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Example (coming from RANS model for turbulent flows)

∂tu + div(vu)−∆u = f in Ω× (0,T ),
u = 0 on ∂Ω× (0,T ),
u(·, 0) = u0 in Ω.

I Ω is a bounded open subset of Rd (d = 2 or 3) with a
Lipschitz continuous boundary

I v ∈ C 1(Ω× [0,T ],R)

I u0 ∈ L1(Ω) (or u0 is a Radon measure on Ω)

I f ∈ L1(Ω× (0,T )) (or f is a Radon measure on Ω× (0,T ))

with possible generalization to nonlinear problems.

Non smooth solutions.



Example, motivation

For this example, we have two objectives:

1. Existence of weak solution and (strong) convergence of
“continuous approximate solutions”, that is solutions of the
continuous problem with regular data converging to f and u0.

2. Existence of weak solution and (strong) convergence of the
approximate solutions given by a full discretized problem.

In both case, we want to prove strong compactness of a sequence
of approximate solutions. This is the main subject of this talk.



Continuous approximation

(fn)n∈N and (u0,n)n∈N are two sequences of regular functions such
that∫ T

0

∫
Ω
fnϕdxdt →

∫ T

0

∫
Ω
f ϕdxdt, ∀ϕ ∈ C∞c (Ω× (0,T ),R),∫

Ω
u0,nϕdx →

∫
Ω
u0ϕdx , ∀ϕ ∈ C∞c (Ω,R).

For n ∈ N, it is well known that there exist un solution of the
regularized problem

∂tun + div(vun)−∆un = fn in Ω× (0,T ),
un = 0 on ∂Ω× (0,T ),
un(·, 0) = u0,n in Ω.

One has, at least, un ∈ L2((0,T ),H1
0 (Ω)) ∩ C ([0,T ], L2(Ω)) and

∂tun ∈ L2((0,T ),H−1(Ω)).



Continuous approximation, steps of the proof of
convergence

1. Estimate on un (not easy). One proves that the sequence
(un)n∈N is bounded in

Lq((0,T ),W 1,q
0 (Ω)) for all 1 ≤ q <

d + 2

d + 1
.

(This gives, up to a subsequence, weak convergence in
Lq(Ω× (0,T )) of un to some u and then, since the problem is
linear, that u is a weak solution of the problem with f and u0.)

2. Strong compactness of the sequence (un)n∈N

3. Regularity of the limit of the sequence (un)n∈N.

4. Passage to the limit in the approximate equation (easy).



Classical Lions’ lemma

X , B, Y are three Banach spaces such that

I X ⊂ B with compact embedding,

I B ⊂ Y with continuous embedding.

Then, for any ε > 0, there exists Cε such that, for w ∈ X ,

‖w‖B ≤ ε‖w‖X + Cε‖w‖Y .

Example: X = W 1,1
0 (Ω), B = L1(Ω),

Y = W−1,1
? (Ω) = (W 1,∞

0 (Ω))′. As usual, we identify an

L1-function with the corresponding linear form on W 1,∞
0 (Ω).



Classical Lions’ lemma, another formulation

X , B, Y are three Banach spaces such that, X ⊂ B ⊂ Y ,

I If (‖wn‖X )n∈N is bounded, then, up to a subsequence, there
exists w ∈ B such that wn → w in B.

I If wn → w in B and ‖wn‖Y → 0, then w = 0.

Then, for any ε > 0, there exists Cε such that, for w ∈ X ,

‖w‖B ≤ ε‖w‖X + Cε‖w‖Y .

The hypothesis B ⊂ Y is not necessary.



Classical Lions’ lemma, a particular case, simpler

B is a Hilbert space and X is a Banach space X ⊂ B. We define
on X the dual norm of ‖ · ‖X , with the scalar product of B, namely

‖u‖Y = sup{(u/v)B , v ∈ X , ‖v‖X ≤ 1}.

Then, for any ε > 0 and w ∈ X ,

‖w‖B ≤ ε‖w‖X +
1

ε
‖w‖Y .

The proof is simple since

‖u‖B = (u/u)
1
2
B ≤ (‖u‖Y ‖u‖X )

1
2 ≤ ε‖w‖X +

1

ε
‖w‖Y .

