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Example (coming from RANS model for turbulent flows)

Oru+div(vu) — Au=f in Q x (0, T),
u=0o0n0Qx(0,T),
u(+,0) = up in Q.

v

Q is a bounded open subset of RY (d = 2 or 3) with a
Lipschitz continuous boundary

veCQx[o, T],R)
ug € LY(Q) (or ug is a Radon measure on Q)
feL}(Qx (0, T)) (or fisa Radon measure on Q x (0, T))

v

v

v

with possible generalization to nonlinear problems.

Non smooth solutions.



Example, motivation

For this example, we have two objectives:

1. Existence of weak solution and (strong) convergence of
“continuous approximate solutions”, that is solutions of the
continuous problem with regular data converging to f and wp.

2. Existence of weak solution and (strong) convergence of the
approximate solutions given by a full discretized problem.

In both case, we want to prove strong compactness of a sequence
of approximate solutions. This is the main subject of this talk.



Continuous approximation

(fa)nen and (uo n)nen are two sequences of regular functions such
that

T T
/ / fopdxdt — / / fodxdt, Yo € C°(Q x (0, T),R),
Q 0 Q

/l ug, nipdx —>/ uppdx, Vo € CZ°(2, R).
Q Q

For n € N, it is well known that there exist u, solution of the
regularized problem

Orup + div(vu,) — Aup = £, in Q x (0, T),
up, =0o0n 02 x (0, T),
up(+,0) = ug p in Q.

One has, at least, u, € L2((0, T), H}(Q)) N C([0, T], L?(2)) and
Oeup € L2((0, T), H1(Q)).



Continuous approximation, steps of the proof of
convergence

1. Estimate on u,, (not easy). One proves that the sequence
(un)nen is bounded in

. d+2
L9((0, T), Wy 9(Q)) for all 1 < g < T

(This gives, up to a subsequence, weak convergence in
L9(2 x (0, T)) of up to some u and then, since the problem is
linear, that u is a weak solution of the problem with f and wup.)

2. Strong compactness of the sequence (tp)neN
3. Regularity of the limit of the sequence (up)nen.

4. Passage to the limit in the approximate equation (easy).



Classical Lions' lemma

X, B, Y are three Banach spaces such that
» X C B with compact embedding,
» B C Y with continuous embedding.
Then, for any € > 0, there exists C. such that, for w € X,

Iwlls <ellwlix + Cllwlly-
Example: X = Wg’l(Q), B = LY(Q),

Y = w, Q) = (Wol’OO(Q))’. As usual, we identify an
L-function with the corresponding linear form on Wol’oo(Q).



Classical Lions' lemma, another formulation

X, B, Y are three Banach spaces such that, X C B C Y,

» If (||wn||x)nen is bounded, then, up to a subsequence, there
exists w € B such that w, — w in B.

» If w, = win B and ||w,|y — 0, then w = 0.
Then, for any € > 0, there exists C. such that, for w € X,

Iwlls <ellwlix + Cllwlly-

The hypothesis B C Y is not necessary.



Classical Lions' lemma, a particular case, simpler

B is a Hilbert space and X is a Banach space X C B. We define
on X the dual norm of || - || x, with the scalar product of B, namely

lully = sup{(u/v)s, v € X, |lv]x <1}

Then, for any € > 0 and w € X,

1
Iwlle < ellwlix + Zllwlly.

The proof is simple since

1 1 1
lulle = (u/u)g < (lullyllullx)? < ellwlix + Zlwlly.

Compactness of X in B is not needed here (but this compactness
is needed for Aubin-Simon’ Lemma, next slide. .. ).



Aubin-Simon' Compactness Lemma

X, B, Y are three Banach spaces such that
» X C B with compact embedding,
» B C Y with continuous embedding.
Let T > 0 and (up)nen be a sequence such that
» (Un)nen is bounded in L1((0, T), X),
> (O¢Un)nen is bounded in L1((0, T), Y).

Then there exists u € L*((0, T), B) such that, up to a
subsequence, u, — u in L1((0, T), B).

Example: X = W, (Q), B=LY(Q), Y = W, Q).



Aubin-Simon' Compactness Lemma, another formulation

X, B, Y are three Banach spaces such that, X C B C Y,

» If (||wn||x)nen is bounded, then, up to a subsequence, there
exists w € B such that w, — w in B.

» If w, = win B and ||wy|ly — 0, then w = 0.
Let T > 0 and (un)nen be a sequence such that

» (Un)nen is bounded in L1((0, T), X),

> (Otun)nen is bounded in LX((0, T), Y).
Then there exists u € L*((0, T), B) such that, up to a
subsequence, u, — u in L1((0, T), B).

