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Stationary Compressible Stokes Equations

Ω is a connected bounded open set of RN , N = 2 or 3, with a
Lipschitz continuous boundary,

div(ϕ(ρ)u) = 0 in Ω, ρ ≥ 0 in Ω,

∫
Ω
ρ(x)dx = M,

−∆u +∇p = f (·, ρ) in Ω, u = 0 on ∂Ω,

p = η(ρ) in Ω

M > 0,
f is at most linear, |f (x , ρ)| ≤ B(h(x) + |ρ|), h ∈ L2(Ω)
ϕ is Lipschitz continuous, increasing, ϕ(0) = 0
η is continuous superlinear, lim infs→+∞ η(s)/s = +∞, increasing
(η(0) = 0)

Functional spaces : u ∈ H1
0 (Ω)N p, ρ ∈ L2(Ω)



Main example

ϕ(ρ) = ρ
f (x , ρ) = f̄ (x) + g(x)ρ, f̄ ∈ L2(Ω), g ∈ L∞(Ω)
η(ρ) = ργ , γ > 1.

div(ρu) = 0 in Ω, ρ ≥ 0 in Ω,

∫
Ω
ρ(x)dx = M,

−∆u +∇p = f̄ + gρ in Ω, u = 0 on ∂Ω,

p = ργ in Ω (Equation Of State)

M > 0

The main difficulty is the nonlinearity of the EOS (for passing to
the limit with weak convergences)



Existence of a solution

Existence of a (weak) solution can be proved passing to the limit
on two different approximate solution

1. Approximate solution obtained using a convenient numerical
scheme

2. Approximate solution obtained using a viscous regularization
of the mass equation

The second way is essentially in previous works of P. L. Lions, E.
Feirsel, A. Novotny. . .

No uniqueness result.



Existence of a solution

Existence of a (weak) solution can be proved passing to the limit
on two different approximate solution

1. Approximate solution obtained using a convenient numerical
scheme

2. Approximate solution obtained using a viscous regularization
of the mass equation. Convergence of the approximate
solution proven with a simple proof which can be adapted in
order to do the first method (in particular with schemes used
in an industrial framework)



Steps of the proof

1. Definition of the approximate problem and existence of an
approximate solution

2. Estimates on the approximate solution

3. passing to the limit



The approximate problem

Tn(s) = min{max{s,−n}, n}
Then, the regularized problem reads, for n, l ,m ∈ N∗,

u ∈ H1
0 (Ω)N , ρ ∈ H1(Ω), p ∈ L2(Ω),∫

Ω
∇u : ∇v dx −

∫
Ω
p div(v) dx =

∫
Ω
fl(x , ρ) · v dx , ∀v ∈ H1

0 (Ω)N∫
Ω
ϕ(ρ)u · ∇ψ dx − 1

n

∫
Ω
∇ρ(x) · ∇ψ(x) dx = 0, ∀ψ ∈ H1(Ω)

ρ > 0 a.e. in Ω,

∫
Ω
ρ dx = M, p = ηm(ρ) a.e. in Ω

where fl(x , s) = Tl(f (x , s)) and ηm(s) = Tm(η(s))



Existence of an approximate solution

Schauder fixed point for the application T from L2(Ω) to L2(Ω),
T (ρ) = ρ.

u ∈ H1
0 (Ω)N , ρ ∈ H1(Ω), p ∈ L2(Ω),∫

Ω
∇u : ∇v dx −

∫
Ω
p div(v) dx =

∫
Ω
fl(x , ρ) · v dx , ∀v ∈ H1

0 (Ω)N∫
Ω
ϕ(ρ)u · ∇ψ dx − 1

n

∫
Ω
∇ρ · ∇ψ dx = 0, ∀ψ ∈ H1(Ω)

ρ > 0 a.e. in Ω,

∫
Ω
ρ dx = M, p = ηm(ρ+) a.e. in Ω

where fl(x , s) = Tl(f (x , s)) and ηm(s) = Tm(η(s))



Intermediate problem
u ∈ Lp(Ω)N , p > N (true if u ∈ H1

0 (Ω)N). M > 0. ϕ Lipschitz
continuous and ϕ(0) = 0.

