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Why upwinding ?

∂tρ+ ∂xρ = 0, x ∈ R, t ∈ R+

ρ(x , 0) =

{
1, x < 0
0, x > 0

Upwind scheme, CFL=1/2, solution for T=1/2 (N = M = 100)
space step: h = 1/N, M = number of time steps, k = (CFL)h

-1.0 0.5-1.5 1.51.00.0-0.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
eq. lin., cfl=1/2, N=M=100, disc. en 0.5

Good speed of discontinuity, bounds on the solution, large amount
of numerical diffusion



Why upwinding ?

Centered scheme, CFL=1/2, solution for T=1/20 (N = 100,
M = 10).
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no numerical diffusion but oscillations, no convergence.



Why upwinding ?

Centered scheme, CFL=1/2, solution for T=1/2 (N = 100,
M = 100).
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eq. lin. cent., cfl=1/2, N=M=100, disc. en 0.5

no numerical diffusion but oscillations, no convergence.



Downwind scheme, for joke

Downwind scheme, CFL=1/2, solution for T=1/2 (N = 100,
M = 100).
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Burgers viewed as a coupled system, upwind

∂tρ+ ∂x(uρ) = 0, u = ρ, x ∈ R, t ∈ R+

ρ(x , 0) =

{
2, x < 0
1, x > 0

Upwind scheme, CFL=1, solution for T=1/2 (N = 100, M = 200)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/4
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Good localization of the discontinuity, few numerical diffusion,
bounds on the solution, convergence.



Burgers viewed as a coupled system, upwind-ncv

(h/k)(ρn+1
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Upwind-ncv scheme, CFL=1, solution for T=1/2 (N = 100,
M = 200)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/4
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Wrong localization of the discontinuity (0.75 instead of 1.5), few
numerical diffusion, bounds on the solution, no convergence.
But, it is due to fact that we discretize u∂xρ and not ∂x(uρ).



Burgers viewed as a coupled system, upwind-ncv
Upwind on u∂xρ + ρ∂xu. Since u = ρ (collocated), it gives

(h/k)(ρn+1
i − ρn

i ) + 2un
i (ρn

i − ρn
i−1) = 0, un

i = ρn
i

Initial condition : 2 for x < 0 and 1 for x > 0
Upwind-ncv scheme, CFL=1, solution for T=1/4 (N = 100,
M = 200)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/4
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not so bad, curious result. . . due to this particular initial condition



Burgers viewed as a coupled system, upwind-ncv
Upwind on u∂xρ + ρ∂xu. Since u = ρ (collocated), it gives

(h/k)(ρn+1
i − ρn

i ) + 2un
i (ρn

i − ρn
i−1) = 0, un

i = ρn
i

Initial condition : 1 for x < 0 and 0 for x > 0
Upwind-ncv scheme, CFL=1/4, solution for T=1/4 (N = 100,
M = 200)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/2
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Wrong localization of the discontinuity (0 instead of 0.25 !), no
numerical diffusion !, bounds on the solution, no convergence.



Burgers viewed as a coupled system, upwind-ncv
Upwind on u∂xρ + ρ∂xu. Since u = ρ (collocated), it gives

(h/k)(ρn+1
i − ρn

i ) + 2un
i (ρn

i − ρn
i−1) = 0, un

i = ρn
i

Initial condition : 3 for x < 0 and 1 for x > 0
Upwind-ncv scheme, CFL=1/4, solution for T=1/4 (N = 100,
M = 200)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/2
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Wrong localization of the discontinuity, bounds on the solution, no
convergence.



Burgers viewed as a coupled system, upwind-ncv

Upwind on u∂xρ + ρ∂xu.

Upwind-ncv=upwind + discretization of h(∂xu)2.

No problem for a regular solution. A problem might arise if ∂xu
not in L2.



Burgers viewed as a coupled system, upwind-staggered
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Upwind-staggered scheme, CFL=1, solution for T=1/20
(N = 100, M = 20)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/4
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Pretty good localization of the discontinuity (0.15), but no bound
of the solution  time step too large



Burgers viewed as a coupled system, upwind-staggered
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Upwind-staggered scheme, CFL=1/2(reduced CFL), solution for
T=1/20 (N = 100, M = 40)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/4
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Good localization of the discontinuity (0.15), positivity but no
upper bound on the solution.



