Convergence of Gradient Schemes for the Stefan problem

T. Gallouët

К $ho \eta au \eta$, September 2012

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

with coauthors:

R. Eymard, P. Féron (université Paris-Est),

C. Guichard (université de Nice),

R. Herbin (université Aix-Marseille)

Stefan problem

$$\begin{array}{l} \partial_t u - \Delta \varphi(u) = f \ \text{in } \Omega \times (0, T), \\ u = 0 \ \text{on } \partial \Omega \times (0, T), \\ u(\cdot, 0) = u_0 \ \text{in } \Omega. \end{array}$$

- Ω is a polygonal (for d = 2) or polyhedral (for d = 3) open subset of ℝ^d (d = 2 or 3), T > 0
- φ is a non decreasing function from ℝ to ℝ, Lipschitz continuous and lim inf_{s→+∞} φ(s)/s > 0
- $u_0 \in L^2(\Omega)$
- $f \in L^2(\Omega \times (0, T))$

Mail difficulty : φ may be constant on some interval of \mathbb{R} Objective : To present a general framework to prove the convergence of many different schemes (FE, NCFE, FV, HFV...)

Discrete unknown

Discretization parameters, \mathcal{D} : spatial mesh, time step (δt) Discrete unknown at time $t_k = k\delta t$: $u^{(k)} \in X_{\mathcal{D},0}$.

- values at the vextex of the mesh (FE)
- values at the edges of the mesh (NCFE)
- values in the cells (FV)
- values in the cells and in the edges (HFV)

With an element v of $X_{\mathcal{D},0}$ (for instance $v = u^{(k)}$ or $v = \varphi(u^{(k)})$), one defines two functions

- \bar{v} (reconstruction of the approximate solution)
- $\nabla_{\mathcal{D}} v$ (reconstruction of an approximate gradient)

with some natural properties of consistency.

A crucial property is $\overline{\varphi(u)} = \varphi(\overline{u})$

N.B. the functions \bar{v} and $\nabla_D v$ are piecewise constant functions, but not necessarily on the same mesh

Numerical scheme (Gradient schemes)

 $ar{u}^{(0)}$ given by the initial condition and for $k\geq 0$, $u^{(k+1)}\in X_{\mathcal{D},0}$

$$\int_{\Omega} \frac{\bar{u}^{(k+1)} - \bar{u}^{(k)}}{\delta t} \bar{v} dx dt + \int_{\Omega} \nabla_{\mathcal{D}} \varphi(u^{(k+1)}) \cdot \nabla_{\mathcal{D}} v dx = \frac{1}{\delta t} \int_{t_k}^{t_{k+1}} f \bar{v} dx dt, \forall v \in X_{\mathcal{D},0}$$

Classical examples : FE with mass lumping, FV on admissible meshes but also many other schemes...

Steps of the proof of convergence

Let $(u_n)_{n\in\mathbb{N}}$ be a sequence of approximate solutions (associated to \mathcal{D}_n and δt_n with $\lim_{n\to\infty} \operatorname{size}(\mathcal{D}_n) = 0$ and $\lim_{n\to\infty} \delta t_n = 0$)

- 1. Estimates on the approximate solution
- 2. Compactness result on the sequence of approximate solutions
- 3. Passage to the limit in the approximate equation

Steps 2 and 3 are tricky due to the fact that φ may be constant on some interval of $\mathbb R$

Estimates

One mimics the estimates for the continuous equation

$$\begin{array}{l} \partial_t u - \Delta \varphi(u) = f \text{ in } \Omega \times (0, T), \\ u = 0 \text{ on } \partial \Omega \times (0, T), \\ u(\cdot, 0) = u_0 \text{ in } \Omega. \end{array}$$

Taking $\varphi(u)$ as test function one obtains

- an estimate on u in $L^{\infty}((0, T), L^{2}(\Omega))$
- an estimate on $\varphi(u)$ in $L^2((0, T), H^1_0(\Omega))$
- and therefore an estimate on $\partial_t u$ in $L^2((0, T), H^{-1}(\Omega))$

Estimates with corresponding discrete norms hold for the discrete setting of gradient schemes : $L^{\infty}((0, T), L^{2}(\Omega))$ -estimate on \bar{u} , $L^{2}((0, T), L^{2}(\Omega))$ -estimate on $\nabla_{\mathcal{D}}\varphi(u)$ and an estimate on the time discrete derivative for a dual norm

Estimates (2)

These estimates give only weak compactness on the sequences of approximate solutions $(u_n)_{n \in \mathbb{N}}$ and $(\varphi(u_n))_{n \in \mathbb{N}}$. Not sufficient to pass to the limit...

