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Stefan problem

∂tu −∆ϕ(u) = f in Ω× (0,T ),
u = 0 on ∂Ω× (0,T ),
u(·, 0) = u0 in Ω.

I Ω is a polygonal (for d = 2) or polyhedral (for d = 3) open
subset of Rd (d = 2 or 3), T > 0

I ϕ is a non decreasing function from R to R, Lipschitz
continuous and lim infs→+∞ ϕ(s)/s > 0

I u0 ∈ L2(Ω)

I f ∈ L2(Ω× (0,T ))

Mail difficulty : ϕ may be constant on some interval of R
Objective : To present a general framework to prove the
convergence of many different schemes (FE, NCFE, FV, HFV. . . )



Discrete unknown

Discretization parameters, D : spatial mesh, time step (δt)

Discrete unknown at time tk = kδt : u(k) ∈ XD,0.

I values at the vextex of the mesh (FE)

I values at the edges of the mesh (NCFE)

I values in the cells (FV)

I values in the cells and in the edges (HFV)

With an element v of XD,0 (for instance v = u(k) or v = ϕ(u(k))),
one defines two functions

I v̄ (reconstruction of the approximate solution)

I ∇Dv (reconstruction of an approximate gradient)

with some natural properties of consistency.
A crucial property is ϕ(u) = ϕ(ū)
N.B. the functions v̄ and ∇Dv are piecewise constant functions,
but not necessarily on the same mesh



Numerical scheme (Gradient schemes)

ū(0) given by the initial condition and for k ≥ 0,

u(k+1) ∈ XD,0

∫
Ω

ū(k+1) − ū(k)

δt
v̄dxdt +

∫
Ω
∇Dϕ(u(k+1)) · ∇Dvdx =

1

δt

∫ tk+1

tk

f v̄dxdt, ∀v ∈ XD,0

Classical examples : FE with mass lumping, FV on admissible
meshes
but also many other schemes. . .



Steps of the proof of convergence

Let (un)n∈N be a sequence of approximate solutions (associated to
Dn and δtn with limn→∞ size(Dn) = 0 and limn→∞ δtn = 0)

1. Estimates on the approximate solution

2. Compactness result on the sequence of approximate solutions

3. Passage to the limit in the approximate equation

Steps 2 and 3 are tricky due to the fact that ϕ may be constant on
some interval of R



Estimates

One mimics the estimates for the continuous equation

∂tu −∆ϕ(u) = f in Ω× (0,T ),
u = 0 on ∂Ω× (0,T ),
u(·, 0) = u0 in Ω.

Taking ϕ(u) as test function one obtains

I an estimate on u in L∞((0,T ), L2(Ω))

I an estimate on ϕ(u) in L2((0,T ),H1
0 (Ω))

I and therefore an estimate on ∂tu in L2((0,T ),H−1(Ω))

Estimates with corresponding discrete norms hold for the discrete
setting of gradient schemes : L∞((0,T ), L2(Ω))-estimate on ū,
L2((0,T ), L2(Ω))-estimate on ∇Dϕ(u) and an estimate on the
time discrete derivative for a dual norm



Estimates (2)

These estimates give only weak compactness on the sequences of
approximate solutions (un)n∈N and (ϕ(un))n∈N. Not sufficient to
pass to the limit. . .

lim
n→∞

ϕ(un) = ϕ( lim
n→∞

un)?



Lions-Aubin-Simon Compactness Lemma

X , B, Y are three Banach spaces such that

I X ⊂ B with compact embedding,

I B ⊂ Y with continuous embedding.

Let T > 0, 1 ≤ p < +∞ and (vn)n∈N be a sequence such that

I (vn)n∈N is bounded in Lp((0,T ),X ),

I (∂tvn)n∈N is bounded in Lp((0,T ),Y ).

Then there exists v ∈ Lp((0,T ),B) such that, up to a
subsequence, vn → v in Lp((0,T ),B).

Example: p = 2, X = H1
0 (Ω), B = L2(Ω), Y = H−1(Ω).

A dicrete version with a family a spaces (Xn)n∈N and a family a
spaces (Yn)n∈N is possible.



The Lions-Aubin-Simon lemma is of no use here

I (∂tun)n∈N bounded in L2((0,T ),H−1(Ω))

I ϕ(un)n∈N bounded in L2((0,T ),H1
0 (Ω))

Unfortunately,

I the estimate on (ϕ(un))n∈N does not give an analogue
estimate on (un)n∈N (since ϕ may be constant on some
interval)

I the estimate on (∂tun)n∈N does not give an analogue estimate
on (∂tϕ(un))n∈N (the product of an L∞(Ω) function with a
H−1(Ω) element is not well defined).