Burgers viewed as a coupled system, upwind-staggered
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Upwind-staggered scheme, CFL=1/2(reduced CFL), solution for
T=1/4 (N = 100, M = 200)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/4
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Good localization of the discontinuity (0.75), positivity but no
upper bound on the solution.



Burgers viewed as a coupled system

∂tρ+ ∂x(uρ) = 0, u = ρ, x ∈ R, t ∈ R+

ρ(x , 0) =

{
2, x < 0
1, x > 0

I Full upwind collocated scheme is perfect. Good discontinuity,
bounds on the solution, convergence

I Non conservative upwind collocated scheme is not good.

I Upwind scheme with staggered grids is pretty good. . . Good
discontinuity, positivity of the solution, no upper bound (and
then reduced CFL is needed) but probably convergence.

Main properties for a good scheme : conservativity, stability
Two additional remarks

I Conservative upwinding has to be done on the true equation

I Numerical diffusion has to be conservative



Burgers, wrong upwinding

∂tρ+ ∂x(ρ2) = 0, x ∈ R, t ∈ R+

ρ(x , 0) =

{
2, x < 0
1, x > 0

For positive and regular solution, an equivalent equation is

∂tρ
2 +

4

3
∂x(ρ3) = 0, x ∈ R, t ∈ R+

The classical upwind scheme on this latter equation leads to a
solution which does not have the good localization of the
discontinuity

The speed of the discontinuity is 3 for burgers and 28/9 for the
equivalent equation



Burgers, upwind on an “equivalent” equation

(h/k)((ρn+1
i )2 − (ρn

i )2) +
4
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Upwind scheme on the “equivalent” equation, CFL=1, solution for
T=1/2 (N = 100, M = 200)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/4
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Bad localization of the discontinuity (0.1555 instead of 1.5),
bounds on the solution, no convergence



Burgers, numerical diffusion

∂tρ+ ∂x(f (ρ)) = 0

On this equation, if f ′ ≥ 0, upwinding is “similar” to add a
numerical diffusion. Namely, is similar to

∂tρ+ ∂x(f (ρ))− ∂x(
hf ′(ρ)− kf ′2(ρ)

2
∂xρ) = 0

The CFL condition is for hf ′(ρ)− kf ′2(ρ) ≥ 0 (i.e. kf ′(ρ) ≤ h)

In the case of the burgers equation it gives

∂tρ+ ∂x(ρ2)− ∂x((hρ− 2kρ2)∂xρ) = 0, x ∈ R, t ∈ R+



Burgers, non conservative numerical diffusion

In the case of the “equivalent” equation

∂tρ
2 + (4/3)∂x(ρ3) = 0,

upwinding is similar to (since ρ > 0)

∂tρ
2 +

4

3
∂x(ρ3)− ∂x((2hρ2 − 4kρ3)∂xρ) = 0,

Turning back to the burgers equation, this leads to

∂tρ+ ∂x(ρ2)− 1

ρ
∂x((hρ2 − 2kρ3)∂xρ) = 0, x ∈ R, t ∈ R+

This is a numerical diffusion (thanks to the CFL condition) but not
on a conservative form.

The consequence is that a non conservative diffusion may lead to
wrong discontinuities.



Stationary compressible Stokes equations
Work with R. Eymard, R. Herbin and J. C. Latché.

d = 2 or 3, Ω =]0, 1[d (or Ω = ∪n
i=1Ri , where Ri ’s are rectangles if

d = 2 or parallelipedus rectangulus if d = 3).
γ ≥ 1, f ∈ L2(Ω)d and M > 0

−∆u +∇p = f in Ω, u = 0 on ∂Ω,

div(ρu) = 0 in Ω, ρ ≥ 0 in Ω,

∫
Ω
ρ(x)dx = M,

p = ργ in Ω

I Discretization by the staggered schemes
I Existence of solution for the discrete problem
I Proof of the convergence (up to subsequence) of the solution

of the discrete problem towards a weak solution of the
continuous problem (no uniqueness result for this problem) as
the mesh size goes to 0