Compactness of X in B is not needed here (but this compactness
is needed for Aubin-Simon’ Lemma, next slide. . . ).



Aubin-Simon’ Compactness Lemma

X , B, Y are three Banach spaces such that

I X ⊂ B with compact embedding,

I B ⊂ Y with continuous embedding.

Let T > 0 and (un)n∈N be a sequence such that

I (un)n∈N is bounded in L1((0,T ),X ),

I (∂tun)n∈N is bounded in L1((0,T ),Y ).

Then there exists u ∈ L1((0,T ),B) such that, up to a
subsequence, un → u in L1((0,T ),B).

Example: X = W 1,1
0 (Ω), B = L1(Ω), Y = W−1,1

? (Ω).



Aubin-Simon’ Compactness Lemma, another formulation

X , B, Y are three Banach spaces such that, X ⊂ B ⊂ Y ,

I If (‖wn‖X )n∈N is bounded, then, up to a subsequence, there
exists w ∈ B such that wn → w in B.

I If wn → w in B and ‖wn‖Y → 0, then w = 0.

Let T > 0 and (un)n∈N be a sequence such that

I (un)n∈N is bounded in L1((0,T ),X ),

I (∂tun)n∈N is bounded in L1((0,T ),Y ).

Then there exists u ∈ L1((0,T ),B) such that, up to a
subsequence, un → u in L1((0,T ),B).

Example: X = W 1,1
0 (Ω), B = L1(Ω), Y = W−1,1

? (Ω).



Continuous approx., compactness of the sequence (un)n∈N

un is solution of he continuous problem with data fn and u0,n.

X = W 1,1
0 (Ω), B = L1(Ω), Y = W−1,1

? (Ω).

In order to apply Aubin-Simon’ lemma we need

I (un)n∈N is bounded in L1((0,T ),X ),

I (∂tun)n∈N is bounded in L1((0,T ),Y ).

The sequence (un)n∈N is bounded in Lq((0,T ),W 1,q
0 (Ω)) (for

1 ≤ q < (d + 2)/(d + 1)) and then is bounded in L1((0,T ),X ),
since W 1,q

0 (Ω) is continuously embedded in W 1,1
0 (Ω).

∂tun = fn − div(vun)−∆un. Is (∂tun)n∈N bounded in
L1((0,T ),Y ) ?



Continuous approx., Compactness of the sequence (un)n∈N

Bound of (∂tun)n∈N in L1((0,T ),W−1,1
? (Ω)) ?

∂tun = fn − div(vun)−∆un.

I (fn)n∈N is bounded in L1(0,T ), L1(Ω)) and then in
L1((0,T ),W−1,1

? (Ω)), since L1(Ω) is continously embedded in
W−1,1
? (Ω),

I (div(vun))n∈N is bounded in L1((0,T ),W−1,1
? (Ω)) since

(vun)n∈N is bounded in L1((0,T ), (L1(Ω))d and div is a
continuous operator from (L1(Ω))d to W−1,1

? (Ω),

I (∆un)n∈N is bounded in L1((0,T ),W−1,1
? (Ω)) since (un)n∈N

is bounded in L1((0,T ),W 1,1
0 (Ω)) and ∆ is a continuous

operator from W 1,1
0 (Ω) to W−1,1

? (Ω).

Finally, (∂tun)n∈N is bounded in L1((0,T ),W−1,1
? (Ω)).

Aubin-Simon’ lemma gives (up to a subsequence) un → u in
L1((0,T ), L1(Ω)).



Regularity of the limit

un → u in L1(Ω× (0,T )) and (un)n∈N bounded in
Lq((0,T ),W 1,q

0 (Ω)) for 1 ≤ q < (d + 2)/(d + 1). Then

un → u in Lq(Ω× (0,T ))) for 1 ≤ q <
d + 2

d + 1
,

∇un → ∇u weakly in Lq(Ω× (0,T ))d for 1 ≤ q <
d + 2

d + 1
,

u ∈ Lq((0,T ),W 1,q
0 (Ω)) for 1 ≤ q < (d + 2)/(d + 1).

