Convergence of approximate solutions for Stationary compressible Stokes equations

R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché

 $K\rho\dot{\eta}\tau\eta$, September 2008

First step for proving the convergence of approximate solutions for the evolution compressible Navier-Stokes equations (which gives, in particular, the existence of solutions, d = 3, $p = \rho^{\gamma}$, $\gamma > \frac{3}{2}$).

Stationary compressible Stokes equations

 Ω is a bounded open set of \mathbb{R}^d , d = 2 or 3, with a Lipschitz continuous boundary, $\gamma > 1$, $f \in L^2(\Omega)^d$ and M > 0

$$-\Delta u + \nabla \rho = f \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega,$$
$$\operatorname{div}(\rho u) = 0 \text{ in } \Omega, \ \rho \ge 0 \text{ in } \Omega, \ \int_{\Omega} \rho(x) dx = M,$$
$$\rho = \rho^{\gamma} \text{ in } \Omega$$

Functional spaces : $u \in H_0^1(\Omega)$, $p \in L^2(\Omega)$, $\rho \in L^{2\gamma}(\Omega)$

(different spaces for p and ρ in the case of Navier-Stokes if d = 3 and $\gamma < 3$)

Aim

Prove the existence of a weak solution to the compressible Stokes equations by the convergence of a sequence (up to a subsequence, since, up to now, no uniqueness result is available for this problem) of approximate solutions given by a numerical scheme as the mesh size goes to 0

Simpler result: "continuity" with respect to the data

$$-\Delta u_n + \nabla p_n = f_n \text{ in } \Omega, \ u_n = 0 \text{ on } \partial \Omega,$$

 $\operatorname{div}(\rho_n u_n) = 0 \text{ in } \Omega, \ \rho_n \geq 0 \text{ in } \Omega, \ \int_{\Omega} \rho_n(x) dx = M_n,$

 $p_n = \rho_n^{\gamma}$ in Ω

 $f_n \to f$ in $(L^2(\Omega))^d$ and $M_n \to M$. Then, up to a subsequence,

• $u_n \to u$ in $L^2(\Omega)^d$ and weakly in $H^1_0(\Omega)^d$,

• $p_n \rightarrow p$ in $L^q(\Omega)$ for any $1 \le q < 2$ and weakly in $L^2(\Omega)$,

• $\rho_n \to \rho$ in $L^q(\Omega)$ for any $1 \le q < 2\gamma$ and weakly in $L^{2\gamma}(\Omega)$,

where (u, p, ρ) is a weak solution of the compressible Stokes equations (with f and M as data)

The case $\gamma = 1$ is also possible, but we obtain only weak convergence of p_n and ρ_n in $L^2(\Omega)$ (strong conv. are not needed).

Preliminary lemma

 $ho\in L^{2\gamma}(\Omega),\
ho\geq 0$ a.e. in $\Omega,\ u\in (H^1_0(\Omega))^d$, $\operatorname{div}(
ho u)=0$, then:

$$\int_{\Omega} \rho \operatorname{div}(u) dx = 0$$
$$\int_{\Omega} \rho^{\gamma} \operatorname{div}(u) dx = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof of the preliminary result

For simplicity : $\rho \in C^1(\overline{\Omega})$, $\rho \ge \alpha$ a.e. in Ω , $\alpha > 0$, $1 < \beta \le \gamma$. Take $\varphi = \rho^{\beta-1}$ as test function in $\operatorname{div}(\rho u) = 0$:

$$\int_{\Omega} \rho u \cdot \nabla \rho^{\beta-1} dx = (\beta-1) \int_{\Omega} \rho^{\beta-1} u \cdot \nabla \rho dx = 0.$$

Then

$$\frac{\beta-1}{\beta}\int_{\Omega}u\cdot\nabla\rho^{\beta}dx=0,$$

and finally

$$\int_{\Omega} \rho^{\beta} \mathrm{div}(u) dx = 0.$$

Two cases : $\beta = \gamma$ $\beta = 1 + \frac{1}{k}$ and $k \to \infty$ (or $\varphi = \ln(\rho)$)