Main result

I Two possible discretizations for the momentum equation :
 MAC scheme (most commonly used scheme for
incompressible Navier Stokes equations)
 Crouzeix-Raviart Finite Element

I Discretization of the mass equation (and total mass
constraint) by classical upwind Finite Volume

I Existence of solution for the discrete problem

I Proof of the convergence (up to subsequence) of the solution
of the discrete problem towards a weak solution of the
continuous problem (no uniqueness result for this problem) as
the mesh size goes to 0



Generalizations

I (Easy) Complete Stokes problem:
−µ∆u − µ

3∇(div u) +∇P = f , with µ ∈ R?
+ given

I (Ongoing work) Navier-Stokes Equations with γ > 1 if d = 2
and γ > 3

2 if d = 3 (probably sharp result with respect to γ
without changing the diffusion term or the EOS)

I (Open question) Other boundary condition. Addition of an
energy equation

I (Open question) Evolution equation (Stokes and
Navier-Stokes)



Weak solution of the stationary compressible Stokes
problem

Functional spaces : u ∈ H1
0 (Ω)d , p ∈ L2(Ω), ρ ∈ L2γ(Ω)

I Momentum equation:∫
Ω
∇u : ∇v dx−

∫
Ω

pdiv(v) dx =

∫
Ω

f ·v dx for all v ∈ H1
0 (Ω)d

I Mass equation:∫
Ω
ρu · ∇ϕ dx = 0 for all ϕ ∈ C∞c (Ω)

ρ ≥ 0 a.e.,
∫

Ω
ρdx = M

I EOS: p = ργ



MAC scheme, choice of the discrete unknowns

I T : cartesian mesh of Ω, the mesh size is called h
E : edges of T

I Discretization of u p and ρ by piecewise constant functions.

nσ is the normal vector to σ, with nσ ≥ 0.

Unknowns for uT :
uσ, σ ∈ E . uσ is an approximate value for u · nσ (uσ ∈ R)
uσ = 0 if σ ⊂ ∂Ω

nσ
σ

K
Unknowns for pT and ρT :
pK , ρK , K ∈ {rectangles}



MAC scheme, discrete functional spaces, d = 2

I pT , ρT ∈ XT , pT = pK , ρT = ρK in K , K ∈ T (black cell)

I uT = (u
(1)
T , u

(2)
T ) ∈ HT

u
(1)
T = uσ in the magenta cell

u
(2)
T = uσ in the green cell

K σ

σ



Discretization of momentum equation (1)

I v ∈ HT . divT v is constant on K , K ∈ T and

|K |divT v =
∑
σ∈EK

εK ,σvσ|σ|

εK ,σ = sign(nσ · nK ,σ), nK ,σ is the normal vector to σ,
outward K

I u, v ∈ HT , the discretization of
∫

Ω∇u : ∇v dx is:∫
Ω
∇T u : ∇T v dx =

∑
(σ,σ)∈N

hσ,σ
dσ,σ

(uσ − uσ)(vσ − vσ)

dσ,σ: distance between the centers of σ and σ
hσ,σ is equal to |σ| or to 1

2 (|σ|+ |σ|), where σ and σ are
“between” σ and σ



Discretization of the momentum equation (2)
Computation of hσ,σ for (σ, σ) ∈ N

I Case 1: σ σ hσ,σ = |σ|

I Case 2:
σ σ

σ

σ
hσ,σ = 1

2 (|σ|+ |σ|)

(Slight modification if σ, σ ⊂ ∂Ω, uσ = −uσ)

Discrete momentum equation

uT ∈ HT∫
Ω
∇T uT : ∇T v dx −

∫
Ω

pT divT v dx =

∫
Ω

fv dx , for all v ∈ HT



Discretization of the mass equation

For all K ∈ T ,
∑
σ∈EK

|σ|ρσεK ,σuσ + MK = 0

with an upstream choice for ρσ, that is
ρσ = ρK if uσ ≥ 0
ρσ = ρL if uσ < 0, σ = K |L

MK = |K |hα(ρK −
M

|Ω|
)

α > 0
The MK term gives

∫
Ω ρT dx = M

Upwinding is enough to ensure (with M) existence (and
uniqueness) of a positive solution ρT , to the discrete mass
equation, for a given uT .