Remark: Lq((0,T ), Lq(Ω)) = Lq(Ω× (0,T ))

An additional work is needed to prove the strong convergence of
∇un to ∇u.



Full approximation, FV scheme (or dG scheme)
Space discretization: Admissible mesh M. Time step: k (Nk = T )

TK,L=mK,L/dK,L

K

L

size(M) = sup{diam(K ),K ∈M}
Unknowns: u

(p)
K ∈ R, K ∈M, p ∈ {1, . . . ,N}.

Discretization: Implicit in time, upwind for convection, classical
2-points flux for diffusion. (Well known scheme.)



Full approximation, approximate solution

I HM the space of functions from Ω to R, constant on each K ,
K ∈M.

I The discrete solution u is constant on K × ((p − 1)k, pk) with
K ∈M and p ∈ {1, . . . ,N}.
u(·, t) = u(p) for t ∈ ((p − 1)k , pk) and u(p) ∈ HM.

I Discrete derivatives in time, ∂t,ku, defined by:

∂t,ku(·, t) = ∂
(p)
t,k u =

1

k
(u(p) − u(p−1)) for t ∈ ((p − 1)k, pk),

for p ∈ {2, . . . ,N} (and ∂t,ku(·, t) = 0 for t ∈ (0, k)).



Full approximation, steps of the proof of convergence

Sequence of meshes and time steps, (Mn)n∈N and kn.
size(Mn)→ 0, kn → 0, as n→∞.
For n ∈ N, un is the solution of the FV scheme.

1. Estimate on un.

2. Strong compactness of the sequence (un)n∈N.

3. Regularity of the limit of the sequence (un)n∈N.

4. Passage to the limit in the approximate equation.



Discrete norms
Admissible mesh: M.
u ∈ HM (that is u is a function constant on each K , K ∈M).

I 1 ≤ q <∞. Discrete W 1,q
0 -norm:

‖u‖q1,q,M =
∑

σ∈Eint ,σ=K |L

mσdσ|
uK − uL

dσ
|q+

∑
σ∈Eext ,σ∈EK

mσdσ|
uK
dσ
|q

I q =∞. Discrete W 1,∞
0 -norm: ‖u‖q1,∞,M = max{Mi ,Me ,M}

with

Mi = max{|uK − uL|
dσ

, σ ∈ Eint , σ = K |L},

Me = max{|uK |
dσ

, σ ∈ Eext , σ ∈ EK},

M = max{|uK |, K ∈M}.



Discrete dual norms

Admissible mesh: M.
For r ∈ [1,∞], ‖ · ‖−1,r ,M is the dual norm of the norm ‖ · ‖1,q,M
with q = r/(r − 1). That is, for u ∈ HM,

‖u‖−1,r ,M = max{
∫

Ω
uv dx , v ∈ HM, ‖v‖1,q,M ≤ 1}.

Example: r = 1 (q =∞).



Full discretization, estimate on the discrete solution

For 1 ≤ q < (d + 2)/(d + 1), the sequence (un)n∈N is bounded in
Lq((0,T ),Wq,n), where Wq,n is the space HMn , endowed with the
norm ‖ · ‖1,q,Mn . That is

Nn∑
p=1

k‖u(p)
n ‖q1,q,Mn

≤ C .



Discrete Lions’ lemma

B is a Banach space, (Bn)n∈N is a sequence of finite dimensional
subspaces of B. ‖ · ‖Xn and ‖ · ‖Yn are two norms on Bn such that:

I If (‖wn‖Xn)n∈N is bounded, then, up to a subsequence, there
exists w ∈ B such that wn → w in B.

I If wn → w in B and ‖wn‖Yn → 0, then w = 0.

Then, for any ε > 0, there exists Cε such that, for n ∈ N and
w ∈ Bn

‖w‖B ≤ ε‖w‖Xn + Cε‖w‖Yn .

Example: B = L1(Ω). Bn = HMn (the finite dimensional space
given by the mesh Mn). We have to choose ‖ · ‖Xn and ‖ · ‖Yn .



Discrete Lions’ lemma, proof

Proof by contradiction. There exists ε > 0 and (wn)n∈N such that,
for all n, wn ∈ Bn and

‖wn‖B > ε‖wn‖Xn + Cn‖wn‖Yn ,

with limn→∞ Cn = +∞.