One cannot use Lions-Aubin-Simon Compactness lemma on the
sequence (un)n∈N nor on the sequence (ϕ(un))n∈N



Alt-Luckhaus method

X , B are two Banach spaces such that

I X ⊂ B with compact embedding,

Let T > 0, 1 ≤ p < +∞ and (vn)n∈N be a sequence such that

I (vn)n∈N is bounded in Lp((0,T ),X ),

I ‖vn(·+ h)− vn‖Lp((0,T ),B) → 0, as h→ 0, uniformly w.r.t. n.

Then there exists v ∈ Lp((0,T ),B) such that, up to a
subsequence, vn → v in Lp((0,T ),B).

Example: p = 2, X = H1
0 (Ω), B = L2(Ω)

Here also, a dicrete version with a family a spaces (Xn)n∈N is
possible.



Alt-Luckhaus method for the Stefan problem

One knows that ϕ(un)n∈N is bounded in L2((0,T ),H1
0 (Ω)). To

obtain compactness of ϕ(un)n∈N in L2((0,T ), L2(Ω)) one has to
prove that ‖ϕ(un)(·+ h)− ϕ(un)‖L2((0,T ),L2(Ω)) → 0, as h→ 0,
uniformly w.r.t. n. (For simplicity, f = 0.)

∂tun(s)−∆ϕ(un(s)) = 0, s ∈ (t, t + h).

One multiplies by ϕ(un(t + h))− ϕ(un(t)) and integrate between t
and t + h and on Ω

∫ t+h

t

∫
Ω
∂tun(s)(ϕ(un(t + h))− ϕ(un(t)))dxds

+

∫ t+h

t

∫
Ω
∇ϕ(un(s)) · (∇ϕ(un(t + h))−∇ϕ(un(t)))dxds.



AL method for the Stefan problem (2)∫ t+h

t

∫
Ω
∂tun(s)(ϕ(un(t + h))− ϕ(un(t)))dxds

+

∫ t+h

t

∫
Ω
∇ϕ(un(s)) · (∇ϕ(un(t + h))−∇ϕ(un(t)))dxds = 0.∫

Ω
(un(t + h))− un(t))(ϕ(un(t + h))− ϕ(un(t)))dx ≤∫ t+h

t

∫
Ω
|∇ϕ(un(s))||∇ϕ(un(t + h))|+ |∇ϕ(un(s))||∇ϕ(un(t))|dxds.

One now integrates on t ∈ (0,T − h), uses a Lipschitz constant for
ϕ (denoted L) and ab ≤ (a2 + b2)/2∫ T−h

0

∫
Ω

(ϕ(un(t + h))− ϕ(un(t)))2dx ≤

L

∫ T−h

0

∫
Ω

(un(t + h))− un(t))(ϕ(un(t + h))− ϕ(un(t)))dx ≤

L
∑3

i=1 Ti



AL method for the Stefan problem (3)

∫ T−h

0

∫
Ω

(ϕ(un(t + h))− ϕ(un(t)))2dx ≤ L(T1 + T2 + T3)

T1 =

∫ T−h

0

∫ t+h

t

∫
Ω
|∇ϕ(un(s))|2dxdsdt ≤ h‖|∇ϕ(un)|‖2

L2(Q)

T2 =

∫ T−h

0

∫ t+h

t

∫
Ω
|∇ϕ(un(t + h))|2dxdsdt ≤ h‖|∇ϕ(un)|‖2

L2(Q)

T3 =

∫ T−h

0

∫ t+h

t

∫
Ω
|∇ϕ(un(t))|2dxdsdt ≤ h‖|∇ϕ(un)|‖2

L2(Q)

where Q = Ω× (0,T ).

Thanks to the L2((0,T ),H1
0 (Ω)) estimate on (ϕ(un))n∈N, one

obtains the relative compactness of this sequence in L2(Q).



Translation (in time) of ϕ(un), at the discrete level

At the discrete level, let un be the approximate solution associated
to mesh Dn and time step δtn. A very similar proof gives∫ T−h

0

∫
Ω

(ϕ(ūn(t + h))− ϕ(ūn(t)))2dx ≤ h‖|∇Dϕ(un)|‖2
L2(Q)

The only difference is due to the fact that ∂tu is replaced by a
differential quotient.
For this proof, the crucial property ϕ(u) = ϕ(ū) is used



Compactness, for a sequence of approximate solutions

X , B are two Banach spaces such that

I X ⊂ B with compact embedding,

Let T > 0, 1 ≤ p < +∞ and (vn)n∈N be a sequence such that

I (vn)n∈N is bounded in Lp((0,T ),X ),

I ‖vn(·+ h)− vn‖Lp((0,T ),B) → 0, as h→ 0, uniformly w.r.t. n.

