Convergence of approximate solutions for Stationary compressible Stokes and Navier-Stokes equations

R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché

London, june 2009

Fisrt step for proving the convergence of approximate solutions for the evolution compressible Navier-Stokes equations (which gives, in particular, the existence of solutions, $\left.d=3, p=\rho^{\gamma}, \gamma>\frac{3}{2}\right)$.

Stationary compressible Stokes equations

Ω is a bounded open set of $\mathbb{R}^{d}, d=2$ or 3 , with a Lipschitz continuous boundary, $\gamma \geq 1, f \in L^{2}(\Omega)^{d}$ and $M>0$

$$
\begin{gathered}
-\Delta u+\nabla p=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \\
\operatorname{div}(\rho u)=0 \text { in } \Omega, \rho \geq 0 \text { in } \Omega, \int_{\Omega} \rho(x) d x=M \\
p=\rho^{\gamma} \text { in } \Omega
\end{gathered}
$$

Functional spaces : $u \in H_{0}^{1}(\Omega), p \in L^{2}(\Omega), \rho \in L^{2 \gamma}(\Omega)$
(different spaces for p and ρ in the case of Navier-Stokes if $d=3$ and $\gamma<3$)

Aim

Prove the existence of a weak solution to the compressible Stokes equations by the convergence of a sequence (up to a subsequence, since, up to now, no uniqueness result is available for this problem) of approximate solutions given by a numerical scheme as the mesh size goes to 0

Choice of the discrete unknowns

- Classical FE mesh of Ω with simplices ($d=2$ or 3), the mesh size is called h
- Discretization of u by Non Conformal FE: Crouzeix-Raviart FE. $u_{h} \in H_{h}$, non conformal approx. of $\left(H_{0}^{1}(\Omega)\right)^{d}$
- Discretization of p and ρ by piecewise constant functions. $p_{h}, \rho_{h} \in X_{h}$, approximation of $L^{2}(\Omega)$

Unknowns for u_{h} :
$u_{\sigma}, \sigma \in\{$ interfaces $\}\left(u_{\sigma} \in \mathbb{R}^{d}\right)$
Unknowns for p_{h} and ρ_{h} :
$p_{K}, \rho_{K}, K \in\{$ simplices $\}$

Discretization of momentum equation

$$
\begin{gathered}
u_{h} \in H_{h} \\
\int_{\Omega} \nabla_{h} u_{h}: \nabla_{h} v d x-\int_{\Omega} p_{h} \operatorname{div}_{h} v d x=\int_{\Omega} f v d x, \text { for all } v \in H_{h}
\end{gathered}
$$

For $v \in H_{h}$ and for $K \in\{$ simplices $\}$, one has in K :

- $\nabla_{h} v=\nabla v$
- $|K|$ div $_{h} v=\sum_{\sigma \in\{\text { interfaces of } K\}} v_{\sigma} \cdot n_{K, \sigma}|\sigma|$
$n_{K, \sigma}$ is the normal vector to σ, outward K

Discretization of mass equation

For all $K \in\{$ simplices $\}, \operatorname{div}_{K}\left(\rho_{h} u_{h}\right)+M_{K}+S_{K}=0$

- $|K| \operatorname{div}_{K}\left(\rho_{h} u_{h}\right)=\sum_{\sigma \in\{\text { interfaces of } K\}}|\sigma| \rho_{\sigma} u_{\sigma} \cdot n_{K, \sigma}$ with an upstream choice for ρ_{σ}, that is
$\rho_{\sigma}=\rho_{K}$ if $u_{\sigma} \cdot n_{K, \sigma} \geq 0$

$$
\rho_{\sigma}=\rho_{L} \text { if } u_{\sigma} \cdot n_{K, \sigma}<0, \sigma=K \mid L
$$

- $M_{K}=h^{\alpha}\left(\rho_{K}-\frac{M}{|\Omega|}\right)$. It gives $\int_{\Omega} \rho_{h} d x=M$.
$\begin{aligned}- & |K| S_{K}=\sum_{\sigma=K \mid L} h_{\sigma}^{\xi} \left\lvert\, \frac{\sigma \mid}{h_{\sigma}}\left(\left|\rho_{K}\right|+\left|\rho_{L}\right|\right)^{\zeta}\left(\rho_{K}-\rho_{L}\right)\right., \\ & \zeta=\max (0,2-\gamma)\end{aligned}$

Two parameters: $0<\alpha, 0<\xi<2$.