It is possible to assume that ‖wn‖B = 1. Then (‖wn‖Xn)n∈N is
bounded and, up to a subsequence, wn → w in B (so that
‖w‖B = 1). But ‖wn‖Yn → 0, so that w = 0, in contradiction with
‖w‖B = 1.



Discrete Aubin-Simon’ Compactness Lemma

B a Banach, (Bn)n∈N family of finite dimensional subspaces of B.
‖ · ‖Xn and ‖ · ‖Yn two norms on Bn such that:

I If (‖wn‖Xn)n∈N is bounded, then, up to a subsequence, there
exists w ∈ B such that wn → w in B.

I If wn → w in B and ‖wn‖Yn → 0, then w = 0.

Xn = Bn with norm ‖ · ‖Xn , Yn = Bn with norm ‖ · ‖Yn . Let
T > 0, kn > 0 and (un)n∈N be a sequence such that

I for all n, un(·, t) = u
(p)
n ∈ Bn for t ∈ ((p − 1)kn, pkn)

I (un)n∈N is bounded in L1((0,T ),Xn),

I (∂t,knun)n∈N is bounded in L1((0,T ),Yn).

Then there exists u ∈ L1((0,T ),B) such that, up to a
subsequence, un → u in L1((0,T ),B).

Example: B = L1(Ω). Bn = HMn . What choice for ‖ · ‖Xn , ‖ · ‖Yn ?



Full approx., compactness of the sequence (un)n∈N
un is solution of the fully discretized problem with mesh Mn and
time step kn.

B = L1(Ω), Bn = HMn ,
‖ · ‖Xn = ‖ · ‖1,1,Mn , ‖ · ‖Yn = ‖ · ‖−1,1,Mn

In order to apply the discrete Aubin-Simon’ lemma we need to
verify the hypotheses of the discrete Lions’ lemma and that

I (un)n∈N is bounded in L1((0,T ),Xn),

I (∂t,knun)n∈N is bounded in L1((0,T ),Yn).

The sequence (un)n∈N is bounded in Lq((0,T ),Wq,n(Ω)) (for
1 ≤ q < (d + 2)/(d + 1)) and then is bounded in L1((0,T ),Xn)
since ‖ · ‖1,1,Mn ≤ Cq‖ · ‖1,q,Mn for q > 1.

Using the scheme, it is quite easy to prove (similarly to the
continuous approximation) that (∂t,knun)n∈N is bounded in
L1((0,T ),Yn).



Full approx., Compactness of the sequence (un)n∈N
It remains to verify the hypotheses of the discrete Lions’ lemma.

I If wn ∈ HMn , (‖wn‖1,1,Mn)n∈N is bounded, there exists
w ∈ L1(Ω) such that wn → w in L1(Ω) ?
Yes, this is classical now. . .

I If wn ∈ HMn , wn → w in L1(Ω) and ‖wn‖−1,1,Mn → 0, then
w = 0 ? Yes. . . Proof :
Let ϕ ∈W 1,∞

0 (Ω) and its “projection” πnϕ ∈ HMn . One has
‖πnϕ‖1,∞,Mn ≤ ‖ϕ‖W 1,∞(Ω) and then

|
∫

Ω
wn(πnϕ)dx | ≤ ‖wn‖−1,1,Mn‖ϕ‖W 1,∞(Ω) → 0,

and, since wn → w in L1(Ω) and πnϕ→ ϕ uniformly,∫
Ω
wn(πnϕ)dx →

∫
Ω
wϕdx .

This gives
∫

Ω wϕdx = 0 for all ϕ ∈W 1,∞
0 (Ω) and then

w = 0 a.e.



Regularity of the limit

As the continuous approximation,
un → u in L1(Ω× (0,T )) and (un)n∈N bounded in
Lq((0,T ),Wq,n(Ω)) for 1 ≤ q < (d + 2)/(d + 1). Then

un → u in Lq(Ω× (0,T ))) for 1 ≤ q <
d + 2

d + 1
,

u ∈ Lq((0,T ),W 1,q
0 (Ω)) for 1 ≤ q < (d + 2)/(d + 1).