Discretization of the EOS

Discretization of the EOS:

pK = ργK

for all K ∈ T



Existence of an approximate solution, convergence result

Existence of a solution uT , pT and ρT of the scheme can be
proven using the Brouwer Fixed Point Theorem.

For γ > 1, convergence of the approximate solution can be proven
in the following sense, up to a subsequence:

I uT → u in L2(Ω)d , u ∈ H1
0 (Ω)d

I pT → p in Lq(Ω) for any 1 ≤ q < 2 and weakly in L2(Ω)

I ρT → ρ in Lq(Ω) for any 1 ≤ q < 2γ and weakly in L2γ(Ω)

where (u, p, ρ) is a weak solution of the compressible Stokes
equations

For γ = 1, the same result holds, at least with only weak
convergences of pT and ρT



Proof of convergence, main steps

1. Estimate on the H1
0 (Ω)-discrete norm of the components of

uT

2. L2(Ω) estimate on pT and L2γ(Ω) estimate on ρT

These two steps give (up to a subsequence), as h→ 0,
I uT → u in L2(Ω) and u ∈ H1

0 (Ω)d

I pT → p weakly in L2(Ω)
I ρT → ρ weakly in L2γ(Ω)

3. (u, p, ρ) is a weak solution of −∆u +∇p = f , div(ρu) = 0
ρ ≥ 0,

∫
Ω ρdx = M

4. Main difficulty, if γ > 1: p = ργ and “strong” convergence of
pT and ρT



Preliminary lemma

ρ ∈ L2γ(Ω), γ > 1, ρ ≥ 0 a.e. in Ω, u ∈ (H1
0 (Ω))d , div(ρu) = 0,

then: ∫
Ω
ρdiv(u)dx = 0∫

Ω
ργdiv(u)dx = 0

The first result (and its discrete counterpart) is used for Step 4
(proof of p = ργ)

The discrete counterpart (also true for γ = 1) of the second result
is used for Step 1 (estimate for uT )



Preliminary lemma for the approximate solution

Discretization of the mass equation div(ρu) = 0 and
∫

Ω ρ dx = M:

For all K ∈ T ,
∑
σ∈EK

|σ|ρσεK ,σuσ + MK = 0

One proves: ∫
Ω
ργT divT uT dx ≤ Chα,

∫
Ω
ρT divT uT dx ≤ Chα.

C depends on Ω, M and γ.

Chα is due to MK

≤ is due to upwinding



Estimate on uT

Taking uT as test function in the discrete momentum equation∫
Ω
∇T uT : ∇T uT dx −

∫
Ω

pT divT (uT ) dx =

∫
Ω

f · uT dx .

But pT = ργT a.e., Discrete mass equation and preliminary lemma
gives

∫
Ω pT div(uT ) dx ≤ Chα.

This gives an estimate on uT :∫
Ω
∇T uT · ∇T uT dx =

∑
(σ,σ)∈N

hσ,σ
dσ,σ

(uσ − uσ)2 ≤ C1.

Then, up to a subsequence, uT → u in L2(Ω)d as h→ 0 and
u ∈ H1

0 (Ω)d



Estimate on pT (inf-sup condition, Nečas lemma)

Let mT = 1
|Ω|
∫

Ω pT dx and q = pT −mT .

Then, there exists vT ∈ (H1
0 (Ω))d s.t. div(vT ) = q in Ω and

‖vT ‖(H1
0 (Ω))d ≤ C2‖q‖L2(Ω) where C2 only depends on Ω

One defines vT ∈ HT with vσ = 1
|σ|
∫
σ vT · nσ for σ ∈ E .

Then divT (vT ) = pT −mT and∫
Ω
∇T vT : ∇T vT dx =

∑
(σ,σ)∈N

hσ,σ
dσ,σ

(vσ − vσ)2 ≤ C3‖q‖2
L2(Ω)

One takes vT as test function in the discrete momentum equation



Estimate on pT (2)

∫
Ω
∇T uT : ∇T vT dx −

∫
Ω

pT divT (vT ) dx =

∫
Ω

f · vT dx .