Discretization of mass equation (2)

Upwinding and S replaces $\operatorname{div}(\rho u)=0$ by $\operatorname{div}(\rho u)-h \operatorname{div}(D|u| \nabla \rho)-h^{\xi} \operatorname{div}\left(D \rho^{\zeta} \nabla \rho\right)=0$.

Upwinding is enough to ensure (with M) existence of a positive solution ρ_{h}, to the discrete mass equation, for a given u_{h}. It allows also to pass to the limit in the mass equation if ρ_{h} converges weakly in $L^{2}(\Omega)$ and u_{h} converges in $L^{2}(\Omega)^{d}$ as $h \rightarrow 0$.

The stabilization term S, which leads to a very small diffusion (taking ξ close to 2) but independent of u, is used for passing to the limit in the EOS $\left(p=\rho^{\gamma}\right)$.

Discretization of the EOS: $p_{K}=\rho_{K}^{\gamma}$ for all K

Existence of an approximate solution, convergence result

Existence of a solution u_{h}, p_{h} and ρ_{h} of the scheme can be proven using the Brouwer Fixed Point Theorem.

For $\gamma>1$, convergence of the approximate solution can be proven in the following sense, up to a subsequence:

- $u_{h} \rightarrow u$ in $L^{2}(\Omega)^{d}, u \in H_{0}^{1}(\Omega)^{d}$
- $p_{h} \rightarrow p$ in $L^{q}(\Omega)$ for any $1 \leq q<2$ and weakly in $L^{2}(\Omega)$
- $\rho_{h} \rightarrow \rho$ in $L^{q}(\Omega)$ for any $1 \leq q<2 \gamma$ and weakly in $L^{2 \gamma}(\Omega)$
where (u, p, ρ) is a weak solution of the compressible Stokes equations

For $\gamma=1$, the same result holds, at least with only weak convergences of p_{h} and ρ_{h}

Proof of convergence, main steps

1. Estimate on the $H^{1}(\Omega)$-broken norm of u_{h}
2. $L^{2}(\Omega)$ estimate on p_{h} and $L^{2 \gamma}(\Omega)$ estimate on ρ_{h} These two steps give (up to a subsequence), as $h \rightarrow 0$,

- $u_{h} \rightarrow u$ in $L^{2}(\Omega)$ and $u \in H_{0}^{1}(\Omega)$
- $p_{h} \rightarrow p$ weakly in $L^{2}(\Omega)$
- $\rho_{h} \rightarrow \rho$ weakly in $L^{2}(\Omega)$

3. (u, p, ρ) is a weak solution of $-\Delta u+\nabla p=f, \operatorname{div}(\rho u)=0$ $\rho \geq 0, \int_{\Omega} \rho d x=M$
4. Main difficulty, if $\gamma>1: p=\rho^{\gamma}$ and "strong" convergence of p_{h} and ρ_{h}

Preliminary lemma

$\rho \in L^{2 \gamma}(\Omega), \gamma>1, \rho \geq 0$ a.e. in $\Omega, u \in\left(H_{0}^{1}(\Omega)\right)^{d}, \operatorname{div}(\rho u)=0$, then:

$$
\begin{aligned}
& \int_{\Omega} \rho \operatorname{div}(u) d x=0 \\
& \int_{\Omega} \rho^{\gamma} \operatorname{div}(u) d x=0
\end{aligned}
$$