There exist a unique ρ solution of

ρ ∈ H1(Ω),∫
Ω
∇ρ · ∇v dx −

∫
Ω
ϕ(ρ)u · ∇v dx = 0, ∀v ∈ H1(Ω)

with
∫

Ω ρ(x)dx = M

Furthermore:

1. ρ > 0 a.e. on Ω

2. For any A > 0, there exists C such that

‖ |u| ‖Lp(Ω) ≤ A⇒ ‖ρ‖H1(Ω) ≤ C (A, p,M, ϕ,Ω)

Proof using the Leray-Schauder topological degree



Intermediate problem, main point

u ∈ Lp(Ω)N , p > N. M > 0. ϕ Lipschitz continuous and ϕ(0) = 0.

ρ ∈ H1(Ω),∫
Ω
∇ρ · ∇v dx −

∫
Ω
ϕ(ρ)u · ∇v dx = 0, ∀v ∈ H1(Ω)

with
∫

Ω ρ(x)dx = M

Proof of a priori positivity of ρ taking v = Tε(ρ
+) and ε→ 0

and uniqueness taking v = Tε((ρ1 − ρ2)+), as in an old paper of
Boccardo-G-Murat



Intermediate problem, Leray-Schauder topological degree

u ∈ Lp(Ω)N , p > N. M > 0. ϕ Lipschitz continuous and ϕ(0) = 0.

F from [0, 1]× L2(Ω) to L2(Ω)
F (t, ρ) = ρ

ρ ∈ H1(Ω),∫
Ω
∇ρ · ∇v dx −

∫
Ω
tϕ(ρ)u · ∇v dx = 0, ∀v ∈ H1(Ω)

with
∫

Ω ρ dx = tM

L2(Ω)-estimate on ρ if F (t, ρ) = ρ



Passing to the limit

n, l ,m ∈ N∗,

u ∈ H1
0 (Ω)N , ρ ∈ H1(Ω), p ∈ L2(Ω),∫

Ω
∇u : ∇v dx −

∫
Ω
p div(v) dx =

∫
Ω
fl(x , ρ) · v dx , ∀v ∈ H1

0 (Ω)N∫
Ω
ϕ(ρ)u · ∇ψ dx − 1

n

∫
Ω
∇ρ(x) · ∇ψ(x) dx = 0, ∀ψ ∈ H1(Ω)

ρ > 0 a.e. in Ω,

∫
Ω
ρ dx = M, p = ηm(ρ) a.e. in Ω

m→ +∞
l → +∞
n→ +∞



m→ +∞

n, l are fixed

u ∈ H1
0 (Ω)N , ρ ∈ H1(Ω), p ∈ L2(Ω),∫

Ω
∇u : ∇v dx −

∫
Ω
p div(v) dx =

∫
Ω
fl(x , ρ) · v dx , ∀v ∈ H1

0 (Ω)N∫
Ω
ϕ(ρ)u · ∇ψ dx − 1

n

∫
Ω
∇ρ(x) · ∇ψ(x) dx = 0, ∀ψ ∈ H1(Ω)

ρ > 0 a.e. in Ω,

∫
Ω
ρ dx = M, p = ηm(ρ) a.e. in Ω

H1
0 (Ω)-estimate on u thanks to

∫
Ω ηm(ρ)div(u)dx ≤ 0

H1(Ω)-estimate on ρ
L2(Ω)-estimate on p taking div(v) = p −m with v ∈ H1

0 (Ω)N

and using
∫

Ω ρ dx = M.



l → +∞

n is fixed

u ∈ H1
0 (Ω)N , ρ ∈ H1(Ω), p ∈ L2(Ω),∫

Ω
∇u : ∇v dx −

∫
Ω
p div(v) dx =

∫
Ω
fl(x , ρ) · v dx , ∀v ∈ H1

0 (Ω)N∫
Ω
ϕ(ρ)u · ∇ψ dx − 1

n

∫
Ω
∇ρ(x) · ∇ψ(x) dx = 0, ∀ψ ∈ H1(Ω)

