Convergence of approximate solutions for Stationary compressible Stokes and Navier-Stokes equations

R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché

London, june 2009

Fisrt step for proving the convergence of approximate solutions for the evolution compressible Navier-Stokes equations (which gives, in particular, the existence of solutions, d = 3, $p = \rho^{\gamma}$, $\gamma > \frac{3}{2}$).

Stationary compressible Stokes equations

 Ω is a bounded open set of \mathbb{R}^d , d = 2 or 3, with a Lipschitz continuous boundary, $\gamma \ge 1$, $f \in L^2(\Omega)^d$ and M > 0

$$-\Delta u + \nabla \rho = f \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega,$$
$$\operatorname{div}(\rho u) = 0 \text{ in } \Omega, \ \rho \ge 0 \text{ in } \Omega, \ \int_{\Omega} \rho(x) dx = M,$$
$$\rho = \rho^{\gamma} \text{ in } \Omega$$

Functional spaces : $u \in H_0^1(\Omega)$, $p \in L^2(\Omega)$, $\rho \in L^{2\gamma}(\Omega)$

(different spaces for p and ρ in the case of Navier-Stokes if d=3 and $\gamma<3$)

Aim

Prove the existence of a weak solution to the compressible Stokes equations by the convergence of a sequence (up to a subsequence, since, up to now, no uniqueness result is available for this problem) of approximate solutions given by a numerical scheme as the mesh size goes to 0

Choice of the discrete unknowns

- Classical FE mesh of Ω with simplices (d = 2 or 3), the mesh size is called h
- ► Discretization of *u* by Non Conformal FE: Crouzeix-Raviart FE. *u_h* ∈ *H_h*, non conformal approx. of (*H*¹₀(Ω))^d
- Discretization of *p* and *ρ* by piecewise constant functions. *p_h*, *ρ_h* ∈ *X_h*, approximation of *L*²(Ω)

Unknowns for u_h : $u_{\sigma}, \sigma \in \{\text{interfaces}\}(u_{\sigma} \in \mathbb{R}^d)$

Unknowns for p_h and ρ_h : p_K , ρ_K , $K \in {\text{simplices}}$

Discretization of momentum equation

$$u_h \in H_h$$

$$\int_{\Omega} \nabla_h u_h : \nabla_h v \, dx - \int_{\Omega} p_h \mathrm{div}_h v \, dx = \int_{\Omega} f v \, dx, \text{ for all } v \in H_h$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○ ○

For $v \in H_h$ and for $K \in \{\text{simplices}\}$, one has in K:

 $n_{K,\sigma}$ is the normal vector to σ , outward K

Discretization of mass equation

For all $K \in {\text{simplices}}$, $\operatorname{div}_{K}(\rho_{h}u_{h}) + M_{K} + S_{K} = 0$

• $|K| \operatorname{div}_{K}(\rho_{h}u_{h}) = \sum_{\sigma \in \{ \operatorname{interfaces of } K \}} |\sigma| \rho_{\sigma} u_{\sigma} \cdot n_{K,\sigma} \text{ with an}$ upstream choice for ρ_{σ} , that is $\rho_{\sigma} = \rho_{K} \text{ if } u_{\sigma} \cdot n_{K,\sigma} \ge 0$ $\rho_{\sigma} = \rho_{L} \text{ if } u_{\sigma} \cdot n_{K,\sigma} < 0, \ \sigma = K | L$ • $M_{K} = h^{\alpha} (\rho_{K} - \frac{M}{|\Omega|}).$ It gives $\int_{\Omega} \rho_{h} dx = M.$ • $|K| S_{K} = \sum_{\sigma = K | L} h_{\sigma}^{\xi} \frac{|\sigma|}{h_{\sigma}} (|\rho_{K}| + |\rho_{L}|)^{\zeta} (\rho_{K} - \rho_{L}),$ $\zeta = \max(0, 2 - \gamma)$

Two parameters: $0 < \alpha$, $0 < \xi < 2$.