Example: X = W(;l’l(Q), B=1LYQ), Y=Ww,""Q).



Continuous approx., compactness of the sequence (u,)nen

up is solution of he continuous problem with data f, and ug .
X =WyhQ), B=LYQ), Y = W, ().
In order to apply Aubin-Simon’ lemma we need

» (Un)nen is bounded in L1((0, T), X),

» (OtUn)nen is bounded in L1((0, T), Y).

The sequence (up)nen is bounded in L9((0, T), Wol’q(Q)) (for
1<qg<(d+2)/(d+1)) and then is bounded in L1((0, T), X),
since W, "9(Q) is continuously embedded in W, ().

Orup = f, — div(vup) — Aup. Is (Orun)nen bounded in
(0, T),Y) 7



Continuous approx., Compactness of the sequence (u,)nen

Bound of (8;up)nen in LX((0, T), Wi 1 (Q)) ?
Orup = fn — div(vu,) — Aup,.
> (f,,),,eN is bounded in L1(0, T), L}(2)) and then in
((o T), W, 21(Q)), since L1(Q) is continously embedded in
(%)}
> (div(viin))nen is bounded in L1((0, T), Wy () since
(Vin)nen is bounded in L2((0, T), (L*(R))9 and div is a
continuous operator from (L1(Q))? to W, 11(Q),
> (Aup)nen is bounded in ng(o, T), Wy H(Q)) since (un)nen
is bounded in L1((0, T), Wo’l(Q)) and A is a continuous
operator from Wol’l(Q) to W, Q).

Finally, (Oun)nen is bounded in L1((0, T), Wy 21(Q)).
Aubin-Simon’ lemma gives (up to a subsequence) u, — u in
LY((0, T), L}(%2))-



Regularity of the limit

Uy — uin LY(Q x (0, T)) and (us)nen bounded in
L9((0, T), W, 9(Q)) for 1 < g < (d +2)/(d + 1). Then

d
u,,—>uinL"(Qx(O,T)))for1<q<dil
. d+2
Vu, — Vu weakly in LI(Q x (0, T))¢ f01r1<q<d_1_1

ue L9((0, T), Wp9(Q)) for 1 < g < (d +2)/(d +1).

Remark: L9((0, T),L9(Q2)) = L9(2 x (0, T))

An additional work is needed to prove the strong convergence of
Vu, to Vu.



Full approximation, FV scheme (or dG scheme)
Space discretization: Admissible mesh M. Time step: k (Nk = T)

TK‘L=mKYL/d

K,L

size(M) = sup{diam(K), K € M}

Unknowns: ugf) eER, KeM,pe{l,...,N}.

Discretization: Implicit in time, upwind for convection, classical
2-points flux for diffusion. (Well known scheme.)



Full approximation, approximate solution

» Hy the space of functions from € to R, constant on each K,

K e M.

» The discrete solution u is constant on K x ((p — 1)k, pk) with
KeMandpe{l,...,N}
u(-,t) = ulP for t € ((p — 1)k, pk) and ulP) € Hyy.

> Discrete derivatives in time, O; xu, defined by:

1
Y%

for pe {2,..., N} (and O ku(-,t) = 0 for t € (0, k)).

O u(-,t) = OF)u = = (ul®) — uPD) for t € ((p — 1)k, pk),



Full approximation, steps of the proof of convergence

Sequence of meshes and time steps, (M)nen and k.
size(Mp) — 0, k, — 0, as n — oo.
For n € N, u, is the solution of the FV scheme.

1. Estimate on up,.

2. Strong compactness of the sequence (up)nen-

3. Regularity of the limit of the sequence (up)pen-

4. Passage to the limit in the approximate equation.



Discrete norms

Admissible mesh: M.
u € Hyq (that is v is a function constant on each K, K € M).

» 1< g < co. Discrete Wol’q—norm:

— UL UK
lolfqe= > medo| e Y Mo do|

0€Eint,0=K]|L 0E€Eext,0EEK

> g = oo. Discrete W, *-norm: [ull{ oo g = Mmax{M;, Me, M}
with

M; = max{|uK — vl

T, o€ 5,'"1-,0' = K’L},

M, = max{ |LCIIK’, 0 € Eext,0 € Ek},

g

M = max{|uk|, K € M}.



Discrete dual norms

Admissible mesh: M.
For r € [1,00], || - [[=1,r.m is the dual norm of the norm || - ||1,q
with g = r/(r —1). That is, for u € Hy,

] 1.0 01 = max{ / v d, v € Hi, V]l qore < 13,
Q

Example: r =1 (g = ).