The first result (and its discrete counterpart) is used for Step 4 (proof of $p=\rho^{\gamma}$)

The discrete counterpart (also true for $\gamma=1$) of the second result is used for Step 1 (estimate for u_{h})

Preliminary lemma for the approximate solution

Discretization of mass equation $\operatorname{div}(\rho u)=0$ and $\int_{\Omega} \rho d x=M$:
For all $K \in\{$ simplices $\}, \operatorname{div}_{K}\left(\rho_{h} u_{h}\right)+M_{K}+S_{K}=0$
One proves:

$$
\begin{aligned}
& \int_{\Omega} \rho_{h}^{\gamma} \operatorname{div}_{h} u_{h} d x \leq C h^{\alpha}, \\
& \int_{\Omega} \rho_{h} \operatorname{div}_{h} u_{h} d x \leq C h^{\alpha} .
\end{aligned}
$$

C depends on Ω, M and γ.
Ch^{α} is due to M_{K}
\leq is due to upwinding and additionnal stabilization term S_{K}.

Estimate on u_{h}

Taking u_{h} as test function in the discrete momentum equation

$$
\int_{\Omega} \nabla_{h} u_{h}: \nabla_{h} u_{h} d x-\int_{\Omega} p_{h} \operatorname{div}_{h}\left(u_{h}\right) d x=\int_{\Omega} f \cdot u_{h} d x
$$

But $p_{h}=\rho_{h}^{\gamma}$ a.e., Discrete mass equation and preliminary lemma gives $\int_{\Omega} p_{h} \operatorname{div}\left(u_{h}\right) d x \leq C h^{\alpha}$.
This gives an estimate on u_{h} :

$$
\left(\int_{\Omega} \nabla_{h} u_{h} \cdot \nabla_{h} u_{h} d x\right)^{\frac{1}{2}}=\left\|u_{h}\right\|_{1, b} \leq C_{1} .
$$

Estimate on p_{h} (inf-sup condition)

Let $q \in L^{2}(\Omega)$ s.t. $\int_{\Omega} q d x=0$.
Then, there exists $v \in\left(H_{0}^{1}(\Omega)\right)^{d}$ s.t.

$$
\operatorname{div}(v)=q \text { a.e. in } \Omega
$$

$$
\|v\|_{\left(H_{0}^{1}(\Omega)\right)^{d}} \leq C_{2}\|q\|_{L^{2}(\Omega)}
$$

where C_{2} only depends on Ω.

Estimate on p_{h}

$m_{h}=\frac{1}{|\Omega|} \int_{\Omega} p_{h} d x$, there exists $v_{h} \in H_{h}, \operatorname{div}_{h}\left(v_{h}\right)=p_{h}-m_{h}$.
Taking v_{h} as test function in the discrete momentum equation:

$$
\int_{\Omega} \nabla_{h} u_{h}: \nabla_{h} v_{h} d x-\int_{\Omega} p_{h} \operatorname{div}_{h}\left(v_{h}\right) d x=\int_{\Omega} f \cdot v_{h} d x
$$

Using $\int_{\Omega} \operatorname{div}_{h}\left(v_{h}\right) d x=0$:

$$
\int_{\Omega}\left(p_{h}-m_{h}\right)^{2} d x=\int_{\Omega}\left(f \cdot v_{h}-\nabla u_{h}: \nabla v_{h}\right) d x
$$

Since $\left\|v_{h}\right\|_{1, b} \leq C_{2}\left\|p_{h}-m_{h}\right\|_{L^{2}(\Omega)}$ and $\left\|u_{h}\right\|_{1, b} \leq C_{1}$, the preceding inequality leads to:

$$
\left\|p_{h}-m_{h}\right\|_{L^{2}(\Omega)} \leq C_{3} .
$$

where C_{3} only depends on f and on Ω.

