Convergence of approximate solutions for Stationary compressible Stokes equations

R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché

K $\rho \dot{\tau} \tau \eta$, September 2008

Fisrt step for proving the convergence of approximate solutions for the evolution compressible Navier-Stokes equations (which gives, in particular, the existence of solutions, $\left.d=3, p=\rho^{\gamma}, \gamma>\frac{3}{2}\right)$.

Stationary compressible Stokes equations

Ω is a bounded open set of $\mathbb{R}^{d}, d=2$ or 3 , with a Lipschitz continuous boundary, $\gamma>1, f \in L^{2}(\Omega)^{d}$ and $M>0$

$$
\begin{gathered}
-\Delta u+\nabla p=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \\
\operatorname{div}(\rho u)=0 \text { in } \Omega, \rho \geq 0 \text { in } \Omega, \int_{\Omega} \rho(x) d x=M \\
p=\rho^{\gamma} \text { in } \Omega
\end{gathered}
$$

Functional spaces : $u \in H_{0}^{1}(\Omega), p \in L^{2}(\Omega), \rho \in L^{2 \gamma}(\Omega)$
(different spaces for p and ρ in the case of Navier-Stokes if $d=3$ and $\gamma<3$)

Aim

Prove the existence of a weak solution to the compressible Stokes equations by the convergence of a sequence (up to a subsequence, since, up to now, no uniqueness result is available for this problem) of approximate solutions given by a numerical scheme as the mesh size goes to 0

Simpler result: "continuity" with respect to the data

$$
\begin{gathered}
-\Delta u_{n}+\nabla p_{n}=f_{n} \text { in } \Omega, \quad u_{n}=0 \text { on } \partial \Omega, \\
\operatorname{div}\left(\rho_{n} u_{n}\right)=0 \text { in } \Omega, \rho_{n} \geq 0 \text { in } \Omega, \int_{\Omega} \rho_{n}(x) d x=M_{n}, \\
p_{n}=\rho_{n}^{\gamma} \text { in } \Omega
\end{gathered}
$$

$f_{n} \rightarrow f$ in $\left(L^{2}(\Omega)\right)^{d}$ and $M_{n} \rightarrow M$. Then, up to a subsequence,

- $u_{n} \rightarrow u$ in $L^{2}(\Omega)^{d}$ and weakly in $H_{0}^{1}(\Omega)^{d}$,
- $p_{n} \rightarrow p$ in $L^{q}(\Omega)$ for any $1 \leq q<2$ and weakly in $L^{2}(\Omega)$,
- $\rho_{n} \rightarrow \rho$ in $L^{q}(\Omega)$ for any $1 \leq q<2 \gamma$ and weakly in $L^{2 \gamma}(\Omega)$,
where (u, p, ρ) is a weak solution of the compressible Stokes equations (with f and M as data)
The case $\gamma=1$ is also possible, but we obtain only weak convergence of p_{n} and ρ_{n} in $L^{2}(\Omega)$ (strong conv. are not needed).

Preliminary lemma

$\rho \in L^{2 \gamma}(\Omega), \rho \geq 0$ a.e. in $\Omega, u \in\left(H_{0}^{1}(\Omega)\right)^{d}, \operatorname{div}(\rho u)=0$, then:

$$
\begin{aligned}
& \int_{\Omega} \rho \operatorname{div}(u) d x=0 \\
& \int_{\Omega} \rho^{\gamma} \operatorname{div}(u) d x=0
\end{aligned}
$$

Proof of the preliminary result

For simplicity : $\rho \in C^{1}(\bar{\Omega}), \rho \geq \alpha$ a.e. in $\Omega, \alpha>0$,
$1<\beta \leq \gamma$. Take $\varphi=\rho^{\beta-1}$ as test function in $\operatorname{div}(\rho u)=0$:

$$
\int_{\Omega} \rho u \cdot \nabla \rho^{\beta-1} d x=(\beta-1) \int_{\Omega} \rho^{\beta-1} u \cdot \nabla \rho d x=0
$$

Then

$$
\frac{\beta-1}{\beta} \int_{\Omega} u \cdot \nabla \rho^{\beta} d x=0
$$

and finally

$$
\int_{\Omega} \rho^{\beta} \operatorname{div}(u) d x=0
$$

Two cases :
$\beta=\gamma$
$\beta=1+\frac{1}{k}$ and $k \rightarrow \infty($ or $\varphi=\ln (\rho))$