Discretization of mass equation (2)

Upwinding and *S* replaces $\operatorname{div}(\rho u) = 0$ by $\operatorname{div}(\rho u) - h \operatorname{div}(D|u|\nabla \rho) - h^{\xi} \operatorname{div}(D\rho^{\zeta}\nabla \rho) = 0.$

Upwinding is enough to ensure (with M) existence of a positive solution ρ_h , to the discrete mass equation, for a given u_h . It allows also to pass to the limit in the mass equation if ρ_h converges weakly in $L^2(\Omega)$ and u_h converges in $L^2(\Omega)^d$ as $h \to 0$.

The stabilization term S, which leads to a very small diffusion (taking ξ close to 2) but independent of u, is used for passing to the limit in the EOS ($p = \rho^{\gamma}$).

Discretization of the EOS: $p_K = \rho_K^{\gamma}$ for all K

Existence of an approximate solution, convergence result

Existence of a solution u_h , p_h and ρ_h of the scheme can be proven using the Brouwer Fixed Point Theorem.

For $\gamma > 1$, convergence of the approximate solution can be proven in the following sense, up to a subsequence:

•
$$u_h
ightarrow u$$
 in $L^2(\Omega)^d$, $u \in H^1_0(\Omega)^d$

•
$$p_h \rightarrow p$$
 in $L^q(\Omega)$ for any $1 \le q < 2$ and weakly in $L^2(\Omega)$

• $\rho_h \rightarrow \rho$ in $L^q(\Omega)$ for any $1 \le q < 2\gamma$ and weakly in $L^{2\gamma}(\Omega)$

where (u, p, ρ) is a weak solution of the compressible Stokes equations

For $\gamma = 1$, the same result holds, at least with only weak convergences of p_h and ρ_h

Proof of convergence, main steps

- 1. Estimate on the $H^1(\Omega)$ -broken norm of u_h
- 2. $L^2(\Omega)$ estimate on p_h and $L^{2\gamma}(\Omega)$ estimate on ρ_h

These two steps give (up to a subsequence), as $h \rightarrow 0$,

- $u_h \to u$ in $L^2(\Omega)$ and $u \in H^1_0(\Omega)$
- $p_h \rightarrow p$ weakly in $L^2(\Omega)$
- $\rho_h \rightarrow \rho$ weakly in $L^2(\Omega)$
- 3. (u, p, ρ) is a weak solution of $-\Delta u + \nabla p = f$, $\operatorname{div}(\rho u) = 0$ $\rho \ge 0$, $\int_{\Omega} \rho dx = M$
- 4. Main difficulty, if $\gamma>$ 1: $p=\rho^{\gamma}$ and "strong" convergence of p_{h} and ρ_{h}

Preliminary lemma

 $ho \in L^{2\gamma}(\Omega)$, $\gamma > 1$, $\rho \ge 0$ a.e. in Ω , $u \in (H_0^1(\Omega))^d$, $\operatorname{div}(\rho u) = 0$, then:

$$\int_{\Omega} \rho \operatorname{div}(u) dx = 0$$
$$\int_{\Omega} \rho^{\gamma} \operatorname{div}(u) dx = 0$$

The first result (and its discrete counterpart) is used for Step 4 (proof of $p = \rho^{\gamma}$)

The discrete counterpart (also true for $\gamma = 1$) of the second result is used for Step 1 (estimate for u_h)

Preliminary lemma for the approximate solution

Discretization of mass equation $\operatorname{div}(\rho u) = 0$ and $\int_{\Omega} \rho \, dx = M$: For all $K \in {\text{simplices}}, \operatorname{div}_{\mathcal{K}}(\rho_h u_h) + M_{\mathcal{K}} + S_{\mathcal{K}} = 0$

One proves:

$$\int_{\Omega} \rho_h^{\gamma} \operatorname{div}_h u_h dx \leq C h^{\alpha},$$
$$\int_{\Omega} \rho_h \operatorname{div}_h u_h dx \leq C h^{\alpha}.$$

C depends on Ω , M and γ .