ρ > 0 a.e. in Ω,

∫
Ω
ρ dx = M, p = η(ρ) a.e. in Ω

H1
0 (Ω)-estimate on u and L2(Ω)-estimate on p thanks to∫

Ω η(ρ)div(u)dx ≤ 0 and taking div(v) = p −m with v ∈ H1
0 (Ω)N

and using
∫

Ω ρ dx = M and the superlinearity of η

H1(Ω)-estimate on ρ



n→ +∞

un ∈ H1
0 (Ω)N , ρn ∈ H1(Ω), pn ∈ L2(Ω),∫

Ω
∇un : ∇v dx −

∫
Ω
pn div(v) dx =

∫
Ω
f (x , ρn) · v dx , ∀v ∈ H1

0 (Ω)N∫
Ω
ϕ(ρn)un · ∇ψ dx − 1

n

∫
Ω
∇ρn(x) · ∇ψ(x) dx = 0, ∀ψ ∈ H1(Ω)

ρn > 0 a.e. in Ω,

∫
Ω
ρn dx = M, pn = η(ρn) a.e. in Ω

H1
0 (Ω)-estimate on un and L2(Ω)-estimate on pn thanks to∫

Ω η(ρn)div(un)dx ≤ 0 and taking div(vn) = pn −mn with
vn ∈ H1

0 (Ω)N and using
∫

Ω ρn dx = M and the superlinearity of η

L2(Ω)-estimate on ρ



n→ +∞

un → u in L2(Ω)N and weakly in H1
0 (Ω)N

ρn → ρ weakly in L2(Ω)

pn → p weakly in L2(Ω)

But, we do not have an H1(Ω) estimate on ρn

hn = f (·, ρn)→ h weakly in L2(Ω)N

qn = ϕ(ρn)→ q weakly in L2(Ω)

We need some additional tricks to prove h = f (·, ρ), q = ϕ(ρ),
p = η(ρ)



Passage to the limit in the momentum equation

v ∈ C∞c (Ω)N ,∫
Ω
∇un : ∇v dx −

∫
Ω
pndiv(v) dx =

∫
Ω
hn · v dx .

n→∞ ∫
Ω
∇u : ∇v dx −

∫
Ω
pdiv(v) dx =

∫
Ω
h · v dx .

h = f (·, ρ)?



Passage to the limit in the mass equation

v ∈ C∞c (RN)∫
Ω
qnun · ∇v dx −

1

n

∫
Ω
∇ρn · ∇v dx = 0,

n→∞ ∫
Ω
qu · ∇v dx = 0

q ≥ 0 a.e.
q = ϕ(ρ)?



Passage to the limit in the nonlinear functions of ρ

h = f (·, ρ)? (easy if f (x , ρ) = f̄ (x) + g(x)ρ)
q = ϕ(ρ)? (easy if ϕ(ρ) = ρ)
p = η(ρ)
Idea: prove

∫
Ω pnqn →

∫
Ω pq and deduce a.e. convergence (of pn

and ρn)



∇ : ∇ = divdiv + curl · curl
For all ū, v̄ in H1

0 (Ω)N ,∫
Ω
∇ū : ∇v̄ =

∫
Ω
div(ū)div(v̄) +

∫
Ω
curl(ū) · curl(v̄)

Then, for all v̄ in H1
0 (Ω)N , the momentum equation is∫

Ω
div(un)div(v̄) +

∫
Ω
curl(un) · curl(v̄)

−
∫

Ω
pndiv(v̄) =

∫
Ω
hn · v̄

Choice of v̄ ? v̄ = v̄n with curl(v̄n) = 0, div(v̄n) = qn and v̄n
bounded in H1

0 (Ω)N (unfortunately, 0 is impossible).

Then, up to a subsequence,

v̄n → v in L2(Ω)N and weakly in H1
0 (Ω)N ,

curl(v) = 0, div(v) = q.



Proof using v̄n (1)

∫
Ω
div(un)div(v̄n) +

∫
Ω
curl(un) · curl(v̄n)−

∫
Ω
pndiv(v̄n)

=

∫
Ω
hn · v̄n

But, div(v̄n) = qn and curl(v̄n) = 0. Then:∫
Ω

(div(un)− pn)qn =

∫
Ω
hn · v̄n

n→∞
lim
n→∞

∫
Ω

(div(un)− pn)qn =

∫
Ω
h · v



Proof using v̄n (2)
But, since −∆u +∇p = h∫

Ω
div(u)div(v) +

∫
Ω
curl(u) · curl(v)−

∫
Ω
pdiv(v)

=

∫
Ω
h · v

which gives (using div(v) = ρ and curl(v) = 0)∫
Ω

(div(u)− p)q =

∫
Ω
h · v Then

lim
n→∞

∫
Ω

(pn − div(un))qn =

∫
Ω

(p − div(u))q

thanks to the mass equations,
∫

Ω qndiv(un) ≤ 0 and∫
Ω qdiv(u) = 0. Then,

lim sup
n→∞

∫
Ω
pnqn ≤

∫
Ω
pq



Error in the preceding proof

In the preceding proof, we used v̄n such that curl(v̄n) = 0,
div(v̄n) = ρn and v̄n bounded in H1

0 (Ω)N .