Variant of the preliminary lemma, for numerical schemes

In the case of the approximation by a numerical scheme, we will have a sequence (ρ_n, u_n) satisfying an approximation of $\operatorname{div}(\rho_n u_n) = 0$ and taking also into account the condition $\int_{\Omega} \rho_n dx = M_n$. We will use a weak version of the preceding lemma, namely :

$$\begin{split} \liminf_{n\to\infty} &\int_{\Omega} \rho_n^{\gamma} \mathrm{div} \ u_n dx \leq 0, \\ \liminf_{n\to\infty} &\int_{\Omega} \rho_n \mathrm{div} \ u_n dx \leq 0. \end{split}$$

Estimate on u_n

Taking u_n as test function in $-\Delta u_n + \nabla p_n = f_n$:

$$\int_{\Omega} \nabla u_n : \nabla u_n \, dx - \int_{\Omega} p_n \mathrm{div}(u_n) \, dx = \int_{\Omega} f_n \cdot u_n \, dx.$$

But $p_n = \rho_n^{\gamma}$ a.e. and $\operatorname{div}(\rho_n u_n) = 0$, then $\int_{\Omega} p_n \operatorname{div}(u_n) dx = 0$. This gives an estimate on u_n :

 $\|u_n\|_{(H_0^1(\Omega))^d}\leq C_1.$

Estimate on p_n , Nečas Lemma

Let $q \in L^2(\Omega)$ s.t. $\int_{\Omega} q dx = 0$. Then, there exists $v \in (H_0^1(\Omega))^d$ s.t.

 $\operatorname{div}(v) = q \text{ a.e. in } \Omega,$

 $\|v\|_{(H_0^1(\Omega))^d} \leq C_2 \|q\|_{L^2(\Omega)},$

(日)、(型)、(E)、(E)、(E)、(O)()

where C_2 only depends on Ω .

Estimate on p_n

 $m_n = \frac{1}{|\Omega|} \int_{\Omega} p_n dx, \ v_n \in H_0^1(\Omega)^d, \ \mathrm{div}(v_n) = p_n - m_n.$ Taking v_n as test function in $-\Delta u_n + \nabla p_n = f_n$:

$$\int_{\Omega} \nabla u_n : \nabla v_n \, dx - \int_{\Omega} p_n \operatorname{div}(v_n) \, dx = \int_{\Omega} f_n \cdot v_n \, dx.$$

Using $\int_{\Omega} \operatorname{div}(v_n) dx = 0$:

$$\int_{\Omega} (p_n - m_n)^2 dx = \int_{\Omega} (f_n \cdot v_n - \nabla u_n : \nabla v_n) dx.$$

Since $\|v_n\|_{(H_0^1(\Omega))^d} \leq C_2 \|p_n - m_n\|_{L^2(\Omega)}$ and $\|u_n\|_{(H_0^1(\Omega))^d} \leq C_1$, the preceding inequality leads to:

$$\|p_n-m_n\|_{L^2(\Omega)}\leq C_3.$$

where C_3 only depends on the L^2 -bound of $(f_n)_{n \in \mathbb{N}}$ and on Ω .

Estimates on p_n and ρ_n

 $\|p_n-m_n\|_{L^2(\Omega)}\leq C_3.$

$$\int_{\Omega} p_n^{\frac{1}{\gamma}} dx = \int_{\Omega} \rho_n dx \leq \sup\{M_p, p \in \mathbb{N}\}.$$

Then:

 $\|p_n\|_{L^2(\Omega)} \leq C_4;$

where C_4 only depends on the L^2 -bound of $(f_n)_{n \in \mathbb{N}}$, the bound of $(M_n)_{n \in \mathbb{N}}$, γ and Ω .