Variant of the preliminary lemma, for numerical schemes

In the case of the approximation by a numerical scheme, we will have a sequence (ρ_{n}, u_{n}) satisfying an approximation of $\operatorname{div}\left(\rho_{n} u_{n}\right)=0$ and taking also into account the condition $\int_{\Omega} \rho_{n} d x=M_{n}$. We will use a weak version of the preceding lemma, namely :

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \int_{\Omega} \rho_{n}^{\gamma} \operatorname{div} u_{n} d x \leq 0, \\
& \liminf _{n \rightarrow \infty} \int_{\Omega} \rho_{n} \operatorname{div} u_{n} d x \leq 0 .
\end{aligned}
$$

Estimate on u_{n}

Taking u_{n} as test function in $-\Delta u_{n}+\nabla p_{n}=f_{n}$:

$$
\int_{\Omega} \nabla u_{n}: \nabla u_{n} d x-\int_{\Omega} p_{n} \operatorname{div}\left(u_{n}\right) d x=\int_{\Omega} f_{n} \cdot u_{n} d x
$$

But $p_{n}=\rho_{n}^{\gamma}$ a.e. and $\operatorname{div}\left(\rho_{n} u_{n}\right)=0$, then $\int_{\Omega} p_{n} \operatorname{div}\left(u_{n}\right) d x=0$. This gives an estimate on u_{n} :

$$
\left\|u_{n}\right\|_{\left(H_{0}^{1}(\Omega)\right)^{d}} \leq C_{1} .
$$

Estimate on p_{n}, Nečas Lemma

Let $q \in L^{2}(\Omega)$ s.t. $\int_{\Omega} q d x=0$.
Then, there exists $v \in\left(H_{0}^{1}(\Omega)\right)^{d}$ s.t.

$$
\operatorname{div}(v)=q \text { a.e. in } \Omega
$$

$$
\|v\|_{\left(H_{0}^{1}(\Omega)\right)^{d}} \leq C_{2}\|q\|_{L^{2}(\Omega)}
$$

where C_{2} only depends on Ω.

Estimate on p_{n}

$m_{n}=\frac{1}{|\Omega|} \int_{\Omega} p_{n} d x, v_{n} \in H_{0}^{1}(\Omega)^{d}, \operatorname{div}\left(v_{n}\right)=p_{n}-m_{n}$.
Taking v_{n} as test function in $-\Delta u_{n}+\nabla p_{n}=f_{n}$:

$$
\int_{\Omega} \nabla u_{n}: \nabla v_{n} d x-\int_{\Omega} p_{n} \operatorname{div}\left(v_{n}\right) d x=\int_{\Omega} f_{n} \cdot v_{n} d x
$$

Using $\int_{\Omega} \operatorname{div}\left(v_{n}\right) d x=0$:

$$
\int_{\Omega}\left(p_{n}-m_{n}\right)^{2} d x=\int_{\Omega}\left(f_{n} \cdot v_{n}-\nabla u_{n}: \nabla v_{n}\right) d x .
$$

Since $\left\|v_{n}\right\|_{\left(H_{0}^{1}(\Omega)\right)^{d}} \leq C_{2}\left\|p_{n}-m_{n}\right\|_{L^{2}(\Omega)}$ and $\left\|u_{n}\right\|_{\left(H_{0}^{1}(\Omega)\right)^{d}} \leq C_{1}$, the preceding inequality leads to:

$$
\left\|p_{n}-m_{n}\right\|_{L^{2}(\Omega)} \leq C_{3}
$$

where C_{3} only depends on the L^{2}-bound of $\left(f_{n}\right)_{n \in \mathbb{N}}$ and on Ω.

Estimates on p_{n} and ρ_{n}

$$
\begin{gathered}
\left\|p_{n}-m_{n}\right\|_{L^{2}(\Omega)} \leq C_{3} \\
\int_{\Omega} p_{n}^{\frac{1}{\gamma}} d x=\int_{\Omega} \rho_{n} d x \leq \sup \left\{M_{p}, p \in \mathbb{N}\right\} .
\end{gathered}
$$