$$\lim_{n\to\infty}\varphi(u_n)=\varphi(\lim_{n\to\infty}u_n)?$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Lions-Aubin-Simon Compactness Lemma

- X, B, Y are three Banach spaces such that
 - X ⊂ B with compact embedding,
 - $B \subset Y$ with continuous embedding.
- Let $\mathcal{T}>0, \ 1\leq p<+\infty$ and $(v_n)_{n\in\mathbb{N}}$ be a sequence such that
 - $(v_n)_{n\in\mathbb{N}}$ is bounded in $L^p((0, T), X)$,
 - $(\partial_t v_n)_{n \in \mathbb{N}}$ is bounded in $L^p((0, T), Y)$.

Then there exists $v \in L^p((0, T), B)$ such that, up to a subsequence, $v_n \to v$ in $L^p((0, T), B)$.

Example: p = 2, $X = H_0^1(\Omega)$, $B = L^2(\Omega)$, $Y = H^{-1}(\Omega)$.

A dicrete version with a family a spaces $(X_n)_{n \in \mathbb{N}}$ and a family a spaces $(Y_n)_{n \in \mathbb{N}}$ is possible.

The Lions-Aubin-Simon lemma is of no use here

- $(\partial_t u_n)_{n \in \mathbb{N}}$ bounded in $L^2((0, T), H^{-1}(\Omega))$
- $\varphi(u_n)_{n\in\mathbb{N}}$ bounded in $L^2((0,T), H^1_0(\Omega))$

Unfortunately,

- b the estimate on (φ(u_n))_{n∈N} does not give an analogue estimate on (u_n)_{n∈N} (since φ may be constant on some interval)
- the estimate on (∂_tu_n)_{n∈ℕ} does not give an analogue estimate on (∂_tφ(u_n))_{n∈ℕ} (the product of an L[∞](Ω) function with a H⁻¹(Ω) element is not well defined).

One cannot use Lions-Aubin-Simon Compactness lemma on the sequence $(u_n)_{n\in\mathbb{N}}$ nor on the sequence $(\varphi(u_n))_{n\in\mathbb{N}}$

Alt-Luckhaus method

X, B are two Banach spaces such that

X ⊂ B with compact embedding,

Let $\mathcal{T}>$ 0, $1\leq p<+\infty$ and $(v_n)_{n\in\mathbb{N}}$ be a sequence such that

• $(v_n)_{n\in\mathbb{N}}$ is bounded in $L^p((0, T), X)$,

► $\|v_n(\cdot + h) - v_n\|_{L^p((0,T),B)} \rightarrow 0$, as $h \rightarrow 0$, uniformly w.r.t. n.

Then there exists $v \in L^p((0, T), B)$ such that, up to a subsequence, $v_n \to v$ in $L^p((0, T), B)$.

Example: p = 2, $X = H_0^1(\Omega)$, $B = L^2(\Omega)$

Here also, a dicrete version with a family a spaces $(X_n)_{n \in \mathbb{N}}$ is possible.

Alt-Luckhaus method for the Stefan problem

One knows that $\varphi(u_n)_{n\in\mathbb{N}}$ is bounded in $L^2((0, T), H^1_0(\Omega))$. To obtain compactness of $\varphi(u_n)_{n\in\mathbb{N}}$ in $L^2((0, T), L^2(\Omega))$ one has to prove that $\|\varphi(u_n)(\cdot + h) - \varphi(u_n)\|_{L^2((0,T), L^2(\Omega))} \to 0$, as $h \to 0$, uniformly w.r.t. *n*. (For simplicity, f = 0.)

$$\partial_t u_n(s) - \Delta \varphi(u_n(s)) = 0, \ s \in (t, t+h).$$

One multiplies by $\varphi(u_n(t+h)) - \varphi(u_n(t))$ and integrate between t and t + h and on Ω

$$\int_{t}^{t+h} \int_{\Omega} \partial_{t} u_{n}(s)(\varphi(u_{n}(t+h)) - \varphi(u_{n}(t))) dx ds \\ + \int_{t}^{t+h} \int_{\Omega} \nabla \varphi(u_{n}(s)) \cdot (\nabla \varphi(u_{n}(t+h)) - \nabla \varphi(u_{n}(t))) dx ds.$$

