ph and ρh) and p = ργ .



∇ : ∇ = divdiv + curl · curl
For all ū, v̄ in H1

0 (Ω)d ,∫
Ω
∇ū : ∇v̄ =

∫
Ω

div(ū)div(v̄) +

∫
Ω

curl(ū) · curl(v̄).

Assuming, for simplicity that uh ∈ H1
0 (Ω) and

−∆uh +∇ph = fh ∈ L2(Ω), fh → f in L2 as h→ 0. The weak
form of −∆uh +∇ph = fh gives for all v̄ in H1

0 (Ω)d∫
Ω

div(uh)div(v̄) +

∫
Ω

curl(uh) · curl(v̄)−
∫

Ω
phdiv(v̄) =

∫
Ω

fh · v̄ .

Choice of v̄ ? v̄ = v̄h with curl(v̄h) = 0, div(v̄h) = ρh and v̄h

bounded in H1
0 (unfortunately, 0 is impossible).

Then, up to a subsequence,

v̄h → v in L2(Ω) and weakly in H1
0 (Ω),

curl(v) = 0, div(v) = ρ.



Proof using v̄h (1)

∫
Ω

div(uh)div(v̄h)+

∫
Ω

curl(uh)·curl(v̄h)−
∫

Ω
phdiv(v̄h) =

∫
Ω

fh ·v̄h.

But, div(v̄h) = ρh and curl(v̄h) = 0. Then:∫
Ω

(div(uh)− ph)ρh =

∫
Ω

fh · v̄h.

Convergence of fh in L2(Ω)d to f and convergence of v̄h in L2(Ω)d

to v :

lim
h→0

∫
Ω

(div(uh)− ph)ρh =

∫
Ω

f · v .



Proof using v̄h (2)
But, since −∆u +∇p = f :∫

Ω
div(u)div(v) +

∫
Ω

curl(u) · curl(v)−
∫

Ω
pdiv(v) =

∫
Ω

f · v .

which gives (using div(v) = ρ and curl(v) = 0):∫
Ω

(div(u)− p)ρ =

∫
Ω

f · v .

Then:

lim
h→0

∫
Ω

(ph − div(uh))ρhdx =

∫
Ω

(p − div(u))ρdx .

Finally, the preliminary lemma gives
∫

Ω ρhdiv(uh) ≤ Chα and∫
Ω ρdiv(u) = 0 (since divK (ρhuh)−MK − SK = 0 for all K and

div(ρu) = 0) at least for a subsequence

lim
h→0

∫
Ω

phρhdx ≤
∫

Ω
pρdx .

Unfortunately, it is impossible to have v̄h ∈ H1
0 .



Curl-free test function

Let B be a ball containing Ω and wh ∈ H1
0 (B), −∆wh = ρh,

vh = ∇wh

I vh ∈ (H1(Ω))d ,

I div(vh) = ρh a.e. in Ω,

I curl(vh) = 0 a.e. in Ω,

I ‖vh‖(H1(Ω))d ≤ C6‖ρh‖L2(Ω), where C6 only depends on Ω.

Then, up to a subsequence,

vh → v in L2(Ω) and weakly in H1(Ω),

curl(v) = 0, div(v) = ρ.

(Remark : ‖vh‖(H2(Ω))d ≤ C6‖ρh‖H1(Ω))



Proving
∫

Ω(ph − div(uh))ρhϕdx →
∫

Ω(p − div(u))ρϕdx

Let ϕ ∈ C∞c (Ω) (so that vhϕ ∈ H1
0 (Ω)d)). Taking v̄ = vhϕ:∫

Ω div(uh)div(vhϕ)dx +
∫

Ω curl(uh) · curl(vhϕ)dx −
∫

Ω phdiv(vhϕ) dx
=

∫
Ω fh · (vhϕ) dx .

Using a proof smilar to that given if ϕ = 1 (with additionnal terms
involving ϕ), we obtain :

lim
h→0

∫
Ω

(ph − div(uh))ρhϕdx =

∫
Ω

(p − div(u))ρϕdx ,



Proving
∫

Ω(ph − div(uh))ρhϕdx →
∫

Ω(p − div(u))ρϕdx

Let ϕ ∈ C∞c (Ω) (so that vhϕ ∈ H1
0 (Ω)d)). Taking v̄ = vhϕ:∫

Ω div(uh)div(vhϕ)dx +
∫

Ω curl(uh) · curl(vhϕ)dx −
∫

Ω phdiv(vhϕ) dx
=

∫
Ω fh · (vhϕ) dx .

But, div(vhϕ) = ρhϕ+ vh · ∇ϕ and curl(vhϕ) = L(ϕ)vh, where
L(ϕ) is a matrix involving the first order derivatives of ϕ. Then:∫

Ω(div(uh)− ph)ρhϕdx =
∫

Ω fh · (vhϕ)dx
−

∫
Ω div(uh)vh · ∇ϕdx −

∫
curl(uh) · L(ϕ)vh +

∫
Ω phvh · ∇ϕdx .