Unfortunately, it is impossible to have v̄n ∈ H1
0 (Ω)d but only

v̄n ∈ H1(Ω)N .



Curl-free test function
Let wn ∈ H1

0 (Ω), −∆wn = qn,
One has wn ∈ H2

loc(Ω) since, for ψ ∈ C∞c (Ω), one has
∆(wnψ) ∈ L2(Ω) and

d∑
i ,j=1

∫
Ω
∂i∂j(wnψ) ∂i∂j(wnψ) =

d∑
i ,j=1

∫
Ω
∂i∂i (wnψ) ∂j∂j(wnψ)

=

∫
Ω

(∆(wnψ))2 = Cψ <∞

Then, taking vn = ∇wn

I vn ∈ (H1
loc(Ω))N ,

I div(vn) = qn a.e. in Ω,

I curl(vn) = 0 a.e. in Ω,

I H1
loc(Ω)-estimate on vn with respect to ‖qn‖L2(Ω).

Then, up to a subsequence, as n→∞, vn → v in L2
loc(Ω)N and

weakly in H1
loc(Ω)N , curl(v) = 0, div(v) = q.



Proof of
∫

Ω(pn − div(un))qnψ →
∫

Ω(p − div(u))qψ

Let ψ ∈ C∞c (Ω) (so that vnψ ∈ H1
0 (Ω)N)). Taking v̄ = vnψ:∫

Ω
div(un)div(vnψ) +

∫
Ω
curl(un) · curl(vnψ)−

∫
Ω
pndiv(vnψ)

=

∫
Ω
hn · (vnψ).

Using a proof similar to that given if ψ = 1 (with additionnal terms
involving ψ), we obtain :

lim
n→∞

∫
Ω

(pn − div(un))qnψ =

∫
Ω

(p − div(u))qψ



Proof of
∫

Ω(pn − div(un))qn →
∫

Ω(p − div(u))q

Fn = (pn − div(un))qn, F = (p − div(u))q
Fn → F in D ′(Ω)
The sequence Fn is equiintegrable (since pn − div(un) is bounded
in L2 and q2

n is equiintegrable thanks to pn bounded in L2 and η
superlinear)
Then Fn → F weakly in L1(Ω)



Proving
∫

Ω pnqn →
∫

Ω pq

∫
Ω

(pn − div(un))qn →
∫

Ω
(p − div(u))q

But thanks to the mass equations:∫
Ω
div(un)qn ≤ 0,

∫
Ω
div(u)q = 0;

Then:

lim sup
n→∞

∫
Ω
pnρn ≤

∫
Ω
pq



a.e. convergence of ρn and pn,. Leray-Lions trick
Simple case: ϕ(ρ) = ρ and assuming η(ρ) ∈ L2(Ω).
Let Gn = (η(ρn)− η(ρ))(ρn − ρ) ∈ L1(Ω) and Gn ≥ 0 a.e. in Ω.
Futhermore
Gn = (pn − η(ρ))(ρn − ρ) = pnρn − pnρ− η(ρ)ρn + η(ρ)ρ and∫

Ω
Gn =

∫
Ω
pnρn −

∫
Ω
pnρ−

∫
Ω
η(ρ)ρn +

∫
Ω
η(ρ)ρ

Using the weak convergence in L2(Ω) of pn and ρn and
limn→∞

∫
Ω pnρn ≤

∫
Ω pρ

lim
n→∞

∫
Ω
Gn = 0,

Then (up to a subsequence), Gn → 0 a.e. and then ρn → ρ a.e.
(since η is increasing function). Finally

pn = η(ρn)→ η(ρ) in Lq(Ω) for all 1 ≤ q < 2,

pn → p weakly in L2(Ω)

then p = η(ρ), similarly h = f (·, ρ)



a.e. convergence of ρn and pn, general case
The function η is a one-to-one function from R+ onto R+. We
denote by η̄ the reciprocal function of η. (η̄ sublinear)
Since p ∈ L2(Ω), one has η̄(p) ∈ L2(Ω) and we set ρ̄ = η̄(p)

Gn = (ϕ(ρn)− ϕ(ρ̄))(η(ρn)− η(ρ̄))

so that Gn ∈ L1(Ω), Gn ≥ 0 a.e.