Full discretization, estimate on the discrete solution

For1 < g < (d+2)/(d+1), the sequence (u,)nen is bounded in
L9((0, T), Wq.n), where W, ,, is the space Hy,, endowed with the
norm || - ||1,q,m,. Thatis

anu“”quMn < C.



Discrete Lions' lemma

B is a Banach space, (Bp)nen is a sequence of finite dimensional
subspaces of B. || - ||x, and || - ||y, are two norms on B, such that:

» If (||wn|lx,)nen is bounded, then, up to a subsequence, there
exists w € B such that w, — w in B.

» If w, = win B and ||wyl||y, — 0, then w = 0.
Then, for any € > 0, there exists C; such that, for n € N and
w E B,
Iwlls <ellwllx, + Cllwlly,

, (the finite dimensional space

W have to choose || - ||x, and || - ||v,-

Example: B = L}(Q). B,
given by the mesh M,).



Discrete Lions' lemma, proof

Proof by contradiction. There exists £ > 0 and (wj)nen such that,
for all n, w, € B,, and

Iwnllg > ellwanllx, + Callwallv,,

with lim,_ . C, = +o0.

It is possible to assume that ||w,||g = 1. Then (||wn||x,)nen is
bounded and, up to a subsequence, w, — w in B (so that

|lw|lg = 1). But ||wal||y, — 0, so that w = 0, in contradiction with
[wllg =1.



Discrete Aubin-Simon’ Compactness Lemma

B a Banach, (B;)nen family of finite dimensional subspaces of B.
| - |x, and || - ||y, two norms on By, such that:

> If (||wnl|x,)nen is bounded, then, up to a subsequence, there
exists w € B such that w,, — w in B.

> If w, = win B and ||wyl||y, — 0, then w = 0.
Xn = Bp with norm || - ||x,, Y = Bp with norm || - ||y,. Let
T >0, kn > 0 and (un)nen be a sequence such that
» for all n, u,(-,t) = ulP) € B, for t € ((p — 1)kn, pkn)
» (un)nen is bounded in L1((0, T), X,),
> (Dt k,Un)nen is bounded in L1((0, T), Ya).
Then there exists u € L}((0, T), B) such that, up to a
subsequence, u, — u in L1((0, T), B).

Example: B = LY(Q). B, = H,. What choice for || - ||x,, || - ||y, ?



Full approx., compactness of the sequence (up)nen
u, is solution of the fully discretized problem with mesh M, and
time step k.
B =LYQ), B, = Hu,,
I llxe = 1 e 1 Ny = 11 1,101
In order to apply the discrete Aubin-Simon’ lemma we need to
verify the hypotheses of the discrete Lions’ lemma and that

> (Un)nen is bounded in L1((0, T), X,),
> (Ot k,Un)nen is bounded in L1((0, T), Ya).

The sequence (up)nen is bounded in L9((0, T), Wq »(€2)) (for
1< qg<(d+2)/(d+1)) and then is bounded in L1((0, T), X,)
since || - |[1,1,m, < Gl - ll1,9,Mm, for g > 1.

Using the scheme, it is quite easy to prove (similarly to the
continuous approximation) that (0 x,uUn)nen is bounded in
LY((0, T), Ya).



Full approx., Compactness of the sequence (u,)nen
It remains to verify the hypotheses of the discrete Lions’ lemma.

> If w, € Hu,, (||Wall1,1,Mm,)nen is bounded, there exists
w € LY(Q) such that w, — w in L}(Q) ?
Yes, this is classical now. . .

> If w, € Ha,, wn — win LY(Q) and ||wy|—1.1.m, — O, then
w =07 Yes...Proof:
Let o € W, >°(Q) and its “projection” m,p € Haq,. One has
[mnpll1,00 M < H‘PHWLOO(Q) and then

|| W) < -2 oy = O
and, since w, — w in [}(Q) and 7,9 — ¢ uniformly,
/ Wp(mhp)dx — / wpdx.
Q Q

This gives [, wpdx = 0 for all ¢ € W,>°(2) and then
w=0a.e.



Regularity of the limit

As the continuous approximation,
Uy — uin LY x (0, T)) and (us)nen bounded in
L9((0, T), Wgn(2)) for 1 < g < (d+2)/(d+1). Then

d+2

u,,—>ui1r1L"(Q><(0,T)))f01r1<q<d_i_1

ue L9((0, T), Wp9(Q)) for 1 < g < (d +2)/(d +1).