Then:

$$
\left\|p_{n}\right\|_{L^{2}(\Omega)} \leq C_{4}
$$

where C_{4} only depends on the L^{2}-bound of $\left(f_{n}\right)_{n \in \mathbb{N}}$, the bound of $\left(M_{n}\right)_{n \in \mathbb{N}}, \gamma$ and Ω.
$p_{n}=\rho_{n}^{\gamma}$ a.e. in Ω, then:

$$
\left\|\rho_{n}\right\|_{L^{2 \gamma}(\Omega)} \leq C_{5}=C_{4}^{\frac{1}{\gamma}}
$$

Weak-convergence on u_{n}, p_{n}, ρ_{n}

Thanks to the estimates on u_{n}, p_{n}, ρ_{n}, it is possible to assume (up to a subsequence) that, as $n \rightarrow \infty$:

$$
u_{n} \rightarrow u \text { in } L^{2}(\Omega)^{d} \text { and weakly in } H_{0}^{1}(\Omega)^{d}
$$

$$
\begin{aligned}
& p_{n} \rightarrow p \text { weakly in } L^{2}(\Omega), \\
& \rho_{n} \rightarrow \rho \text { weakly in } L^{2 \gamma}(\Omega) .
\end{aligned}
$$

Passing to the limit on the equations, except EOS

Linear equation :

$$
-\Delta u+\nabla p=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega,
$$

Strong times weak convergence

$$
\operatorname{div}(\rho u)=0 \text { in } \Omega
$$

L^{1}-weak convergence of ρ_{n} gives positivity of ρ and convergence of mass:

$$
\rho \geq 0 \text { in } \Omega, \int_{\Omega} \rho(x) d x=M .
$$

Question (if $\gamma>1$):

$$
p=\rho^{\gamma} \text { in } \Omega \text { ? }
$$

Idea: prove $\int_{\Omega} p_{n} \rho_{n} d x \rightarrow \int_{\Omega} p \rho d x$ and deduce a.e. convergence (of p_{n} and ρ_{n}) and $p=\rho^{\gamma}$.

$\nabla: \nabla=$ divdiv + curl \cdot curl

For all \bar{u}, \bar{v} in $H_{0}^{1}(\Omega)^{d}$,

$$
\int_{\Omega} \nabla \bar{u}: \nabla \bar{v} d x=\int_{\Omega} \operatorname{div}(\bar{u}) \operatorname{div}(\bar{v}) d x+\int_{\Omega} \operatorname{curl}(\bar{u}) \cdot \operatorname{curl}(\bar{v}) d x .
$$

Then, the weak form of $-\Delta u_{n}+\nabla p_{n}=f_{n}$ gives for all \bar{v} in $H_{0}^{1}(\Omega)^{d}$
$\int_{\Omega} \operatorname{div}\left(u_{n}\right) \operatorname{div}(\bar{v}) d x+\int_{\Omega} \operatorname{curl}\left(u_{n}\right) \cdot \operatorname{curl}(\bar{v}) d x-\int_{\Omega} p_{n} \operatorname{div}(\bar{v}) d x=\int_{\Omega} f_{n} \cdot \bar{v} d x$
Choice of $\bar{v} ? \operatorname{curl}(\bar{v})=0, \operatorname{div}(\bar{v})=\rho_{n} \ldots$

Curl-free test function

Let B be a ball containing Ω and $w_{n} \in H_{0}^{1}(B),-\Delta w_{n}=\rho_{n}$,

$$
v_{n}=\nabla w_{n}
$$

- $v_{n} \in\left(H^{1}(\Omega)\right)^{d}$,
- $\operatorname{div}\left(v_{n}\right)=\rho_{n}$ a.e. in Ω,
$-\operatorname{curl}\left(v_{n}\right)=0$ a.e. in Ω,
- $\left\|v_{n}\right\|_{\left(H^{1}(\Omega)\right)^{d}} \leq C_{6}\left\|\rho_{n}\right\|_{L^{2}(\Omega)}$, where C_{6} only depends on Ω.