 Ch^{α} is due to $M_{\mathcal{K}}$ \leq is due to upwinding and additionnal stabilization term $S_{\mathcal{K}}$.

Estimate on u_h

Taking u_h as test function in the discrete momentum equation

$$\int_{\Omega} \nabla_h u_h : \nabla_h u_h \, dx - \int_{\Omega} p_h \operatorname{div}_h(u_h) \, dx = \int_{\Omega} f \cdot u_h \, dx.$$

But $p_h = \rho_h^{\gamma}$ a.e., Discrete mass equation and preliminary lemma gives $\int_{\Omega} p_h \operatorname{div}(u_h) dx \leq Ch^{\alpha}$. This gives an estimate on u_h :

$$(\int_{\Omega} \nabla_h u_h \cdot \nabla_h u_h dx)^{\frac{1}{2}} = \|u_h\|_{1,b} \leq C_1.$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Estimate on p_h (inf-sup condition)

Let $q \in L^2(\Omega)$ s.t. $\int_{\Omega} q dx = 0$. Then, there exists $v \in (H_0^1(\Omega))^d$ s.t.

 $\operatorname{div}(v) = q \text{ a.e. in } \Omega,$

 $\|v\|_{(H_0^1(\Omega))^d} \leq C_2 \|q\|_{L^2(\Omega)},$

where C_2 only depends on Ω .

Estimate on p_h

 $m_h = \frac{1}{|\Omega|} \int_{\Omega} p_h dx$, there exists $v_h \in H_h$, $\operatorname{div}_h(v_h) = p_h - m_h$. Taking v_h as test function in the discrete momentum equation:

$$\int_{\Omega} \nabla_h u_h : \nabla_h v_h \, dx - \int_{\Omega} p_h \operatorname{div}_h(v_h) \, dx = \int_{\Omega} f \cdot v_h \, dx.$$

Using $\int_{\Omega} \operatorname{div}_h(v_h) dx = 0$:

$$\int_{\Omega} (p_h - m_h)^2 dx = \int_{\Omega} (f \cdot v_h - \nabla u_h : \nabla v_h) dx.$$

Since $\|v_h\|_{1,b} \leq C_2 \|p_h - m_h\|_{L^2(\Omega)}$ and $\|u_h\|_{1,b} \leq C_1$, the preceding inequality leads to:

$$\|p_h-m_h\|_{L^2(\Omega)}\leq C_3.$$

where C_3 only depends on f and on Ω .

Estimates on p_h and ρ_h

 $\|p_h-m_h\|_{L^2(\Omega)}\leq C_3.$

$$\int_{\Omega} p_h^{\frac{1}{\gamma}} dx = \int_{\Omega} \rho_h dx = M$$

Then:

 $\|p_h\|_{L^2(\Omega)} \leq C_4;$ where C_4 only depends on f, M, γ and Ω .

 $p_h = \rho_h^{\gamma}$ a.e. in Ω , then:

$$\|\rho_h\|_{L^{2\gamma}(\Omega)} \leq C_5 = C_4^{\frac{1}{\gamma}}.$$

Convergence of u_h , p_h , ρ_h (weak for p_h and ρ_h)

Thanks to the estimates on u_h , p_h , ρ_h , it is possible to assume (up to a subsequence) that, as $h \rightarrow 0$:

 $u_h \to u \text{ in } L^2(\Omega)^d \text{ and } u \in H^1_0(\Omega)^d,$ $p_h \to p \text{ weakly in } L^2(\Omega),$ $\rho_h \to \rho \text{ weakly in } L^{2\gamma}(\Omega).$

Passage to the limit on the equations, except EOS

momentum equation :

$$-\Delta u + \nabla p = f \text{ in } \Omega, \ u = 0 \text{ on } \partial \Omega,$$

mass equation (u_h converges in L^2 and ρ_h weakly in L^2): div(ρu) = 0 in Ω ,

 L^1 -weak convergence of ρ_h gives positivity of ρ and convergence of total mass:

$$\rho \geq 0$$
 in Ω , $\int_{\Omega} \rho(x) dx = M$.