Weak convergence of uh in H1
0 (Ω)d , weak convergence of ph in

L2(Ω) and convergence of vh and fh in L2(Ω)d :

limh→0

∫
Ω(div(uh)− ph)ρhϕdx =

∫
Ω f · (vϕ)dx

−
∫

Ω div(u)v · ∇ϕdx −
∫

curl(u) · L(ϕ)v +
∫

Ω pv · ∇ϕdx .



Proving
∫

Ω(ph − div(uh))ρhϕdx →
∫

Ω(p − div(u))ρϕdx

But, since −∆u +∇p = f :∫
Ω div(u)div(vϕ)dx +

∫
Ω curl(u) · curl(vϕ)dx −

∫
Ω pdiv(vϕ) dx

=
∫

Ω f · (vϕ) dx .

which gives (using div(v) = ρ and curl(v) = 0):∫
Ω(div(u)− p)ρϕdx =

∫
Ω f · (vϕ)dx

−
∫

Ω div(u)v · ∇ϕdx −
∫

curl(u) · L(ϕ)v +
∫

Ω pv · ∇ϕdx .

Then:

lim
h→0

∫
Ω

(ph − div(uh))ρhϕdx =

∫
Ω

(p − div(u))ρϕdx .



Proving
∫

Ω(ph − div(uh))ρhdx →
∫

Ω(p − div(u))ρdx

Lemma : Fn → F in D ′(Ω), (Fn)n∈N bounded in Lq for some
q > 1. Then Fn → F weakly in L1.

With Fn = (ph − div(uh))ρh, F = (p − div(u))ρ and since γ > 1,
the lemma gives∫

Ω
(ph − div(uh))ρhdx →

∫
Ω

(p − div(u))ρdx .



Proving
∫

Ω phρhdx →
∫

Ω pρdx

∫
Ω

(ph − div(uh))ρhdx →
∫

Ω
(p − div(u))ρdx .

But since divK (ρhuh) + MK + SK = 0, div(ρu) = 0, the
preliminary lemma gives:∫

Ω
div(uh)ρhdx ≤ Chα,

∫
Ω

div(u)ρdx = 0;

Then:

lim
h→0

∫
Ω

phρhdx ≤
∫

Ω
pρdx .



a.e. convergence of ρh and ph

Let Gh = (ργh − ρ
γ)(ρh − ρ) ∈ L1(Ω) and Gh ≥ 0 a.e. in Ω.

Futhermore Gh = (ph − ργ)(ρh − ρ) = phρh − phρ− ργρh + ργρ
and:∫

Ω
Ghdx =

∫
Ω

phρhdx −
∫

Ω
phρdx −

∫
Ω
ργρhdx +

∫
Ω
ργρdx .

Using the weak convergence in L2(Ω) of ph and ρh and
limh→0

∫
Ω phρhdx ≤

∫
Ω pρdx :

lim
h→0

∫
Ω

Ghdx ≤ 0,

Then (up to a subsequence), Gh → 0 a.e. and then ρh → ρ a.e.
(since y 7→ yγ is an increasing function on R+). Finally:

ρh → ρ in Lq(Ω) for all 1 ≤ q < 2γ,

ph = ργh → ργ in Lq(Ω) for all 1 ≤ q < 2,

and p = ργ .



Additional difficulty for stat. comp. NS equations

Ω is a bounded open set of Rd , d = 2 or 3, with a Lipschitz
continuous boundary, γ > 1, f ∈ L2(Ω)d and M > 0

−∆u + div(ρu ⊗ u) +∇p = f in Ω, u = 0 on ∂Ω,

div(ρu) = 0 in Ω, ρ ≥ 0 in Ω,

∫
Ω
ρ(x)dx = M,

p = ργ in Ω

d = 2 : no aditional difficulty

d = 3 : no additional difficulty if γ ≥ 3. But for γ < 3, no
estimate on p in L2(Ω).



Estimates in the case of NS equations, 3
2 < γ < 3

Estimate on u : Taking u as test function in the momentum leads
to an estimate on u in (H1

0 (Ω)d since∫
Ω
ρu ⊗ u : ∇udx = 0.

Then, we have also an estimate on u in L6(Ω)d (using Sobolev
embedding).

Estimate on p in Lq(Ω), with some 1 < q < 2 and q = 1 when
γ = 3

2 (using Nečas Lemma in some Lr instead of L2).

Estimate on ρ in Lq(Ω), with some 3
2 < q < 6 and q = 3

2 when
γ = 3

2 (since p = ργ).

Remark : ρu ⊗ u ∈ L1(Ω), since u ∈ L6(Ω)d and ρ ∈ L
3
2 (Ω) (and

1
6 + 1

6 + 2
3 = 1).



NS equations, γ < 3, how to pass to the limit in the EOS

We prove

lim
h→0

∫
Ω

phρ
θ
hdx =

∫
Ω

pρθdx ,

with some convenient choice of θ > 0 instead of θ = 1.

This gives, as for θ = 1, the a.e. convergence (up to a
subsequence) of ph and ρh.