 $p_n = \rho_n^{\gamma}$ a.e. in Ω , then:

$$\|\rho_n\|_{L^{2\gamma}(\Omega)} \leq C_5 = C_4^{\frac{1}{\gamma}}.$$

Thanks to the estimates on u_n , p_n , ρ_n , it is possible to assume (up to a subsequence) that, as $n \to \infty$:

 $u_n \to u$ in $L^2(\Omega)^d$ and weakly in $H^1_0(\Omega)^d$,

 $p_n \to p$ weakly in $L^2(\Omega)$,

 $\rho_n \to \rho$ weakly in $L^{2\gamma}(\Omega)$.

Passing to the limit on the equations, except EOS

Linear equation :

$$-\Delta u + \nabla p = f \text{ in } \Omega, \ u = 0 \text{ on } \partial \Omega,$$

Strong times weak convergence

$$\operatorname{div}(\rho u) = 0 \quad \text{in } \Omega,$$

 L^1 -weak convergence of ρ_n gives positivity of ρ and convergence of mass:

$$\rho \geq 0$$
 in Ω , $\int_{\Omega} \rho(x) dx = M$.

Question (if $\gamma > 1$):

$$p = \rho^{\gamma} \text{ in } \Omega ?$$

Idea : prove $\int_{\Omega} p_n \rho_n dx \to \int_{\Omega} p \rho dx$ and deduce a.e. convergence (of p_n and ρ_n) and $p = \rho^{\gamma}$.

$\nabla: \nabla = \operatorname{divdiv} + \operatorname{curl} \cdot \operatorname{curl}$

For all \bar{u}, \bar{v} in $H_0^1(\Omega)^d$,

$$\int_{\Omega} \nabla \bar{u} : \nabla \bar{v} dx = \int_{\Omega} \operatorname{div}(\bar{u}) \operatorname{div}(\bar{v}) dx + \int_{\Omega} \operatorname{curl}(\bar{u}) \cdot \operatorname{curl}(\bar{v}) dx.$$

Then, the weak form of $-\Delta u_n + \nabla p_n = f_n$ gives for all \bar{v} in $H_0^1(\Omega)^d$

$$\int_{\Omega} \operatorname{div}(u_n) \operatorname{div}(\bar{v}) dx + \int_{\Omega} \operatorname{curl}(u_n) \cdot \operatorname{curl}(\bar{v}) dx - \int_{\Omega} p_n \operatorname{div}(\bar{v}) dx = \int_{\Omega} f_n \cdot \bar{v} dx$$

Choice of \bar{v} ? curl $(\bar{v}) = 0$, div $(\bar{v}) = \rho_n \dots$

Curl-free test function

Let B be a ball containing Ω and $w_n \in H^1_0(B)$, $-\Delta w_n = \rho_n$,

 $v_n = \nabla w_n$

- ► $v_n \in (H^1(\Omega))^d$,
- $\operatorname{div}(v_n) = \rho_n$ a.e. in Ω ,
- $\operatorname{curl}(v_n) = 0$ a.e. in Ω ,
- $\|v_n\|_{(H^1(\Omega))^d} \leq C_6 \|\rho_n\|_{L^2(\Omega)}$, where C_6 only depends on Ω .

Then, up to a subsequence,

 $v_n \rightarrow v$ in $L^2(\Omega)$ and weakly in $H^1(\Omega)$, $\operatorname{curl}(v) = 0$, $\operatorname{div}(v) = \rho$. (Remark : $||v_n||_{(H^2(\Omega))^d} \leq C_6 ||\rho_n||_{H^1(\Omega)}$) Proving $\int_{\Omega} (p_n - \operatorname{div}(u_n)) \rho_n \varphi dx \to \int_{\Omega} (p - \operatorname{div}(u)) \rho \varphi dx$ Let $\varphi \in C_c^{\infty}(\Omega)$ (so that $v_n \varphi \in H_0^1(\Omega)^d$)). Taking $\overline{v} = v_n \varphi$: $\int_{\Omega} \operatorname{div}(u_n) \operatorname{div}(v_n \varphi) dx + \int_{\Omega} \operatorname{curl}(u_n) \cdot \operatorname{curl}(v_n \varphi) dx - \int_{\Omega} p_n \operatorname{div}(v_n \varphi) dx$ $= \int_{\Omega} f_n \cdot (v_n \varphi) dx.$