Question (if $\gamma > 1$):

$$p = \rho^{\gamma} \text{ in } \Omega ?$$

Idea : prove $\int_{\Omega} p_h \rho_h dx \to \int_{\Omega} p \rho dx$ and deduce a.e. convergence (of p_h and ρ_h) and $p = \rho^{\gamma}$.

 $\nabla : \nabla = \operatorname{divdiv} + \operatorname{curl} \cdot \operatorname{curl}$ For all \bar{u}, \bar{v} in $H_0^1(\Omega)^d$,

$$\int_{\Omega} \nabla \bar{u} : \nabla \bar{v} = \int_{\Omega} \operatorname{div}(\bar{u}) \operatorname{div}(\bar{v}) + \int_{\Omega} \operatorname{curl}(\bar{u}) \cdot \operatorname{curl}(\bar{v}).$$

Assuming, for simplicity that $u_h \in H_0^1(\Omega)$ and $-\Delta u_h + \nabla p_h = f_h \in L^2(\Omega), f_h \to f \text{ in } L^2 \text{ as } h \to 0.$ The weak form of $-\Delta u_h + \nabla p_h = f_h$ gives for all \bar{v} in $H_0^1(\Omega)^d$

$$\int_{\Omega} \operatorname{div}(u_h) \operatorname{div}(\bar{v}) + \int_{\Omega} \operatorname{curl}(u_h) \cdot \operatorname{curl}(\bar{v}) - \int_{\Omega} p_h \operatorname{div}(\bar{v}) = \int_{\Omega} f_h \cdot \bar{v}.$$

Choice of \bar{v} ? $\bar{v} = \bar{v}_h$ with $\operatorname{curl}(\bar{v}_h) = 0$, $\operatorname{div}(\bar{v}_h) = \rho_h$ and \bar{v}_h bounded in H_0^1 (unfortunately, 0 is impossible).

Then, up to a subsequence,

$$\bar{v}_h \rightarrow v$$
 in $L^2(\Omega)$ and weakly in $H_0^1(\Omega)$,
curl $(v) = 0$, div $(v) = \rho$.

Proof using $\bar{v}_h(1)$

$$\int_{\Omega} \operatorname{div}(u_h) \operatorname{div}(\bar{v}_h) + \int_{\Omega} \operatorname{curl}(u_h) \cdot \operatorname{curl}(\bar{v}_h) - \int_{\Omega} p_h \operatorname{div}(\bar{v}_h) = \int_{\Omega} f_h \cdot \bar{v}_h.$$

But, $\operatorname{div}(\bar{v}_h) = \rho_h$ and $\operatorname{curl}(\bar{v}_h) = 0$. Then:

$$\int_{\Omega} (\operatorname{div}(u_h) - p_h) \rho_h = \int_{\Omega} f_h \cdot \bar{v}_h.$$

Convergence of f_h in $L^2(\Omega)^d$ to f and convergence of \bar{v}_h in $L^2(\Omega)^d$ to v:

$$\lim_{h\to 0}\int_{\Omega}(\operatorname{div}(u_h)-p_h)\rho_h=\int_{\Omega}f\cdot v_h$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof using $\overline{v}_h(2)$ But, since $-\Delta u + \nabla p = f$: $\int_{\Omega} \operatorname{div}(u) \operatorname{div}(v) + \int_{\Omega} \operatorname{curl}(u) \cdot \operatorname{curl}(v) - \int_{\Omega} p \operatorname{div}(v) = \int_{\Omega} f \cdot v.$ which gives (using $\operatorname{div}(v) = \rho$ and $\operatorname{curl}(v) = 0$): $\int_{\Omega} (\operatorname{div}(u) - p)\rho = \int_{\Omega} f \cdot v.$

