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Objectif de nombreux simulateurs actuels

Développer des simulateurs numériques capables de simuler des
écoulements fluides dans une large gamme de régimes.
Examples de phénomènes :

I Simulation d’incendies (écoulements lents)

I Accident dans un centrale nucléaire (écoulements rapides. . . )

Examples d’équations :

I Navier Stokes incompressible

I Euler compressible



Ecoulements incompressibles, exemple : NS incomp.

I Equations souvent sous forme non conservative

I Discrétisation est faite sur maillages décalés (schéma MAC)

I Systèmes dont la partie convective est parfois non
hyperbolique



Ecoulements compressibles, exemple : Euler comp.

I Utiliser la (bonne) forme conservative des équations (C1–)

I Inconnues discrètes sont colocalisées (C2–)

I Systèmes hyperboliques (C3–)

Essentiellement lié au fait que l’on s’attend à avoir des solutions
discontinues.

Question: Peut on se libérer de ces trois “contraintes” ?



C1– Burgers, “equivalent equation”

∂tρ+ ∂x(ρ2) = 0, x ∈ R, t ∈ R+

ρ(x , 0) =

{
2, x < 0
1, x > 0

For positive and regular solution, an equivalent equation is

∂tρ
2 +

4

3
∂x(ρ3) = 0, x ∈ R, t ∈ R+

The classical upwind scheme on this latter equation leads to a
solution which does not have the good localization of the
discontinuity

The speed of the discontinuity is 3 for burgers and 28/9 for the
equivalent equation



Burgers, “equivalent” equation

(h/k)((ρn+1
i )2 − (ρni )2) +

4

3
((ρni )3 − (ρni−1)3) = 0,

Upwind scheme on the “equivalent” equation, CFL=1, solution for
T=1/2 (N = 100, M = 200)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/4
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Bad localization of the discontinuity (1.555 instead of 1.5), bounds
on the solution, no convergence



Burgers, numerical diffusion

∂tρ+ ∂x(f (ρ)) = 0

On this equation, if f ′ ≥ 0, upwinding is “similar” to add a
numerical diffusion. Namely, is similar to

∂tρ+ ∂x(f (ρ))− ∂x(
hf ′(ρ)− kf ′2(ρ)

2
∂xρ) = 0

The CFL condition is for hf ′(ρ)− kf ′2(ρ) ≥ 0 (i.e. kf ′(ρ) ≤ h)

In the case of the Burgers equation it gives

∂tρ+ ∂x(ρ2)− ∂x((hρ− 2kρ2)∂xρ) = 0, x ∈ R, t ∈ R+



Burgers, non conservative numerical diffusion

In the case of the “equivalent” equation

∂tρ
2 + (4/3)∂x(ρ3) = 0,

upwinding is similar to (since ρ > 0)

∂tρ
2 +

4

3
∂x(ρ3)− ∂x((2hρ2 − 4kρ3)∂xρ) = 0,

Turning back to the Burgers equation, this leads to

∂tρ+ ∂x(ρ2)− 1

ρ
∂x((hρ2 − 2kρ3)∂xρ) = 0, x ∈ R, t ∈ R+

This is a numerical diffusion (thanks to the CFL condition) but not
on a conservative form.

The consequence is that a non conservative diffusion may lead to
wrong discontinuities



Burgers, non conservative numerical diffusion on an
equivalent equation

The discretization of a non conservative diffusion on the burgers
equation lead to wrong discontinuities

But

Using a non conservative diffusion on an equivalent equation may
gives the good discontinuities for the initial equation?

The answer is yes. . .



Compressible Euler Equations

∂tρ+ div(ρu) = 0, x ∈ R3, t ∈ R+

∂t(ρu) + div(ρu ⊗ u) +∇p = 0, x ∈ R3, t ∈ R+

∂tE + div(u(E + p)) = 0, x ∈ R3, t ∈ R+

E = 1
2ρ|u|

2 + ρe
p = ϕ(ρ, e) (perfect gaz : p = (γ − 1)ρe)
Initial condition on ρ, u, p

Hyperbolic system on conservative form.