0 ≤
∫

Ω
Gn =

∫
Ω

(qn − ϕ(ρ̄))(pn − p)

Then

lim
n→∞

∫
Ω
Gn dx ≤

∫
Ω

(q − ϕ(ρ̄))(p − p) dx = 0.

This gives Gn → 0 in L1(Ω) and then, up to a subsequence,

Gn = (ϕ(ρn)− ϕ(ρ̄))(η(ρn)− η(ρ̄))→ 0 a.e. in Ω

We now use the fact that ϕ and η are increasing, ρn → ρ̄ a.e. in Ω
Then ρ̄ = ρ, q = ϕ(ρ), h = f (·, ρ), p = η(ρ)



η non decreasing instead of increasing

Simple case f (., ρ) = f̄ + gρ, ϕ(ρ) = ρ
One proves p = η(ρ) with the Minty trick (but no a.e.
convergence)
We set η(s) = 0 for s < 0 and η̄ is the reciprocal function of
s 7→ η(s) + s (which is a one-to-one function from R onto R)
Let p̄ ∈ L2(Ω) and ρ̄ = η̄(p̄) so that ρ̄ ∈ L2(Ω)

0 ≤
∫

Ω
(ρn − ρ̄)(η(ρn)− η(ρ̄)) =

∫
Ω

(ρn − ρ̄)(pn − p̄ + ρ̄)

0 ≤
∫

Ω
(ρ− ρ̄)(p − p̄ + ρ̄)

which gives also

0 ≤
∫

Ω
(ρ− ρ̄)(p − p̄ + ρ) =

∫
Ω

(ρ− η̄(p̄))(p − p̄ + ρ)



η non decreasing instead of increasing

For all p̄ ∈ L2(Ω)

0 ≤
∫

Ω
(ρ− η̄(p̄))(p − p̄ + ρ) dx

Let ψ ∈ C∞c (Ω), ε > 0. Taking p̄ = p + ρ+ εψ, letting ε→ 0
leads to, with the Dominated Convergence Theorem,

0 ≤ −
∫

Ω
(ρ− η̄(p + ρ)))ψ dx .

Since ψ is arbitrary in C∞c (Ω), we then conclude that ρ = η̄(p + ρ)
which gives η(ρ) + ρ = p + ρ and then p = η(ρ).



Generalizations

I (Easy) Complete Diffusion term: −µ∆u − µ
3∇(div u), with

µ ∈ R?+ given, instead of −∆u.

I Stationary compressible Navier Stokes equation η(ρ) = ργ ,
γ > 3 if N = 3.

I (Ongoing work) Navier-Stokes Equations with N = 3 and
3
2 < γ ≤ 3. (probably sharp result with respect to γ without
changing the diffusion term or the EOS)

I (Ongoing work) Evolution equation (Stokes and
Navier-Stokes)

I (Open question) Other boundary condition. Addition of an
energy equation



Stationary compressible Navier Stokes equations

Ω is a bounded open set of RN , N = 2 or 3, with a Lipschitz
continuous boundary, γ > 1, f ∈ L2(Ω)N and M > 0

−∆u + (ρu · ∇)u +∇p = f in Ω, u = 0 on ∂Ω,

div(ρu) = 0 in Ω, ρ ≥ 0 in Ω,

∫
Ω
ρ(x)dx = M,

p = ργ in Ω

Functional spaces : u ∈ H1
0 (Ω)N , p ∈ Lq(Ω), ρ ∈ Lγq(Ω).

If d = 2 or if d = 3 and γ ≥ 3 : q = 2.

If d = 3 and 3
2 < γ < 3 : q = 3(γ−1)

γ .

γ = 3
2 , 3γ−1

γ = 1, 3(γ − 1) = 3
2