Estimates on p_{h} and ρ_{h}

$$
\begin{gathered}
\left\|p_{h}-m_{h}\right\|_{L^{2}(\Omega)} \leq C_{3} . \\
\int_{\Omega} p_{h}^{\frac{1}{\gamma}} d x=\int_{\Omega} \rho_{h} d x=M
\end{gathered}
$$

Then:

$$
\left\|p_{h}\right\|_{L^{2}(\Omega)} \leq C_{4}
$$

where C_{4} only depends on f, M, γ and Ω.
$p_{h}=\rho_{h}^{\gamma}$ a.e. in Ω, then:

$$
\left\|\rho_{h}\right\|_{L^{2 \gamma}(\Omega)} \leq C_{5}=C_{4}^{\frac{1}{\gamma}}
$$

Convergence of u_{h}, p_{h}, ρ_{h} (weak for p_{h} and ρ_{h})

Thanks to the estimates on u_{h}, p_{h}, ρ_{h}, it is possible to assume (up to a subsequence) that, as $h \rightarrow 0$:

$$
\begin{gathered}
u_{h} \rightarrow u \text { in } L^{2}(\Omega)^{d} \text { and } u \in H_{0}^{1}(\Omega)^{d}, \\
p_{h} \rightarrow p \text { weakly in } L^{2}(\Omega), \\
\rho_{h} \rightarrow \rho \text { weakly in } L^{2 \gamma}(\Omega) .
\end{gathered}
$$

Passage to the limit on the equations, except EOS

momentum equation :

$$
-\Delta u+\nabla p=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega,
$$

mass equation (u_{h} converges in L^{2} and ρ_{h} weakly in L^{2}):

$$
\operatorname{div}(\rho u)=0 \text { in } \Omega
$$

L^{1}-weak convergence of ρ_{h} gives positivity of ρ and convergence of total mass:

$$
\rho \geq 0 \text { in } \Omega, \int_{\Omega} \rho(x) d x=M .
$$

Question (if $\gamma>1$):

$$
p=\rho^{\gamma} \text { in } \Omega \text { ? }
$$

Idea: prove $\int_{\Omega} p_{h} \rho_{h} d x \rightarrow \int_{\Omega} p \rho d x$ and deduce a.e. convergence (of p_{h} and ρ_{h}) and $p=\rho^{\gamma}$.

$\nabla: \nabla=$ divdiv + curl \cdot curl

For all \bar{u}, \bar{v} in $H_{0}^{1}(\Omega)^{d}$,

$$
\int_{\Omega} \nabla \bar{u}: \nabla \bar{v}=\int_{\Omega} \operatorname{div}(\bar{u}) \operatorname{div}(\bar{v})+\int_{\Omega} \operatorname{curl}(\bar{u}) \cdot \operatorname{curl}(\bar{v}) .
$$

Assuming, for simplicity that $u_{h} \in H_{0}^{1}(\Omega)$ and
$-\Delta u_{h}+\nabla p_{h}=f_{h} \in L^{2}(\Omega), f_{h} \rightarrow f$ in L^{2} as $h \rightarrow 0$. The weak form of $-\Delta u_{h}+\nabla p_{h}=f_{h}$ gives for all \bar{v} in $H_{0}^{1}(\Omega)^{d}$
$\int_{\Omega} \operatorname{div}\left(u_{h}\right) \operatorname{div}(\bar{v})+\int_{\Omega} \operatorname{curl}\left(u_{h}\right) \cdot \operatorname{curl}(\bar{v})-\int_{\Omega} p_{h} \operatorname{div}(\bar{v})=\int_{\Omega} f_{h} \cdot \bar{v}$.
Choice of $\bar{v} ? \bar{v}=\bar{v}_{h}$ with $\operatorname{curl}\left(\bar{v}_{h}\right)=0, \operatorname{div}\left(\bar{v}_{h}\right)=\rho_{h}$ and \bar{v}_{h} bounded in H_{0}^{1} (unfortunately, 0 is impossible).
Then, up to a subsequence,
$\bar{v}_{h} \rightarrow v$ in $L^{2}(\Omega)$ and weakly in $H_{0}^{1}(\Omega)$,
$\operatorname{curl}(v)=0, \operatorname{div}(v)=\rho$.