But, $\operatorname{div}(v_n\varphi) = \rho_n\varphi + v_n \cdot \nabla\varphi$ and $\operatorname{curl}(v_n\varphi) = L(\varphi)v_n$, where $L(\varphi)$ is a matrix involving the first order derivatives of φ . Then:

$$\int_{\Omega} (\operatorname{div}(u_n) - p_n) \rho_n \varphi dx = \int_{\Omega} f_n \cdot (v_n \varphi) dx - \int_{\Omega} \operatorname{div}(u_n) v_n \cdot \nabla \varphi dx - \int \operatorname{curl}(u_n) \cdot L(\varphi) v_n + \int_{\Omega} p_n v_n \cdot \nabla \varphi dx.$$

Weak convergence of u_n in $H_0^1(\Omega)^d$, weak convergence of p_n in $L^2(\Omega)$ and convergence of v_n and f_n in $L^2(\Omega)^d$:

$$\lim_{n\to\infty}\int_{\Omega}(\operatorname{div}(u_n)-p_n)\rho_n\varphi dx=\int_{\Omega}f\cdot(v\varphi)dx\\ -\int_{\Omega}\operatorname{div}(u)v\cdot\nabla\varphi dx-\int\operatorname{curl}(u)\cdot L(\varphi)v+\int_{\Omega}pv\cdot\nabla\varphi dx.$$

Proving $\int_{\Omega} (p_n - \operatorname{div}(u_n)) \rho_n \varphi dx \to \int_{\Omega} (p - \operatorname{div}(u)) \rho \varphi dx$

But, since $-\Delta u + \nabla p = f$:

 $\int_{\Omega} \operatorname{div}(u) \operatorname{div}(v\varphi) dx + \int_{\Omega} \operatorname{curl}(u) \cdot \operatorname{curl}(v\varphi) dx - \int_{\Omega} p \operatorname{div}(v\varphi) dx \\ = \int_{\Omega} f \cdot (v\varphi) dx.$

which gives (using $\operatorname{div}(v) = \rho$ and $\operatorname{curl}(v) = 0$):

$$\int_{\Omega} (\operatorname{div}(u) - p) \rho \varphi dx = \int_{\Omega} f \cdot (v\varphi) dx - \int_{\Omega} \operatorname{div}(u) v \cdot \nabla \varphi dx - \int \operatorname{curl}(u) \cdot L(\varphi) v + \int_{\Omega} p v \cdot \nabla \varphi dx.$$

Then:

$$\lim_{n\to\infty}\int_{\Omega}(p_n-\operatorname{div}(u_n))\rho_n\varphi dx=\int_{\Omega}(p-\operatorname{div}(u))\rho\varphi dx$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Proving $\int_{\Omega} (p_n - \operatorname{div}(u_n)) \rho_n dx \to \int_{\Omega} (p - \operatorname{div}(u)) \rho dx$

Lemma : $F_n \to F$ in $D'(\Omega)$, $(F_n)_{n \in \mathbb{N}}$ bounded in L^q for some q > 1. Then $F_n \to F$ weakly in L^1 .

With $F_n = (p_n - \operatorname{div}(u_n))\rho_n$, $F = (p - \operatorname{div}(u))\rho$ and since $\gamma > 1$, the lemma gives

$$\int_{\Omega} (p_n - \operatorname{div}(u_n)) \rho_n dx \to \int_{\Omega} (p - \operatorname{div}(u)) \rho dx.$$

Proving $\int_{\Omega} p_n \rho_n dx \rightarrow \int_{\Omega} p \rho dx$

$$\int_{\Omega} (p_n - \operatorname{div}(u_n)) \rho_n dx \to \int_{\Omega} (p - \operatorname{div}(u)) \rho dx.$$

But since $\operatorname{div}(\rho_n u_n) = 0$, $\operatorname{div}(\rho u) = 0$, the preliminary lemma gives:

$$\int_{\Omega} \operatorname{div}(u_n) \rho_n dx = 0, \ \int_{\Omega} \operatorname{div}(u) \rho dx = 0;$$