Using
∫

Ω divT (vT )dx = 0:∫
Ω

(pT −mT )2dx =

∫
Ω

(f · vT −∇T uT : ∇T vT )dx .

with the estimate on uT and the bound on vT linearly depending
on the L2 norm of pT −mT , the preceding inequality leads to:

‖pT −mT ‖L2(Ω) ≤ C4

where C4 only depends on f and on Ω.



Estimates on pT and ρT

‖pT −mT ‖L2(Ω) ≤ C4.

∫
Ω

p
1
γ

T dx =

∫
Ω
ρT dx = M

Then:
‖pT ‖L2(Ω) ≤ C5

where C5 only depends on f , M, γ and Ω.

pT = ργT a.e. in Ω, then:

‖ρT ‖L2γ(Ω) ≤ C6 = C
1
γ

5 .



Convergence of uT , pT , ρT (weak for pT and ρT )

Thanks to the estimates on uT , pT , ρT , it is possible to assume
(up to a subsequence) that, as h→ 0:

uT → u in L2(Ω)d and u ∈ H1
0 (Ω)d ,

pT → p weakly in L2(Ω),

ρT → ρ weakly in L2γ(Ω).



Passage to the limit in the momentum equation

Classical proof with FV scheme for elliptic equations

u ∈ H1
0 (Ω)d

One proves

∫
Ω
∇u : ∇v dx −

∫
Ω

pdiv(v) dx =

∫
Ω

f · v dx for all v ∈ C∞c (Ω)d

and then, since u ∈ H1
0 (Ω)d , one concludes by density

∫
Ω
∇u : ∇v dx −

∫
Ω

pdiv(v) dx =

∫
Ω

f · v dx for all v ∈ H1
0 (Ω)d



Passage to the limit in the mass equation

L1-weak convergence of ρT (and ρT ≥ 0) gives positivity of ρ and
convergence of total mass

ρ ≥ 0 in Ω,

∫
Ω
ρ(x)dx = M.

Using the fact that uT converges in L2 and ρT weakly in L2, one
proves ∫

Ω
ρu · ∇ϕ dx = 0 for all ϕ ∈ C∞c (Ω)

This is quite classical with FV for hyperbolic equations. It uses
some weak-BV estimate (to control ρK − ρL if σ = K |L) coming
from the upwinding of ρ

Quite easy for γ ≥ 2. More difficult for γ < 2.



Weak-BV estimate, γ ≥ 2

Roughly speaking, upwinding replaces div(ρu) = 0 by
div(ρu)− hdiv(|u|∇ρ) = 0 (the term MK is easy to handle)
Taking ρ as test function leads to

−1

2

∫
Ω

u · ∇ρ2 + h|u||∇ρ|2 = 0

which leads to ∫
Ω

h|u||∇ρ|2 = −1

2

∫
Ω

div(u)ρ2 ≤ C

if ρ is bounded in L4(Ω) (since div(u) is bounded in L2(Ω))

This proves the weak-BV estimate on ρ if γ ≥ 2

It allows to pass to the limit in the mass equation using the weak
convergence of ρT in L2(Ω) and the convergence of uT in L2(Ω)d

as h→ 0



Weak-BV estimate, γ < 2

I Method 1: Use ρ-weighted weak-BV estimates

I Method 2: Add another diffusion term in the discrrete mass
equation which is a discretization of

hξdiv(ρ2−γ∇ρ) = 0

ξ is a parameter, 0 < ξ < 2
Small diffusion term (ξ close to 2), leading to a weak-BV
estimate (taking ργ−1 as test function in the discrete mass
equation)



Passage to the limit in EOS

I No problem if γ = 1, p = ρ

I If γ > 1, question:
p = ργ in Ω ?

pT and ρT converge only weakly. . .

Idea : prove
∫

Ω pT ρT →
∫

Ω pρ and deduce a.e. convergence (of
pT and ρT ) and p = ργ .



∇ : ∇ = divdiv + curl · curl
For all ū, v̄ in H1

0 (Ω)d ,∫
Ω
∇ū : ∇v̄ =

∫
Ω

div(ū)div(v̄) +

∫
Ω

curl(ū) · curl(v̄).