AL method for the Stefan problem (2)

$$\begin{split} &\int_{t}^{t+h} \int_{\Omega} \partial_{t} u_{n}(s)(\varphi(u_{n}(t+h)) - \varphi(u_{n}(t))) dx ds \\ &+ \int_{t}^{t+h} \int_{\Omega} \nabla \varphi(u_{n}(s)) \cdot (\nabla \varphi(u_{n}(t+h)) - \nabla \varphi(u_{n}(t))) dx ds = 0. \\ &\int_{\Omega} (u_{n}(t+h)) - u_{n}(t))(\varphi(u_{n}(t+h)) - \varphi(u_{n}(t))) dx \leq \\ &\int_{t}^{t+h} \int_{\Omega} |\nabla \varphi(u_{n}(s))| |\nabla \varphi(u_{n}(t+h))| + |\nabla \varphi(u_{n}(s))| |\nabla \varphi(u_{n}(t))| dx ds. \end{split}$$

One now integrates on $t \in (0, T - h)$, uses a Lipschitz constant for φ (denoted L) and $ab \leq (a^2 + b^2)/2$

$$\int_{0}^{T-h} \int_{\Omega} (\varphi(u_n(t+h)) - \varphi(u_n(t)))^2 dx \leq \\ L \int_{0}^{T-h} \int_{\Omega} (u_n(t+h)) - u_n(t))(\varphi(u_n(t+h)) - \varphi(u_n(t))) dx \leq \\ L \sum_{i=1}^{3} T_i$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

AL method for the Stefan problem (3)

$$\int_0^{T-h} \int_{\Omega} (\varphi(u_n(t+h)) - \varphi(u_n(t)))^2 dx \le L(T_1 + T_2 + T_3)$$
$$T_1 = \int_0^{T-h} \int_t^{t+h} \int_{\Omega} |\nabla \varphi(u_n(s))|^2 dx ds dt \le h |||\nabla \varphi(u_n)|||_{L^2(Q)}^2$$
$$T_2 = \int_0^{T-h} \int_t^{t+h} \int_{\Omega} |\nabla \varphi(u_n(t+h))|^2 dx ds dt \le h |||\nabla \varphi(u_n)|||_{L^2(Q)}^2$$

 $T_3 = \int_0^{T-h} \int_t^{t+h} \int_{\Omega} |\nabla \varphi(u_n(t))|^2 dx ds dt \le h |||\nabla \varphi(u_n)|||_{L^2(Q)}^2$

where $Q = \Omega \times (0, T)$.

Thanks to the $L^2((0, T), H^1_0(\Omega))$ estimate on $(\varphi(u_n))_{n \in \mathbb{N}}$, one obtains the relative compactness of this sequence in $L^2(Q)$.

Translation (in time) of $\varphi(u_n)$, at the discrete level

At the discrete level, let u_n be the approximate solution associated to mesh \mathcal{D}_n and time step δt_n . A very similar proof gives

$$\int_0^{T-h}\int_{\Omega}(\varphi(\bar{u}_n(t+h))-\varphi(\bar{u}_n(t)))^2dx\leq h\||\nabla_{\mathcal{D}}\varphi(u_n)|\|_{L^2(Q)}^2$$

The only difference is due to the fact that $\partial_t u$ is replaced by a differential quotient.

For this proof, the crucial property $\overline{\varphi(u)} = \varphi(\overline{u})$ is used

Compactness, for a sequence of approximate solutions

X, B are two Banach spaces such that

• $X \subset B$ with compact embedding,

Let $\mathcal{T}>$ 0, $1\leq p<+\infty$ and $(v_n)_{n\in\mathbb{N}}$ be a sequence such that

• $(v_n)_{n\in\mathbb{N}}$ is bounded in $L^p((0, T), X)$,

• $\|v_n(\cdot + h) - v_n\|_{L^p((0,T),B)} \to 0$, as $h \to 0$, uniformly w.r.t. n. Then there exists $v \in L^p((0,T),B)$ such that, up to a subsequence, $v_n \to v$ in $L^p((0,T),B)$.

Example: p = 2, $X = H_0^1(\Omega)$, $B = L^2(\Omega)$ One wants to take $v_n = \varphi(\bar{u}_n)$. Compactness, for a sequence of approximate solutions

X, B are two Banach spaces such that

• $X \subset B$ with compact embedding,

Let $\mathcal{T}>$ 0, $1\leq p<+\infty$ and $(v_n)_{n\in\mathbb{N}}$ be a sequence such that

• $(v_n)_{n\in\mathbb{N}}$ is bounded in $L^p((0, T), X)$,

► $\|v_n(\cdot + h) - v_n\|_{L^p((0,T),B)} \to 0$, as $h \to 0$, uniformly w.r.t. *n*. Then there exists $v \in L^p((0,T),B)$ such that, up to a

subsequence, $v_n \rightarrow v$ in $L^p((0, T), B)$.

Example: p = 2, $X = H_0^1(\Omega)$, $B = L^2(\Omega)$ One wants to take $v_n = \varphi(\bar{u}_n)$. Everything is ok, except that there is no X-space...