Then:

$$\lim_{h\to 0}\int_{\Omega}(p_h-\operatorname{div}(u_h))\rho_hdx=\int_{\Omega}(p-\operatorname{div}(u))\rho dx.$$

Finally, the preliminary lemma gives $\int_{\Omega} \rho_h \operatorname{div}(u_h) \leq Ch^{\alpha}$ and $\int_{\Omega} \rho \operatorname{div}(u) = 0$ (since $\operatorname{div}_K(\rho_h u_h) - M_K - S_K = 0$ for all K and $\operatorname{div}(\rho u) = 0$) at least for a subsequence

$$\lim_{h\to 0}\int_{\Omega}p_h\rho_hdx\leq \int_{\Omega}p\rho dx.$$

Unfortunately, it is impossible to have $\bar{v}_h \in H^1_{0}$

Curl-free test function

Let B be a ball containing Ω and $w_h \in H^1_0(B)$, $-\Delta w_h = \rho_h$,

 $v_h = \nabla w_h$

- ► $v_h \in (H^1(\Omega))^d$,
- $\operatorname{div}(v_h) = \rho_h$ a.e. in Ω ,
- $\operatorname{curl}(v_h) = 0$ a.e. in Ω ,
- $\|v_h\|_{(H^1(\Omega))^d} \leq C_6 \|\rho_h\|_{L^2(\Omega)}$, where C_6 only depends on Ω .

Then, up to a subsequence,

 $v_h \rightarrow v$ in $L^2(\Omega)$ and weakly in $H^1(\Omega)$, $\operatorname{curl}(v) = 0$, $\operatorname{div}(v) = \rho$. (Remark : $\|v_h\|_{(H^2(\Omega))^d} \leq C_6 \|\rho_h\|_{H^1(\Omega)}$) Proving $\int_{\Omega} (p_h - \operatorname{div}(u_h)) \rho_h \varphi dx \to \int_{\Omega} (p - \operatorname{div}(u)) \rho \varphi dx$

Let $\varphi \in C_c^{\infty}(\Omega)$ (so that $v_h \varphi \in H_0^1(\Omega)^d$)). Taking $\bar{v} = v_h \varphi$:

 $\int_{\Omega} \operatorname{div}(u_h) \operatorname{div}(v_h \varphi) dx + \int_{\Omega} \operatorname{curl}(u_h) \cdot \operatorname{curl}(v_h \varphi) dx - \int_{\Omega} p_h \operatorname{div}(v_h \varphi) dx \\ = \int_{\Omega} f_h \cdot (v_h \varphi) dx.$

Using a proof smilar to that given if $\varphi = 1$ (with additionnal terms involving φ), we obtain :

$$\lim_{h\to 0}\int_{\Omega}(p_h-\operatorname{div}(u_h))\rho_h\varphi dx=\int_{\Omega}(p-\operatorname{div}(u))\rho\varphi dx,$$

Proving $\int_{\Omega} (p_h - \operatorname{div}(u_h)) \rho_h \varphi dx \to \int_{\Omega} (p - \operatorname{div}(u)) \rho \varphi dx$ Let $\varphi \in C_c^{\infty}(\Omega)$ (so that $v_h \varphi \in H_0^1(\Omega)^d$)). Taking $\bar{v} = v_h \varphi$: $\int_{\Omega} \operatorname{div}(u_h) \operatorname{div}(v_h \varphi) dx + \int_{\Omega} \operatorname{curl}(u_h) \cdot \operatorname{curl}(v_h \varphi) dx - \int_{\Omega} p_h \operatorname{div}(v_h \varphi) dx$ $= \int_{\Omega} f_h \cdot (v_h \varphi) dx.$