Proof using $\bar{v}_{h}(1)$

$\int_{\Omega} \operatorname{div}\left(u_{h}\right) \operatorname{div}\left(\bar{v}_{h}\right)+\int_{\Omega} \operatorname{curl}\left(u_{h}\right) \cdot \operatorname{curl}\left(\bar{v}_{h}\right)-\int_{\Omega} p_{h} \operatorname{div}\left(\bar{v}_{h}\right)=\int_{\Omega} f_{h} \cdot \bar{v}_{h}$. But, $\operatorname{div}\left(\bar{v}_{h}\right)=\rho_{h}$ and $\operatorname{curl}\left(\bar{v}_{h}\right)=0$. Then:

$$
\int_{\Omega}\left(\operatorname{div}\left(u_{h}\right)-p_{h}\right) \rho_{h}=\int_{\Omega} f_{h} \cdot \bar{v}_{h} .
$$

Convergence of f_{h} in $L^{2}(\Omega)^{d}$ to f and convergence of \bar{v}_{h} in $L^{2}(\Omega)^{d}$ to v :

$$
\lim _{h \rightarrow 0} \int_{\Omega}\left(\operatorname{div}\left(u_{h}\right)-p_{h}\right) \rho_{h}=\int_{\Omega} f \cdot v .
$$

Proof using $\bar{v}_{h}(2)$

But, since $-\Delta u+\nabla p=f$:

$$
\int_{\Omega} \operatorname{div}(u) \operatorname{div}(v)+\int_{\Omega} \operatorname{curl}(u) \cdot \operatorname{curl}(v)-\int_{\Omega} p \operatorname{div}(v)=\int_{\Omega} f \cdot v .
$$

which gives (using $\operatorname{div}(v)=\rho$ and $\operatorname{curl}(v)=0$):

$$
\int_{\Omega}(\operatorname{div}(u)-p) \rho=\int_{\Omega} f \cdot v
$$

Then:

$$
\lim _{h \rightarrow 0} \int_{\Omega}\left(p_{h}-\operatorname{div}\left(u_{h}\right)\right) \rho_{h} d x=\int_{\Omega}(p-\operatorname{div}(u)) \rho d x
$$

Finally, the preliminary lemma gives $\int_{\Omega} \rho_{h} \operatorname{div}\left(u_{h}\right) \leq C h^{\alpha}$ and $\int_{\Omega} \rho \operatorname{div}(u)=0\left(\right.$ since $\operatorname{div}_{K}\left(\rho_{h} u_{h}\right)-M_{K}-S_{K}=0$ for all K and $\operatorname{div}(\rho u)=0)$ at least for a subsequence

$$
\lim _{h \rightarrow 0} \int_{\Omega} p_{h} \rho_{h} d x \leq \int_{\Omega} p \rho d x
$$

Unfortunately, it is impossible to have $\bar{v}_{h} \in H_{0}^{1}$.

Curl-free test function

Let B be a ball containing Ω and $w_{h} \in H_{0}^{1}(B),-\Delta w_{h}=\rho_{h}$,

$$
v_{h}=\nabla w_{h}
$$

- $v_{h} \in\left(H^{1}(\Omega)\right)^{d}$,
- $\operatorname{div}\left(v_{h}\right)=\rho_{h}$ a.e. in Ω,
- $\operatorname{curl}\left(v_{h}\right)=0$ a.e. in Ω,
- $\left\|v_{h}\right\|_{\left(H^{1}(\Omega)\right)^{d}} \leq C_{6}\left\|\rho_{h}\right\|_{L^{2}(\Omega)}$, where C_{6} only depends on Ω.