Equivalent system

Euler system is equivalent, for regular solutions, to the following
one

∂tρ+ div(ρu) = 0, x ∈ R3, t ∈ R+

∂t(ρu) + div(ρu ⊗ u) +∇p = 0, x ∈ R3, t ∈ R+

∂tρe + div(ρue) + pdivu = 0, x ∈ R3, t ∈ R+

and there are some reasons to prefer (in particular with staggered
grids) to work with this system instead of the initial system

But, this system is not equivalent to the initial system when the
solution contains shocks



Working with internal energy in Euler Equations

when the solution contains a shock wave, the initial Euler
Equations are not equivalent to the following ones

∂tρ+ div(ρu) = 0, x ∈ R3, t ∈ R+

∂t(ρu) + div(ρu ⊗ u) +∇p = 0, x ∈ R3, t ∈ R+

∂tρe + div(ρue) + pdivu = 0, x ∈ R3, t ∈ R+

But, discretizing the third equation by adding a convenient source
term gives an approximate solution which converges, as the mesh
size and the time step go to 0 (with a CFL condition in the case of
an explicit scheme), to a weak entropy solution of the Euler
Equations (assuming some estimates on the approximate solution).

Papers of R. Herbin, W. Kheriji, J.-C. Latché and T. T. Trung, C.
Zaza

Indeed, the source term converge to 0 except in the shocks waves.



C2– Burgers viewed as a coupled system, classical upwind

∂tρ+ ∂x(uρ) = 0, u = ρ, x ∈ R, t ∈ R+

ρ(x , 0) =

{
2, x < 0
1, x > 0

Upwind scheme, CFL=1, solution for T=1/2 (N = 100, M = 200)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/4
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Good localization of the discontinuity, few numerical diffusion,
bounds on the solution, convergence.



Burgers viewed as a coupled system, upwind-ncv
Upwind on u∂xρ + ρ∂xu. Since u = ρ (collocated), it gives

(h/k)(ρn+1
i − ρni ) + 2uni (ρni − ρni−1) = 0, uni = ρni

Initial condition : 3 for x < 0 and 1 for x > 0
Upwind-ncv scheme, CFL=1/4, solution for T=1/4 (N = 100,
M = 200)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/2
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Wrong localization of the discontinuity, bounds on the solution, no
convergence.



Burgers viewed as a coupled system, upwind-ncv

∂x(ρu) = u∂xρ + ρ∂xu.

Upwind-ncv=upwind + discretization of h(∂xu)2.

No problem for a regular solution. A problem might arise if ∂xu
not in L2.



Burgers viewed as a coupled system, upwind-staggered

(h/k)(ρn+1
i − ρni ) + (un

i+ 1
2
ρni − un

i− 1
2
ρni−1) = 0,

ui+ 1
2

= (1/2)(ρni + ρni+1)

Upwind-staggered scheme, CFL=1, solution for T=1/20
(N = 100, M = 20)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/4
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Pretty good localization of the discontinuity (0.15), but no bound
of the solution  time step too large



Burgers viewed as a coupled system, upwind-staggered

(h/k)(ρn+1
i − ρni ) + (un

i+ 1
2
ρni − un

i− 1
2
ρni−1) = 0,

ui+ 1
2

= (1/2)(ρni + ρni+1)

Upwind-staggered scheme, CFL=1/2 (reduced CFL), solution for
T=1/20 (N = 100, M = 40)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/4
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Good localization of the discontinuity (0.15), positivity but no
upper bound on the solution.



Burgers viewed as a coupled system, upwind-staggered

(h/k)(ρn+1
i − ρni ) + (un

i+ 1
2
ρni − un

i− 1
2
ρni−1) = 0,

ui+ 1
2

= (1/2)(ρni + ρni+1)

Upwind-staggered scheme, CFL=1/2 (reduced CFL), solution for
T=1/4 (N = 100, M = 200)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/4
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Good localization of the discontinuity (0.75), positivity but no
upper bound on the solution.



Burgers viewed as a coupled system, upwind-staggered

Consistency in the sense of Lax

If the numerical solution is bounded (independently of the mesh
size and the time step) it converges (as mesh size goes to 0, under
appropriate CFL condition) to the weak entropy solution of
Burgers (D. Doyen and R. Eymard)



Staggered schemes for coupled conservation laws

∂tρ+ div(ρu) = 0, x ∈ R3, t ∈ R+

and
∂tz + u · ∇z = 0, x ∈ R3, t ∈ R+

More precisely, the second equation is rather (for possible
discontinuity of u and z)

∂t(ρz) + div(ρuz) = 0, x ∈ R3, t ∈ R+

For instance, a constant z is solution of this equation, we espect
the numerical scheme to have the same property (it is related to
the stability of the scheme).