But, $\operatorname{div}(v_h\varphi) = \rho_h\varphi + v_h \cdot \nabla\varphi$ and $\operatorname{curl}(v_h\varphi) = L(\varphi)v_h$, where $L(\varphi)$ is a matrix involving the first order derivatives of φ . Then:

$$\int_{\Omega} (\operatorname{div}(u_h) - p_h) \rho_h \varphi dx = \int_{\Omega} f_h \cdot (v_h \varphi) dx - \int_{\Omega} \operatorname{div}(u_h) v_h \cdot \nabla \varphi dx - \int \operatorname{curl}(u_h) \cdot L(\varphi) v_h + \int_{\Omega} p_h v_h \cdot \nabla \varphi dx.$$

Weak convergence of u_h in $H_0^1(\Omega)^d$, weak convergence of p_h in $L^2(\Omega)$ and convergence of v_h and f_h in $L^2(\Omega)^d$:

$$\lim_{h\to 0} \int_{\Omega} (\operatorname{div}(u_h) - p_h) \rho_h \varphi dx = \int_{\Omega} f \cdot (v\varphi) dx \\ - \int_{\Omega} \operatorname{div}(u) v \cdot \nabla \varphi dx - \int \operatorname{curl}(u) \cdot L(\varphi) v + \int_{\Omega} p v \cdot \nabla \varphi dx.$$

Proving $\int_{\Omega} (p_h - \operatorname{div}(u_h)) \rho_h \varphi dx \to \int_{\Omega} (p - \operatorname{div}(u)) \rho \varphi dx$

But, since $-\Delta u + \nabla p = f$:

 $\int_{\Omega} \operatorname{div}(u) \operatorname{div}(v\varphi) dx + \int_{\Omega} \operatorname{curl}(u) \cdot \operatorname{curl}(v\varphi) dx - \int_{\Omega} p \operatorname{div}(v\varphi) dx \\ = \int_{\Omega} f \cdot (v\varphi) dx.$

which gives (using $\operatorname{div}(v) = \rho$ and $\operatorname{curl}(v) = 0$):

$$\int_{\Omega} (\operatorname{div}(u) - p) \rho \varphi dx = \int_{\Omega} f \cdot (v\varphi) dx - \int_{\Omega} \operatorname{div}(u) v \cdot \nabla \varphi dx - \int \operatorname{curl}(u) \cdot L(\varphi) v + \int_{\Omega} p v \cdot \nabla \varphi dx.$$

Then:

$$\lim_{h\to 0}\int_{\Omega}(p_h-\operatorname{div}(u_h))\rho_h\varphi dx=\int_{\Omega}(p-\operatorname{div}(u))\rho\varphi dx.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Proving $\int_{\Omega} (p_h - \operatorname{div}(u_h)) \rho_h dx \rightarrow \int_{\Omega} (p - \operatorname{div}(u)) \rho dx$

Lemma : $F_n \to F$ in $D'(\Omega)$, $(F_n)_{n \in \mathbb{N}}$ bounded in L^q for some q > 1. Then $F_n \to F$ weakly in L^1 .

With $F_n = (p_h - \operatorname{div}(u_h))\rho_h$, $F = (p - \operatorname{div}(u))\rho$ and since $\gamma > 1$, the lemma gives

$$\int_{\Omega} (p_h - \operatorname{div}(u_h)) \rho_h dx \to \int_{\Omega} (p - \operatorname{div}(u)) \rho dx.$$

Proving $\int_{\Omega} p_h \rho_h dx \rightarrow \int_{\Omega} p \rho dx$

$$\int_{\Omega} (p_h - \operatorname{div}(u_h)) \rho_h dx \to \int_{\Omega} (p - \operatorname{div}(u)) \rho dx.$$

But since $\operatorname{div}_{\mathcal{K}}(\rho_h u_h) + M_{\mathcal{K}} + S_{\mathcal{K}} = 0$, $\operatorname{div}(\rho u) = 0$, the preliminary lemma gives:

$$\int_{\Omega} \operatorname{div}(u_h) \rho_h dx \leq C h^{\alpha}, \ \int_{\Omega} \operatorname{div}(u) \rho dx = 0;$$