Modified Compactness Lemma

B is a banach space $(B = L^2(Q))$ X_n normed vector spaces $(X_n = X_{\mathcal{D}_n,0}, ||u||_{X_n} = |||\nabla_{\mathcal{D}_n}u|||_{L^2})$ T_n a linear operator from X_n to $B(T_n(u) = \bar{u})$ The hypothesis $X \subset B$ with compact embedding is replaced by " $u_n \in X_n$, if the sequence $(||u_n||_{X_n})_{n \in \mathbb{N}}$ is bounded, then the sequence $(T_n(u_n))_{n \in \mathbb{N}}$ is relatively compact in B". With this hypothesis, let T > 0, $1 \le p < +\infty$ and $(v_n)_{n \in \mathbb{N}}$ be a sequence such that $v_n \in L^p((0, T), X_n)$ for all n. Assume that

- ▶ There exists C such that $||v_n||_{L^p((0,T),X_n)} \leq C$ for all $n \in \mathbb{N}$
- ► $||T_n(v_n)(\cdot + h) T_n(v_n)||_{L^p((0,T),B)} \rightarrow 0$, as $h \rightarrow 0$, uniformly w.r.t. *n*.

Then there exists $g \in L^p((0, T), B)$ such that, up to a subsequence, $T_n(v_n) \rightarrow g$ in $L^p((0, T), B)$.

p = 2, $v_n = \varphi(u_n)$. With this Compactness Lemma, one obtains that $\varphi(\bar{u}_n) \to g$ in $L^2(Q)$

Minty trick (simple version)

Let $(u_n)_{n\in\mathbb{N}}$ be a sequence of approximate solutions. One has, as $n \to \infty$,

 $\overline{u}_n \to u$ weakly in $L^2(Q)$,

 $\varphi(\bar{u}_n) \to g \text{ in } L^2(Q).$

Then, the Minty trick (since φ is nondecreasing) gives $g = \varphi(u)$: Let $w \in L^2(\Omega)$, $0 \leq \int_Q (\varphi(\bar{u}_n) - \varphi(w))(\bar{u}_n - w) dx dt$ gives, as $n \to \infty$,

$$0\leq \int_Q (g-\varphi(w))(u-w)dxdt.$$

Taking $w = u + \varepsilon \psi$, with $\psi \in C^{\infty}_{c}(Q)$ and letting $\varepsilon \to 0^{\pm}$ leads to

$$\int_Q (g - \varphi(u)) \psi dx dt = 0.$$

Then $g = \varphi(u)$ a.e.

It remains to pass to the limit in the approximate equation. This is possible thanks to some natural properties of consistency. That is to say, for any regular function ψ , as $\operatorname{size}(\mathcal{D}) \to 0$,

1.
$$\min_{v \in X_{\mathcal{D},0}} \| \bar{v} - \psi \|_{L^{2}(\Omega)} \to 0$$

2.
$$\min_{v \in X_{\mathcal{D},0}} \| |\nabla_{\mathcal{D}} v - \nabla \psi | \|_{L^{2}(\Omega)} \to 0$$

3.
$$\max_{u \in X_{\mathcal{D},0} \setminus \{0\}} \frac{1}{\| |\nabla_{\mathcal{D}} u | \|_{L^{2}(\Omega)}} \left| \int_{\Omega} \left(\nabla_{\mathcal{D}} u \cdot \psi + \bar{u} \operatorname{div} \psi \right) dx \right| \to 0$$

Modified Compactness Lemma

B is a banach space X_n normed vector spaces T_n a linear operator from X_n to *B* The hypothesis $X \subset B$ with compact embedding is replaced by " $u_n \in X_n$, if the sequence $(||u_n||_{X_n})_{n \in \mathbb{N}}$ is bounded, then the sequence $(T_n(u_n))_{n \in \mathbb{N}}$ is relatively compact in *B*". With this hypothesis, let T > 0, $1 \le p < +\infty$ and $(v_n)_{n \in \mathbb{N}}$ be a sequence such that $v_n \in L^p((0, T), X_n)$ for all *n*. Assume that

- ▶ There exists C such that $||v_n||_{L^p((0,T),X_n)} \leq C$ for all $n \in \mathbb{N}$
- ▶ $||T_n(v_n)(\cdot + h) T_n(v_n)||_{L^p((0,T),B)} \rightarrow 0$, as $h \rightarrow 0$, uniformly w.r.t. *n*.

Then there exists $g \in L^p((0, T), B)$ such that, up to a subsequence, $T_n(v_n) \to g$ in $L^p((0, T), B)$.