Then, up to a subsequence,
$v_{n} \rightarrow v$ in $L^{2}(\Omega)$ and weakly in $H^{1}(\Omega)$,
$\operatorname{curl}(v)=0, \operatorname{div}(v)=\rho$.
(Remark: $\left.\left\|v_{n}\right\|_{\left(H^{2}(\Omega)\right)^{d}} \leq C_{6}\left\|\rho_{n}\right\|_{H^{1}(\Omega)}\right)$

Proving $\int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n} \varphi d x \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi d x$
Let $\varphi \in C_{c}^{\infty}(\Omega)$ (so that $\left.v_{n} \varphi \in H_{0}^{1}(\Omega)^{d}\right)$). Taking $\bar{v}=v_{n} \varphi$:

$$
\begin{gathered}
\int_{\Omega} \operatorname{div}\left(u_{n}\right) \operatorname{div}\left(v_{n} \varphi\right) d x+\int_{\Omega} \operatorname{curl}\left(u_{n}\right) \cdot \operatorname{curl}\left(v_{n} \varphi\right) d x-\int_{\Omega} p_{n} \operatorname{div}\left(v_{n} \varphi\right) d x \\
=\int_{\Omega} f_{n} \cdot\left(v_{n} \varphi\right) d x .
\end{gathered}
$$

But, $\operatorname{div}\left(v_{n} \varphi\right)=\rho_{n} \varphi+v_{n} \cdot \nabla \varphi$ and $\operatorname{curl}\left(v_{n} \varphi\right)=L(\varphi) v_{n}$, where $L(\varphi)$ is a matrix involving the first order derivatives of φ. Then:

$$
\begin{aligned}
& \int_{\Omega}\left(\operatorname{div}\left(u_{n}\right)-p_{n}\right) \rho_{n} \varphi d x=\int_{\Omega} f_{n} \cdot\left(v_{n} \varphi\right) d x \\
& -\int_{\Omega} \operatorname{div}\left(u_{n}\right) v_{n} \cdot \nabla \varphi d x-\int \operatorname{curl}\left(u_{n}\right) \cdot L(\varphi) v_{n}+\int_{\Omega} p_{n} v_{n} \cdot \nabla \varphi d x .
\end{aligned}
$$

Weak convergence of u_{n} in $H_{0}^{1}(\Omega)^{d}$, weak convergence of p_{n} in $L^{2}(\Omega)$ and convergence of v_{n} and f_{n} in $L^{2}(\Omega)^{d}$:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{\Omega}\left(\operatorname{div}\left(u_{n}\right)-p_{n}\right) \rho_{n} \varphi d x=\int_{\Omega} f \cdot(v \varphi) d x \\
& -\int_{\Omega} \operatorname{div}(u) v \cdot \nabla \varphi d x-\int \operatorname{curl}(u) \cdot L(\varphi) v+\int_{\Omega} p v \cdot \nabla \varphi d x .
\end{aligned}
$$

Proving $\int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n} \varphi d x \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi d x$

But, since $-\Delta u+\nabla p=f$:
$\int_{\Omega} \operatorname{div}(u) \operatorname{div}(v \varphi) d x+\int_{\Omega} \operatorname{curl}(u) \cdot \operatorname{curl}(v \varphi) d x-\int_{\Omega} p \operatorname{div}(v \varphi) d x$ $=\int_{\Omega} f \cdot(v \varphi) d x$.
which gives (using $\operatorname{div}(v)=\rho$ and $\operatorname{curl}(v)=0$):

$$
\begin{aligned}
& \int_{\Omega}(\operatorname{div}(u)-p) \rho \varphi d x=\int_{\Omega} f \cdot(v \varphi) d x \\
& -\int_{\Omega} \operatorname{div}(u) v \cdot \nabla \varphi d x-\int \operatorname{curl}(u) \cdot L(\varphi) v+\int_{\Omega} p v \cdot \nabla \varphi d x .
\end{aligned}
$$

Then:

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n} \varphi d x=\int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi d x
$$

Proving $\int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n} d x \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho d x$

Lemma : $F_{n} \rightarrow F$ in $D^{\prime}(\Omega),\left(F_{n}\right)_{n \in \mathbb{N}}$ bounded in L^{q} for some $q>1$. Then $F_{n} \rightarrow F$ weakly in L^{1}.

With $F_{n}=\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n}, F=(p-\operatorname{div}(u)) \rho$ and since $\gamma>1$, the lemma gives

$$
\int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n} d x \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho d x
$$

Proving $\int_{\Omega} p_{n} \rho_{n} d x \rightarrow \int_{\Omega} p \rho d x$

$$
\int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n} d x \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho d x
$$

But since $\operatorname{div}\left(\rho_{n} u_{n}\right)=0, \operatorname{div}(\rho u)=0$, the preliminary lemma gives:

$$
\int_{\Omega} \operatorname{div}\left(u_{n}\right) \rho_{n} d x=0, \int_{\Omega} \operatorname{div}(u) \rho d x=0
$$