Collocated for ρ and z , upwind scheme, 1d

u is given on a dual grid

(h/k)(ρn+1
i − ρni ) + (F n

i+ 1
2
− F n

i− 1
2
) = 0,

F n
i+ 1

2
= un

i+ 1
2
ρni , if u

n
i+ 1

2
> 0

F n
i+ 1

2
= un

i+ 1
2
ρni+1, if u

n
i+ 1

2
< 0

Then, a convenient discretization for z is

(h/k)(ρn+1
i zn+1

i − ρni zni ) + (Gn
i+ 1

2
− Gn

i− 1
2
) = 0

Gn
i+ 1

2
= F n

i+ 1
2
zni , if u

n
i+ 1

2
> 0 (ρ > 0)

Gi+ 1
2

= F n
i+ 1

2
zni+1, if u

n
i+ 1

2
< 0

A constant z is solution of the scheme



Staggered for ρ and z , 1d
The unknowns are ρi , zi+1/2 (example : z = u, qdm)

(h/k)(ρn+1
i − ρni ) + (F n

i+ 1
2
− F n

i− 1
2
) = 0

I Define ρ on the dual mesh (with mass conservation)
ρi+1/2 = 1

2(ρi + ρi+1)
I Discrete conservation law on the dual mesh

(h/k)(ρn+1
i+1/2 − ρ

n
i+1/2) + (F n

i+1 − F n
i ) = 0

F n
i = (1/2)(F n

i+1/2 + F n
i−1/2)

I Then, a convenient discretization for z is

(h/k)(ρn+1
i+ 1

2

zn+1
i+ 1

2

− ρn
i+ 1

2
zn
i+ 1

2
+ (Gn

i+1 − Gn
i ) = 0

Gn
i = F n

i z
n
i− 1

2
, if F n

i > 0

Gn
i = F n

i z
n
i+ 1

2
, if F n

i < 0

A constant z is solution of the scheme (R. Herbin and J. C. Latché)



C3– Resonant system

U : R× R+ → D ⊂ Rp

f ∈ C 1(Rp,Rp)

∂tU + ∂x f (U) = 0, x ∈ R, t ∈ R+

I hyperbolic : Df (U) diagonalizable in R for all U ∈ D.

I weakly hyperbolic : Df (U) has real eigenvalues only

I resonant : weakly hyperbolic but not hyperbolic



Linear resonant system

f (u) = Au, A p × p-matrix with real eigenvalues but not
diagonalizable

∂tU + A∂xU = 0, x ∈ R, t ∈ R+

U(·, 0) = U0

I Well posed in C∞

I not well posed in Lp



Example 1

∂tu + ∂x(au) = 0, x ∈ R, t ∈ R+

a = ag on R−, a = ad on R+

agad < 0

∂tU + A∂xU = 0, x ∈ R, t ∈ R+

U =

[
u
a

]
,A =

[
a u
0 0

]
If ag > 0 and ad < 0, no solution in the class of functions

If ad > 0 and ag < 0, infinity of solutions



Example 2, fluid flows in porous media

Fluid flows in porous media under gravity effects

∂tu + ∂x(kf (u)) = 0, x ∈ R, t ∈ R+

k = kg on R−, k = kd on R+ (k > 0)
f (0) = f (1) = 0, f ∈ C 1([0, 1],R).
It can be written as a non linear resonant system
(resonant for u such that f ′(u) = 0).

U =

[
u
k

]
,F (U) =

[
k(f (u))

0

]
,DF (U) =

[
kf ′(u) f (u)

0 0

]
This problem has a unique entropy weak solution for any initial
datum u0 taking values between 0 and 1 and one has convergence
of all “monotone” FV schemes (Seguin-Vovelle-Bachmann)



Example 3, solid mechanics

v = (v1, v2) ∈ C 1(R2,R2) is given
unknown : e : R2 × R+ → R2, e = (e1, e2)

∂te +∇(v · e) = 0

It is a linear resonant system in direction n such that v · n = 0
It is interesting in the case of the inital data satisfies curl(e0) = 0
It is expected to have also at any time curl(e) = 0
Then, the system is equivalent to the following one

∂te1 + div(ve1)− e1∂yv1 + e2∂xv2 = 0

∂te2 + div(ve2)− e2∂xv2 + e1∂yv1 = 0

which is non resonant (and more adapted to numerical simulation)
We have existence and uniqueness for the IVP if v is regular



Example 3

Convection part of ∂te +∇(v · e) = 0, v = (v1, v2)

∂te + A1∂1e + A2∂2e = 0

A1 =

[
v1 v2
0 0

]
,A2 =

[
0 0
v1 v2

]
For a normal vector n = (n1, n2),

n1A1 + n2A2 =

[
n1v1 n1v2
n2v1 n2v2

]
is resonant if v · n = 0, v 6= 0
(0 is a double eigenvalue and n1A1 + n2A2 6= 0)