Assuming, for simplicity that uT ∈ H1
0 (Ω)d and

−∆uT +∇pT = fT ∈ L2(Ω), fT → f in L2(Ω)d as h→ 0 (not
true. . . ). Then, for all v̄ in H1

0 (Ω)d∫
Ω

div(uT )div(v̄)+

∫
Ω

curl(uT ) ·curl(v̄)−
∫

Ω
pT div(v̄) =

∫
Ω

fT · v̄ .

Choice of v̄ ? v̄ = v̄T with curl(v̄T ) = 0, div(v̄T ) = ρT and v̄T
bounded in H1

0 (unfortunately, 0 is impossible).

Then, up to a subsequence,

v̄T → v in L2(Ω) and weakly in H1
0 (Ω),

curl(v) = 0, div(v) = ρ.



Proof using v̄T (1)

∫
Ω

div(uT )div(v̄T )+

∫
Ω

curl(uT )·curl(v̄T )−
∫

Ω
pT div(v̄T ) =

∫
Ω

fT ·v̄T .

But, div(v̄T ) = ρT and curl(v̄T ) = 0. Then:∫
Ω

(div(uT )− pT )ρT =

∫
Ω

fT · v̄T .

Convergence of fT in L2(Ω)d to f and convergence of v̄T in
L2(Ω)d to v :

lim
h→0

∫
Ω

(div(uT )− pT )ρT =

∫
Ω

f · v .



Proof using v̄T (2)
But, since −∆u +∇p = f :∫

Ω
div(u)div(v) +

∫
Ω

curl(u) · curl(v)−
∫

Ω
pdiv(v) =

∫
Ω

f · v .

which gives (using div(v) = ρ and curl(v) = 0):∫
Ω

(div(u)− p)ρ =

∫
Ω

f · v . Then:

lim
h→0

∫
Ω

(pT − div(uT ))ρT =

∫
Ω

(p − div(u))ρ.

Finally, the preliminary lemma gives, thanks to the mass equations,∫
Ω ρT div(uT ) ≤ Chα and

∫
Ω ρdiv(u) = 0. Then, at least for a

subsequence

lim
h→0

∫
Ω

pT ρT ≤
∫

Ω
pρ.

Unfortunately, two difficulties: it is impossible to have v̄T ∈ H1
0

and (uT , pT ) is solution of the discrete momentum equation



First difficulty: not 0 at the boundary
Let wT ∈ H1

0 (Ω), −∆wT = ρT ,
One has wT ∈ H2

loc(Ω) since, for ϕ ∈ C∞c (Ω), one has
∆(wT ϕ) ∈ L2(Ω) and

d∑
i ,j=1

∫
Ω
∂i∂j(wT ϕ) ∂i∂j(wT ϕ) =

d∑
i ,j=1

∫
Ω
∂i∂i (wT ϕ) ∂j∂j(wT ϕ)

=

∫
Ω

(∆(wT ϕ))2 <∞

Then, taking vT = ∇wT

I vT ∈ (H1
loc(Ω))d ,

I div(vT ) = ρT a.e. in Ω,

I curl(vT ) = 0 a.e. in Ω,

I H1
loc(Ω)-estimate on vT with respect to ‖ρT ‖L2(Ω).

Then, up to a subsequence, as h→ 0, vT → v in L2
loc(Ω) and

weakly in H1
loc(Ω), curl(v) = 0, div(v) = ρ.



Proof of
∫

Ω(pT − div(uT ))ρT ϕ→
∫

Ω(p − div(u))ρϕ

Let ϕ ∈ C∞c (Ω) (so that vT ϕ ∈ H1
0 (Ω)d)). Taking v̄ = vT ϕ:∫

Ω
div(uT )div(vT ϕ) +

∫
Ω

curl(uT ) · curl(vT ϕ)−
∫

Ω
pT div(vT ϕ)

=

∫
Ω

fT · (vT ϕ).