Then, up to a subsequence,
$v_{h} \rightarrow v$ in $L^{2}(\Omega)$ and weakly in $H^{1}(\Omega)$,
$\operatorname{curl}(v)=0, \operatorname{div}(v)=\rho$.
(Remark: $\left.\left\|v_{h}\right\|_{\left(H^{2}(\Omega)\right)^{d}} \leq C_{6}\left\|\rho_{h}\right\|_{H^{1}(\Omega)}\right)$

Proving $\int_{\Omega}\left(p_{h}-\operatorname{div}\left(u_{h}\right)\right) \rho_{h} \varphi d x \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi d x$

Let $\varphi \in C_{c}^{\infty}(\Omega)$ (so that $\left.v_{h} \varphi \in H_{0}^{1}(\Omega)^{d}\right)$). Taking $\bar{v}=v_{h} \varphi$:

$$
\begin{gathered}
\int_{\Omega} \operatorname{div}\left(u_{h}\right) \operatorname{div}\left(v_{h} \varphi\right) d x+\int_{\Omega} \operatorname{curl}\left(u_{h}\right) \cdot \operatorname{curl}\left(v_{h} \varphi\right) d x-\int_{\Omega} p_{h} \operatorname{div}\left(v_{h} \varphi\right) d x \\
=\int_{\Omega} f_{h} \cdot\left(v_{h} \varphi\right) d x .
\end{gathered}
$$

Using a proof smilar to that given if $\varphi=1$ (with additionnal terms involving φ), we obtain :

$$
\lim _{h \rightarrow 0} \int_{\Omega}\left(p_{h}-\operatorname{div}\left(u_{h}\right)\right) \rho_{h} \varphi d x=\int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi d x
$$

Proving $\int_{\Omega}\left(p_{h}-\operatorname{div}\left(u_{h}\right)\right) \rho_{h} \varphi d x \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi d x$
Let $\varphi \in C_{c}^{\infty}(\Omega)$ (so that $\left.v_{h} \varphi \in H_{0}^{1}(\Omega)^{d}\right)$). Taking $\bar{v}=v_{h} \varphi$:

$$
\begin{gathered}
\int_{\Omega} \operatorname{div}\left(u_{h}\right) \operatorname{div}\left(v_{h} \varphi\right) d x+\int_{\Omega} \operatorname{curl}\left(u_{h}\right) \cdot \operatorname{curl}\left(v_{h} \varphi\right) d x-\int_{\Omega} p_{h} \operatorname{div}\left(v_{h} \varphi\right) d x \\
=\int_{\Omega} f_{h} \cdot\left(v_{h} \varphi\right) d x .
\end{gathered}
$$

But, $\operatorname{div}\left(v_{h} \varphi\right)=\rho_{h} \varphi+v_{h} \cdot \nabla \varphi$ and $\operatorname{curl}\left(v_{h} \varphi\right)=L(\varphi) v_{h}$, where $L(\varphi)$ is a matrix involving the first order derivatives of φ. Then:

$$
\begin{aligned}
& \int_{\Omega}\left(\operatorname{div}\left(u_{h}\right)-p_{h}\right) \rho_{h} \varphi d x=\int_{\Omega} f_{h} \cdot\left(v_{h} \varphi\right) d x \\
& -\int_{\Omega} \operatorname{div}\left(u_{h}\right) v_{h} \cdot \nabla \varphi d x-\int \operatorname{curl}\left(u_{h}\right) \cdot L(\varphi) v_{h}+\int_{\Omega} p_{h} v_{h} \cdot \nabla \varphi d x .
\end{aligned}
$$

Weak convergence of u_{h} in $H_{0}^{1}(\Omega)^{d}$, weak convergence of p_{h} in $L^{2}(\Omega)$ and convergence of v_{h} and f_{h} in $L^{2}(\Omega)^{d}$:

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \int_{\Omega}\left(\operatorname{div}\left(u_{h}\right)-p_{h}\right) \rho_{h} \varphi d x=\int_{\Omega} f \cdot(v \varphi) d x \\
& -\int_{\Omega} \operatorname{div}(u) v \cdot \nabla \varphi d x-\int \operatorname{curl}(u) \cdot L(\varphi) v+\int_{\Omega} p v \cdot \nabla \varphi d x .
\end{aligned}
$$

Proving $\int_{\Omega}\left(p_{h}-\operatorname{div}\left(u_{h}\right)\right) \rho_{h} \varphi d x \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi d x$

But, since $-\Delta u+\nabla p=f$:
$\int_{\Omega} \operatorname{div}(u) \operatorname{div}(v \varphi) d x+\int_{\Omega} \operatorname{curl}(u) \cdot \operatorname{curl}(v \varphi) d x-\int_{\Omega} p \operatorname{div}(v \varphi) d x$ $=\int_{\Omega} f \cdot(v \varphi) d x$.
which gives (using $\operatorname{div}(v)=\rho$ and $\operatorname{curl}(v)=0$):

$$
\begin{aligned}
& \int_{\Omega}(\operatorname{div}(u)-p) \rho \varphi d x=\int_{\Omega} f \cdot(v \varphi) d x \\
& -\int_{\Omega} \operatorname{div}(u) v \cdot \nabla \varphi d x-\int \operatorname{curl}(u) \cdot L(\varphi) v+\int_{\Omega} p v \cdot \nabla \varphi d x .
\end{aligned}
$$

Then:

$$
\lim _{h \rightarrow 0} \int_{\Omega}\left(p_{h}-\operatorname{div}\left(u_{h}\right)\right) \rho_{h} \varphi d x=\int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi d x
$$

Proving $\int_{\Omega}\left(p_{h}-\operatorname{div}\left(u_{h}\right)\right) \rho_{h} d x \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho d x$

Lemma : $F_{n} \rightarrow F$ in $D^{\prime}(\Omega),\left(F_{n}\right)_{n \in \mathbb{N}}$ bounded in L^{q} for some $q>1$. Then $F_{n} \rightarrow F$ weakly in L^{1}.

With $F_{n}=\left(p_{h}-\operatorname{div}\left(u_{h}\right)\right) \rho_{h}, F=(p-\operatorname{div}(u)) \rho$ and since $\gamma>1$, the lemma gives

$$
\int_{\Omega}\left(p_{h}-\operatorname{div}\left(u_{h}\right)\right) \rho_{h} d x \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho d x
$$

Proving $\int_{\Omega} p_{h} \rho_{h} d x \rightarrow \int_{\Omega} p \rho d x$

$$
\int_{\Omega}\left(p_{h}-\operatorname{div}\left(u_{h}\right)\right) \rho_{h} d x \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho d x
$$

But since $\operatorname{div}_{K}\left(\rho_{h} u_{h}\right)+M_{K}+S_{K}=0, \operatorname{div}(\rho u)=0$, the preliminary lemma gives:

$$
\int_{\Omega} \operatorname{div}\left(u_{h}\right) \rho_{h} d x \leq C h^{\alpha}, \int_{\Omega} \operatorname{div}(u) \rho d x=0
$$

Then:

$$
\lim _{h \rightarrow 0} \int_{\Omega} p_{h} \rho_{h} d x \leq \int_{\Omega} p \rho d x
$$

a.e. convergence of ρ_{h} and p_{h}

Let $G_{h}=\left(\rho_{h}^{\gamma}-\rho^{\gamma}\right)\left(\rho_{h}-\rho\right) \in L^{1}(\Omega)$ and $G_{h} \geq 0$ a.e. in Ω.
Futhermore $G_{h}=\left(p_{h}-\rho^{\gamma}\right)\left(\rho_{h}-\rho\right)=p_{h} \rho_{h}-p_{h} \rho-\rho^{\gamma} \rho_{h}+\rho^{\gamma} \rho$ and:

$$
\int_{\Omega} G_{h} d x=\int_{\Omega} p_{h} \rho_{h} d x-\int_{\Omega} p_{h} \rho d x-\int_{\Omega} \rho^{\gamma} \rho_{h} d x+\int_{\Omega} \rho^{\gamma} \rho d x .
$$