Then:

$$\lim_{h\to 0}\int_{\Omega}p_h\rho_hdx\leq \int_{\Omega}p\rho dx.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

a.e. convergence of ρ_h and p_h

Let $G_h = (\rho_h^{\gamma} - \rho^{\gamma})(\rho_h - \rho) \in L^1(\Omega)$ and $G_h \ge 0$ a.e. in Ω . Futhermore $G_h = (p_h - \rho^{\gamma})(\rho_h - \rho) = p_h\rho_h - p_h\rho - \rho^{\gamma}\rho_h + \rho^{\gamma}\rho$ and:

$$\int_{\Omega} G_h dx = \int_{\Omega} p_h \rho_h dx - \int_{\Omega} p_h \rho dx - \int_{\Omega} \rho^{\gamma} \rho_h dx + \int_{\Omega} \rho^{\gamma} \rho dx.$$

Using the weak convergence in $L^2(\Omega)$ of p_h and ρ_h and $\lim_{h\to 0} \int_{\Omega} p_h \rho_h dx \leq \int_{\Omega} p_\rho dx$:

$$\lim_{h\to 0}\int_{\Omega}G_hdx\leq 0,$$

Then (up to a subsequence), $G_h \to 0$ a.e. and then $\rho_h \to \rho$ a.e. (since $y \mapsto y^{\gamma}$ is an increasing function on \mathbb{R}_+). Finally: $\rho_h \to \rho$ in $L^q(\Omega)$ for all $1 \le q < 2\gamma$, $p_h = \rho_h^{\gamma} \to \rho^{\gamma}$ in $L^q(\Omega)$ for all $1 \le q < 2$, and $p = \rho^{\gamma}$. Additional difficulty for stat. comp. NS equations

 Ω is a bounded open set of \mathbb{R}^d , d = 2 or 3, with a Lipschitz continuous boundary, $\gamma > 1$, $f \in L^2(\Omega)^d$ and M > 0

$$\begin{aligned} -\Delta u + \operatorname{div}(\rho u \otimes u) + \nabla p &= f \text{ in } \Omega, \ u = 0 \text{ on } \partial \Omega \\ \operatorname{div}(\rho u) &= 0 \text{ in } \Omega, \ \rho \geq 0 \text{ in } \Omega, \ \int_{\Omega} \rho(x) dx = M, \\ p &= \rho^{\gamma} \text{ in } \Omega \end{aligned}$$

d = 2: no aditional difficulty d = 3: no additional difficulty if $\gamma \ge 3$. But for $\gamma < 3$, no estimate on p in $L^2(\Omega)$. Estimates in the case of NS equations, $\frac{3}{2} < \gamma < 3$

Estimate on u: Taking u as test function in the momentum leads to an estimate on u in $(H_0^1(\Omega)^d$ since

$$\int_{\Omega} \rho u \otimes u : \nabla u dx = 0.$$

Then, we have also an estimate on u in $L^6(\Omega)^d$ (using Sobolev embedding).

Estimate on p in $L^q(\Omega)$, with some 1 < q < 2 and q = 1 when $\gamma = \frac{3}{2}$ (using Nečas Lemma in some L^r instead of L^2).

Estimate on ρ in $L^q(\Omega)$, with some $\frac{3}{2} < q < 6$ and $q = \frac{3}{2}$ when $\gamma = \frac{3}{2}$ (since $p = \rho^{\gamma}$).

Remark : $\rho u \otimes u \in L^1(\Omega)$, since $u \in L^6(\Omega)^d$ and $\rho \in L^{\frac{3}{2}}(\Omega)$ (and $\frac{1}{6} + \frac{1}{6} + \frac{2}{3} = 1$).

NS equations, γ < 3, how to pass to the limit in the EOS

We prove

$$\lim_{h\to 0}\int_{\Omega}p_{h}\rho_{h}^{\theta}dx=\int_{\Omega}p\rho^{\theta}dx,$$

with some convenient choice of $\theta > 0$ instead of $\theta = 1$.

This gives, as for $\theta = 1$, the a.e. convergence (up to a subsequence) of p_h and ρ_h .