Then:

$$\int_{\Omega} p_n \rho_n dx \to \int_{\Omega} p \rho dx.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

a.e. convergence of ρ_n and p_n

Let $G_n = (\rho_n^{\gamma} - \rho^{\gamma})(\rho_n - \rho) \in L^1(\Omega)$ and $G_n \ge 0$ a.e. in Ω . Futhermore $G_n = (p_n - \rho^{\gamma})(\rho_n - \rho) = p_n\rho_n - p_n\rho - \rho^{\gamma}\rho_n + \rho^{\gamma}\rho$ and:

$$\int_{\Omega} G_n dx = \int_{\Omega} p_n \rho_n dx - \int_{\Omega} p_n \rho dx - \int_{\Omega} \rho^{\gamma} \rho_n dx + \int_{\Omega} \rho^{\gamma} \rho dx.$$

Using the weak convergence in $L^2(\Omega)$ of p_n and ρ_n and $\int_{\Omega} p_n \rho_n dx \rightarrow \int_{\Omega} p \rho dx$:

$$\lim_{n\to\infty}\int_{\Omega}G_ndx=0,$$

Then (up to a subsequence), $G_n \to 0$ a.e. and then $\rho_n \to \rho$ a.e. (since $y \mapsto y^{\gamma}$ is an increasing function on \mathbb{R}_+). Finally: $\rho_n \to \rho$ in $L^q(\Omega)$ for all $1 \le q < 2\gamma$, $p_n = \rho_n^{\gamma} \to \rho^{\gamma}$ in $L^q(\Omega)$ for all $1 \le q < 2$, and $p = \rho^{\gamma}$. Additional difficulty for stat. comp. NS equations

 Ω is a bounded open set of \mathbb{R}^d , d = 2 or 3, with a Lipschitz continuous boundary, $\gamma > 1$, $f \in L^2(\Omega)^d$ and M > 0

$$\begin{aligned} -\Delta u + \operatorname{div}(\rho u \otimes u) + \nabla p &= f \text{ in } \Omega, \ u = 0 \text{ on } \partial \Omega \\ \operatorname{div}(\rho u) &= 0 \text{ in } \Omega, \ \rho \geq 0 \text{ in } \Omega, \ \int_{\Omega} \rho(x) dx = M, \\ p &= \rho^{\gamma} \text{ in } \Omega \end{aligned}$$

d = 2: no aditional difficulty d = 3: no additional difficulty if $\gamma \ge 3$. But for $\gamma < 3$, no estimate on p in $L^2(\Omega)$. Estimates in the case of NS equations, $\frac{3}{2} < \gamma < 3$

Estimate on u: Taking u as test function in the momentum leads to an estimate on u in $(H_0^1(\Omega)^d$ since

$$\int_{\Omega} \rho u \otimes u : \nabla u dx = 0.$$

Then, we have also an estimate on u in $L^6(\Omega)^d$ (using Sobolev embedding).

Estimate on p in $L^q(\Omega)$, with some 1 < q < 2 and q = 1 when $\gamma = \frac{3}{2}$ (using Nečas Lemma in some L^r instead of L^2).

Estimate on ρ in $L^q(\Omega)$, with some $\frac{3}{2} < q < 6$ and $q = \frac{3}{2}$ when $\gamma = \frac{3}{2}$ (since $p = \rho^{\gamma}$).

Remark : $\rho u \otimes u \in L^1(\Omega)$, since $u \in L^6(\Omega)^d$ and $\rho \in L^{\frac{3}{2}}(\Omega)$ (and $\frac{1}{6} + \frac{1}{6} + \frac{2}{3} = 1$).

NS equations, γ < 3, how to pass to the limit in the EOS

We prove

$$\lim_{n\to\infty}\int_{\Omega}p_n\rho_n^{\theta}dx=\int_{\Omega}p\rho^{\theta}dx,$$

with some convenient choice of $\theta > 0$ instead of $\theta = 1$.

This gives, as for $\theta = 1$, the a.e. convergence (up to a subsequence) of p_n and ρ_n .