Using the weak convergence in $L^{2}(\Omega)$ of p_{h} and ρ_{h} and $\lim _{h \rightarrow 0} \int_{\Omega} p_{h} \rho_{h} d x \leq \int_{\Omega} p \rho d x:$

$$
\lim _{h \rightarrow 0} \int_{\Omega} G_{h} d x \leq 0
$$

Then (up to a subsequence), $G_{h} \rightarrow 0$ a.e. and then $\rho_{h} \rightarrow \rho$ a.e. (since $y \mapsto y^{\gamma}$ is an increasing function on \mathbb{R}_{+}). Finally:
$\rho_{h} \rightarrow \rho$ in $L^{q}(\Omega)$ for all $1 \leq q<2 \gamma$,
$p_{h}=\rho_{h}^{\gamma} \rightarrow \rho^{\gamma}$ in $L^{q}(\Omega)$ for all $1 \leq q<2$,
and $p=\rho^{\gamma}$.

Additional difficulty for stat. comp. NS equations

Ω is a bounded open set of $\mathbb{R}^{d}, d=2$ or 3 , with a Lipschitz continuous boundary, $\gamma>1, f \in L^{2}(\Omega)^{d}$ and $M>0$

$$
\begin{gathered}
-\Delta u+\operatorname{div}(\rho u \otimes u)+\nabla p=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \\
\operatorname{div}(\rho u)=0 \text { in } \Omega, \rho \geq 0 \text { in } \Omega, \int_{\Omega} \rho(x) d x=M \\
p=\rho^{\gamma} \text { in } \Omega
\end{gathered}
$$

$d=2$: no aditional difficulty
$d=3$: no additional difficulty if $\gamma \geq 3$. But for $\gamma<3$, no estimate on p in $L^{2}(\Omega)$.

Estimates in the case of NS equations, $\frac{3}{2}<\gamma<3$

Estimate on u : Taking u as test function in the momentum leads to an estimate on u in $\left(H_{0}^{1}(\Omega)^{d}\right.$ since

$$
\int_{\Omega} \rho u \otimes u: \nabla u d x=0 .
$$

Then, we have also an estimate on u in $L^{6}(\Omega)^{d}$ (using Sobolev embedding).

Estimate on p in $L^{q}(\Omega)$, with some $1<q<2$ and $q=1$ when $\gamma=\frac{3}{2}$ (using Nečas Lemma in some L^{r} instead of L^{2}).
Estimate on ρ in $L^{q}(\Omega)$, with some $\frac{3}{2}<q<6$ and $q=\frac{3}{2}$ when $\gamma=\frac{3}{2}$ (since $p=\rho^{\gamma}$).

Remark : $\rho u \otimes u \in L^{1}(\Omega)$, since $u \in L^{6}(\Omega)^{d}$ and $\rho \in L^{\frac{3}{2}}(\Omega)$ (and $\frac{1}{6}+\frac{1}{6}+\frac{2}{3}=1$).

NS equations, $\gamma<3$, how to pass to the limit in the EOS

We prove

$$
\lim _{h \rightarrow 0} \int_{\Omega} p_{h} \rho_{h}^{\theta} d x=\int_{\Omega} p \rho^{\theta} d x
$$

with some convenient choice of $\theta>0$ instead of $\theta=1$.
This gives, as for $\theta=1$, the a.e. convergence (up to a subsequence) of p_{h} and ρ_{h}.