Using a proof smilar to that given if ϕ = 1 (with additionnal terms
involving ϕ), we obtain :

lim
h→0

∫
Ω

(pT − div(uT ))ρT ϕ =

∫
Ω

(p − div(u))ρϕ,



Proving
∫

Ω(pT − div(uT ))ρT ϕ→
∫

Ω(p − div(u))ρϕ

Let ϕ ∈ C∞c (Ω) (so that vT ϕ ∈ H1
0 (Ω)d)). Taking v̄ = vT ϕ:∫

Ω div(uT )div(vT ϕ) +
∫

Ω curl(uT ) · curl(vT ϕ)−
∫

Ω pT div(vT ϕ)
=
∫

Ω fT · (vT ϕ).

But, div(vT ϕ) = ρT ϕ+ vT · ∇ϕ and curl(vT ϕ) = L(ϕ)vT , where
L(ϕ) is a matrix involving the first order derivatives of ϕ. Then:∫

Ω(div(uT )− pT )ρT ϕ =
∫

Ω fT · (vT ϕ)
−
∫

Ω div(uT )vT · ∇ϕ−
∫

curl(uT ) · L(ϕ)vT +
∫

Ω pT vT · ∇ϕ.

Weak convergence of uT in H1
0 (Ω)d , weak convergence of pT in

L2(Ω) and convergence of vT and fT in L2
loc(Ω)d and L2(Ω)d :

limh→0

∫
Ω(div(uT )− pT )ρT ϕ =

∫
Ω f · (vϕ)

−
∫

Ω div(u)v · ∇ϕ−
∫

curl(u) · L(ϕ)v +
∫

Ω pv · ∇ϕ.



Proof of
∫

Ω(pT − div(uT ))ρT ϕ→
∫

Ω(p − div(u))ρϕ

But, since −∆u +∇p = f :∫
Ω div(u)div(vϕ) +

∫
Ω curl(u) · curl(vϕ)−

∫
Ω pdiv(vϕ)

=
∫

Ω f · (vϕ).

which gives (using div(v) = ρ and curl(v) = 0):∫
Ω(div(u)− p)ρϕ =

∫
Ω f · (vϕ)

−
∫

Ω div(u)v · ∇ϕ−
∫

curl(u) · L(ϕ)v +
∫

Ω pv · ∇ϕ.

Then:

lim
h→0

∫
Ω

(pT − div(uT ))ρT ϕ =

∫
Ω

(p − div(u))ρϕ.



Second difficulty: Discrete momentum equation

Miracle for the MAC scheme: for all ū, v̄ in HT ,∫
Ω
∇T ū : ∇T v̄ =

∫
Ω

divT (ū)divT (v̄) +

∫
Ω

curlT (ū) · curlT (v̄).

Then, for all v̄ in HT∫
Ω

divT (uT )divT (v̄)+

∫
Ω

curlT (uT )·curlT (v̄)−
∫

Ω
pT div(v̄) =

∫
Ω

fT ·v̄ .

Choice of v̄ ? v̄ = v̄T with curlT (v̄T ) = 0, div(v̄T ) = ρT and
v̄T ∈ HT and bounded for the natural norm of
HT . . . impossible. . . (as in the continuous setting)



Choice of the test function in the momentum equation

Let {wK , K ∈ T } be the FV solution of the −∆wT = ρT , with the
homogeneous Dirichlet boundary condition, that is, for all K ∈ T ,∑

σ∈EK

|σ|
dσ

(wK − wL) = |K |ρK

In the preceding equality, σ = K |L, with the usual modification at
the boundary

For σ ∈ E , σ = K |L, nK ,σ = nσ ≥ 0, one defines vσ = uL − uK

A proof similar to the proof for the continous case, gives some
discrete-H2

loc(Ω) estimate on wT and then some discrete-H1
loc(Ω)

estimate on vT in term of L2 norm of ρT

Furthermore, at least “far” from the boundary, divT (vT ) = ρT and
curlT (vT ) = 0

Then, up to a subsequence, as h→ 0, vT → v in L2
loc(Ω) and

v ∈ H1
loc(Ω)d , curl(v) = 0, div(v) = ρ.