Then:

$$
\int_{\Omega} p_{n} \rho_{n} d x \rightarrow \int_{\Omega} p \rho d x
$$

a.e. convergence of ρ_{n} and p_{n}

Let $G_{n}=\left(\rho_{n}^{\gamma}-\rho^{\gamma}\right)\left(\rho_{n}-\rho\right) \in L^{1}(\Omega)$ and $G_{n} \geq 0$ a.e. in Ω.
Futhermore $G_{n}=\left(p_{n}-\rho^{\gamma}\right)\left(\rho_{n}-\rho\right)=p_{n} \rho_{n}-p_{n} \rho-\rho^{\gamma} \rho_{n}+\rho^{\gamma} \rho$ and:

$$
\int_{\Omega} G_{n} d x=\int_{\Omega} p_{n} \rho_{n} d x-\int_{\Omega} p_{n} \rho d x-\int_{\Omega} \rho^{\gamma} \rho_{n} d x+\int_{\Omega} \rho^{\gamma} \rho d x .
$$

Using the weak convergence in $L^{2}(\Omega)$ of p_{n} and ρ_{n} and $\int_{\Omega} p_{n} \rho_{n} d x \rightarrow \int_{\Omega} p \rho d x:$

$$
\lim _{n \rightarrow \infty} \int_{\Omega} G_{n} d x=0
$$

Then (up to a subsequence), $G_{n} \rightarrow 0$ a.e. and then $\rho_{n} \rightarrow \rho$ a.e. (since $y \mapsto y^{\gamma}$ is an increasing function on \mathbb{R}_{+}). Finally:
$\rho_{n} \rightarrow \rho$ in $L^{q}(\Omega)$ for all $1 \leq q<2 \gamma$,
$p_{n}=\rho_{n}^{\gamma} \rightarrow \rho^{\gamma}$ in $L^{q}(\Omega)$ for all $1 \leq q<2$,
and $p=\rho^{\gamma}$.

Additional difficulty for stat. comp. NS equations

Ω is a bounded open set of $\mathbb{R}^{d}, d=2$ or 3 , with a Lipschitz continuous boundary, $\gamma>1, f \in L^{2}(\Omega)^{d}$ and $M>0$

$$
\begin{gathered}
-\Delta u+\operatorname{div}(\rho u \otimes u)+\nabla p=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \\
\operatorname{div}(\rho u)=0 \text { in } \Omega, \rho \geq 0 \text { in } \Omega, \int_{\Omega} \rho(x) d x=M \\
p=\rho^{\gamma} \text { in } \Omega
\end{gathered}
$$

$d=2$: no aditional difficulty
$d=3$: no additional difficulty if $\gamma \geq 3$. But for $\gamma<3$, no estimate on p in $L^{2}(\Omega)$.

Estimates in the case of NS equations, $\frac{3}{2}<\gamma<3$

Estimate on u : Taking u as test function in the momentum leads to an estimate on u in $\left(H_{0}^{1}(\Omega)^{d}\right.$ since

$$
\int_{\Omega} \rho u \otimes u: \nabla u d x=0 .
$$

Then, we have also an estimate on u in $L^{6}(\Omega)^{d}$ (using Sobolev embedding).

Estimate on p in $L^{q}(\Omega)$, with some $1<q<2$ and $q=1$ when $\gamma=\frac{3}{2}$ (using Nečas Lemma in some L^{r} instead of L^{2}).
Estimate on ρ in $L^{q}(\Omega)$, with some $\frac{3}{2}<q<6$ and $q=\frac{3}{2}$ when $\gamma=\frac{3}{2}$ (since $p=\rho^{\gamma}$).

Remark : $\rho u \otimes u \in L^{1}(\Omega)$, since $u \in L^{6}(\Omega)^{d}$ and $\rho \in L^{\frac{3}{2}}(\Omega)$ (and $\frac{1}{6}+\frac{1}{6}+\frac{2}{3}=1$).

NS equations, $\gamma<3$, how to pass to the limit in the EOS

We prove

$$
\lim _{n \rightarrow \infty} \int_{\Omega} p_{n} \rho_{n}^{\theta} d x=\int_{\Omega} p \rho^{\theta} d x
$$

with some convenient choice of $\theta>0$ instead of $\theta=1$.
This gives, as for $\theta=1$, the a.e. convergence (up to a subsequence) of p_{n} and ρ_{n}.