Then there exists v ∈ Lp((0,T ),B) such that, up to a
subsequence, vn → v in Lp((0,T ),B).

Example: p = 2, X = H1
0 (Ω), B = L2(Ω)

One wants to take vn = ϕ(ūn).

Everything is ok, except that there is no X -space...



Compactness, for a sequence of approximate solutions

X , B are two Banach spaces such that

I X ⊂ B with compact embedding,

Let T > 0, 1 ≤ p < +∞ and (vn)n∈N be a sequence such that

I (vn)n∈N is bounded in Lp((0,T ),X ),

I ‖vn(·+ h)− vn‖Lp((0,T ),B) → 0, as h→ 0, uniformly w.r.t. n.

Then there exists v ∈ Lp((0,T ),B) such that, up to a
subsequence, vn → v in Lp((0,T ),B).

Example: p = 2, X = H1
0 (Ω), B = L2(Ω)

One wants to take vn = ϕ(ūn).
Everything is ok, except that there is no X -space...



Modified Compactness Lemma

B is a banach space (B = L2(Q))
Xn normed vector spaces (Xn = XDn,0, ‖u‖Xn = ‖|∇Dnu|‖L2)
Tn a linear operator from Xn to B (Tn(u) = ū)
The hypothesis X ⊂ B with compact embedding is replaced by
“un ∈ Xn, if the sequence (‖un‖Xn)n∈N is bounded, then the
sequence (Tn(un))n∈N is relatively compact in B”.
With this hypothesis, let T > 0, 1 ≤ p < +∞ and (vn)n∈N be a
sequence such that vn ∈ Lp((0,T ),Xn) for all n. Assume that

I There exists C such that ‖vn‖Lp((0,T ),Xn) ≤ C for all n ∈ N
I ‖Tn(vn)(·+ h)− Tn(vn)‖Lp((0,T ),B) → 0, as h→ 0, uniformly

w.r.t. n.

Then there exists g ∈ Lp((0,T ),B) such that, up to a
subsequence, Tn(vn)→ g in Lp((0,T ),B).

p = 2, vn = ϕ(un). With this Compactness Lemma, one obtains
that ϕ(ūn)→ g in L2(Q)



Minty trick (simple version)

Let (un)n∈N be a sequence of approximate solutions. One has, as
n→∞,

ūn → u weakly in L2(Q),

ϕ(ūn)→ g in L2(Q).

Then, the Minty trick (since ϕ is nondecreasing) gives g = ϕ(u):
Let w ∈ L2(Ω), 0 ≤

∫
Q(ϕ(ūn)− ϕ(w))(ūn − w)dxdt gives, as

n→∞,

0 ≤
∫
Q

(g − ϕ(w))(u − w)dxdt.

Taking w = u + εψ, with ψ ∈ C∞c (Q) and letting ε→ 0± leads to∫
Q

(g − ϕ(u))ψdxdt = 0.

Then g = ϕ(u) a.e.



Passing to the limit in the equation

It remains to pass to the limit in the approximate equation. This is
possible thanks to some natural properties of consistency. That is
to say, for any regular function ψ, as size(D)→ 0,

1. minv∈XD,0
‖v̄ − ψ‖L2(Ω) → 0

2. minv∈XD,0
‖|∇Dv −∇ψ|‖L2(Ω) → 0

3. maxu∈XD,0\{0}
1

‖|∇Du|‖L2(Ω)

∣∣∫
Ω (∇Du · ψ + ūdivψ) dx

∣∣→ 0



Modified Compactness Lemma

B is a banach space
Xn normed vector spaces
Tn a linear operator from Xn to B
The hypothesis X ⊂ B with compact embedding is replaced by
“un ∈ Xn, if the sequence (‖un‖Xn)n∈N is bounded, then the
sequence (Tn(un))n∈N is relatively compact in B”.
With this hypothesis, let T > 0, 1 ≤ p < +∞ and (vn)n∈N be a
sequence such that vn ∈ Lp((0,T ),Xn) for all n. Assume that

I There exists C such that ‖vn‖Lp((0,T ),Xn) ≤ C for all n ∈ N
I ‖Tn(vn)(·+ h)− Tn(vn)‖Lp((0,T ),B) → 0, as h→ 0, uniformly

w.r.t. n.

Then there exists g ∈ Lp((0,T ),B) such that, up to a
subsequence, Tn(vn)→ g in Lp((0,T ),B).