Proof of
∫

Ω(pT − div(uT ))ρT ϕ→
∫

Ω(p − div(u))ρϕ

Let ϕ ∈ C∞c (Ω) (so that vT ϕT ∈ HT ). Taking v̄ = vT ϕT :∫
Ω

divT (uT )divT (vT ϕ) +

∫
Ω

curlT (uT ) · curlT (vT ϕT )

−
∫

Ω pT divT (vT ϕT ) =

∫
Ω

fT · (vT ϕT ).

Using a proof smilar to that given in the continuous case we obtain:

lim
h→0

∫
Ω

(pT − div(uT ))ρT ϕ =

∫
Ω

(p − div(u))ρϕ,



Proof of
∫

Ω(pT − div(uT ))ρT →
∫

Ω(p − div(u))ρ

Lemma : FT → F in D ′(Ω), (FT )n∈N bounded in Lq for some
q > 1. Then FT → F weakly in L1.

With FT = (pT − div(uT ))ρT , F = (p − div(u))ρ and since
γ > 1, the lemma gives∫

Ω
(pT − div(uT ))ρT →

∫
Ω

(p − div(u))ρ.



Proving
∫

Ω pT ρT →
∫

Ω pρ

∫
Ω

(pT − div(uT ))ρT →
∫

Ω
(p − div(u))ρ.

But thanks to the mass equations, the preliminary lemma gives:∫
Ω

div(uT )ρT ≤ Chα,

∫
Ω

div(u)ρ = 0;

Then:

lim
h→0

∫
Ω

pT ρT ≤
∫

Ω
pρ.



a.e. convergence of ρT and pT
Let GT = (ργT − ργ)(ρT − ρ) ∈ L1(Ω) and GT ≥ 0 a.e. in Ω.
Futhermore GT = (pT − ργ)(ρT − ρ) = pT ρT − pT ρ− ργρT + ργρ
and: ∫

Ω
GT =

∫
Ω

pT ρT −
∫

Ω
pT ρ−

∫
Ω
ργρT +

∫
Ω
ργρ.

Using the weak convergence in L2(Ω) of pT and ρT and
limh→0

∫
Ω pT ρT ≤

∫
Ω pρ:

lim
h→0

∫
Ω

GT ≤ 0,

Then (up to a subsequence), GT → 0 a.e. and then ρT → ρ a.e.
(since y 7→ yγ is an increasing function on R+). Finally:

ρT → ρ in Lq(Ω) for all 1 ≤ q < 2γ,

pT = ργT → ργ in Lq(Ω) for all 1 ≤ q < 2,

and p = ργ .

( EOS and EOT ?)



Additional difficulty for stat. comp. NS equations

Ω is a bounded open set of Rd , d = 2 or 3, with a Lipschitz
continuous boundary, γ > 1, f ∈ L2(Ω)d and M > 0

−∆u + div(ρu ⊗ u) +∇p = f in Ω, u = 0 on ∂Ω,

div(ρu) = 0 in Ω, ρ ≥ 0 in Ω,

∫
Ω
ρ(x) = M,

p = ργ in Ω

d = 2 : no aditional difficulty

d = 3 : no additional difficulty if γ ≥ 3. But for γ < 3, no
estimate on p in L2(Ω).



Estimates in the case of NS equations, 3
2 < γ < 3

Estimate on u : Taking u as test function in the momentum leads
to an estimate on u in (H1

0 (Ω)d since∫
Ω
ρu ⊗ u : ∇u = 0.

Then, we have also an estimate on u in L6(Ω)d (using Sobolev
embedding).

Estimate on p in Lq(Ω), with some 1 < q < 2 and q = 1 when
γ = 3

2 (using Nečas Lemma in some Lr instead of L2).

Estimate on ρ in Lq(Ω), with some 3
2 < q < 6 and q = 3

2 when
γ = 3

2 (since p = ργ).

Remark : ρu ⊗ u ∈ L1(Ω), since u ∈ L6(Ω)d and ρ ∈ L
3
2 (Ω) (and

1
6 + 1

6 + 2
3 = 1).



NS equations, γ < 3, how to pass to the limit in the EOS

We prove

lim
h→0

∫
Ω

pT ρ
θ
T =

∫
Ω

pρθ,

with some convenient choice of θ > 0 instead of θ = 1.

This gives, as for θ = 1, the a.e. convergence (up to a
subsequence) of pT and ρT .


