Staggered or not staggered, that is the question

T. Gallouët

EDF, june 2010

Why upwinding ?

$$
\begin{gathered}
\partial_{t} \rho+\partial_{x} \rho=0, x \in \mathbb{R}, t \in \mathbb{R}_{+} \\
\rho(x, 0)=\left\{\begin{array}{l}
1, x<0 \\
0, x>0
\end{array}\right.
\end{gathered}
$$

Upwind scheme, $\mathrm{CFL}=1 / 2$, solution for $\mathrm{T}=1 / 2(N=M=100)$ space step: $h=1 / N, M=$ number of time steps, $k=(C F L) h$

Good speed of discontinuity, bounds on the solution, large amount of numerical diffusion

Why upwinding ?

Centered scheme, CFL=1/2, solution for $T=1 / 20(N=100$, $M=10$).

no numerical diffusion but oscillations, no convergence.

Why upwinding ?

Centered scheme, CFL=1/2, solution for $\mathrm{T}=1 / 2(N=100$, $M=100$)

no numerical diffusion but oscillations, no convergence.

Downwind scheme, for joke

Downwind scheme, $\mathrm{CFL}=1 / 2$, solution for $\mathrm{T}=1 / 2(N=100$, $M=100$).

numerical antidiffusion, no convergence.

Burgers viewed as a coupled system, upwind

$$
\begin{gathered}
\partial_{t} \rho+\partial_{x}(u \rho)=0, \quad u=\rho, \quad x \in \mathbb{R}, t \in \mathbb{R}_{+} \\
\rho(x, 0)=\left\{\begin{array}{l}
2, x<0 \\
1, x>0
\end{array}\right.
\end{gathered}
$$

Upwind scheme, $\mathrm{CFL}=1$, solution for $\mathrm{T}=1 / 2(N=100, M=200)$ Space step: $h=1 / N, M=$ number of time steps, $k=(C F L) h / 4$

Good localization of the discontinuity, few numerical diffusion, bounds on the solution, convergence.

Burgers viewed as a coupled system, upwind-ncv

$$
(h / k)\left(\rho_{i}^{n+1}-\rho_{i}^{n}\right)+u_{i}^{n}\left(\rho_{i}^{n}-\rho_{i-1}^{n}\right)=0, \quad u_{i}^{n}=\rho_{i}^{n}
$$

Upwind-ncv scheme, CFL=1, solution for $\mathrm{T}=1 / 2(N=100$, $M=200$)
Space step: $h=1 / N, M=$ number of time steps, $k=(C F L) h / 4$

Wrong localization of the discontinuity (0.75 instead of 1.5), few numerical diffusion, bounds on the solution, no convergence. But, it is due to fact that we discretize $u \partial_{x} \rho$ and not $\partial_{x}(u \rho)$.

Burgers viewed as a coupled system, upwind-ncv

 Upwind on $u \partial_{x} \rho+\rho \partial_{x} u$. Since $u=\rho$ (collocated), it gives$$
(h / k)\left(\rho_{i}^{n+1}-\rho_{i}^{n}\right)+2 u_{i}^{n}\left(\rho_{i}^{n}-\rho_{i-1}^{n}\right)=0, \quad u_{i}^{n}=\rho_{i}^{n}
$$

Initial condition : 2 for $x<0$ and 1 for $x>0$ Upwind-ncv scheme, CFL=1, solution for $\mathrm{T}=1 / 4$ ($N=100$, $M=200$)
Space step: $h=1 / N, M=$ number of time steps, $k=(C F L) h / 4$

not so bad, curious result. . . due to this particular initial condition

Burgers viewed as a coupled system, upwind-ncv

 Upwind on $u \partial_{x} \rho+\rho \partial_{x} u$. Since $u=\rho$ (collocated), it gives$$
(h / k)\left(\rho_{i}^{n+1}-\rho_{i}^{n}\right)+2 u_{i}^{n}\left(\rho_{i}^{n}-\rho_{i-1}^{n}\right)=0, \quad u_{i}^{n}=\rho_{i}^{n}
$$

Initial condition : 1 for $x<0$ and 0 for $x>0$ Upwind-ncv scheme, CFL=1/4, solution for $\mathrm{T}=1 / 4(N=100$, $M=200$)
Space step: $h=1 / N, M=$ number of time steps, $k=(C F L) h / 2$

Wrong localization of the discontinuity (0 instead of 0.25 !), no numerical diffusion !, bounds on the solution, no convergence.

Burgers viewed as a coupled system, upwind-ncv

 Upwind on $u \partial_{x} \rho+\rho \partial_{x} u$. Since $u=\rho$ (collocated), it gives$$
(h / k)\left(\rho_{i}^{n+1}-\rho_{i}^{n}\right)+2 u_{i}^{n}\left(\rho_{i}^{n}-\rho_{i-1}^{n}\right)=0, \quad u_{i}^{n}=\rho_{i}^{n}
$$

Initial condition : 3 for $x<0$ and 1 for $x>0$ Upwind-ncv scheme, $\mathrm{CFL}=1 / 4$, solution for $\mathrm{T}=1 / 4$ ($N=100$, $M=200$)
Space step: $h=1 / N, M=$ number of time steps, $k=(C F L) h / 2$

Wrong localization of the discontinuity, bounds on the solution, no convergence.

Burgers viewed as a coupled system, upwind-ncv

Upwind on $u \partial_{x} \rho+\rho \partial_{x} u$.
Upwind-ncv=upwind + discretization of $h\left(\partial_{x} u\right)^{2}$.
No problem for a regular solution. A problem might arise if $\partial_{x} u$ not in L^{2}.

Burgers viewed as a coupled system, upwind-staggered

$$
\begin{gathered}
(h / k)\left(\rho_{i}^{n+1}-\rho_{i}^{n}\right)+\left(u_{i+\frac{1}{2}}^{n} \rho_{i}^{n}-u_{i-\frac{1}{2}}^{n} \rho_{i-1}^{n}\right)=0, \\
u_{i+\frac{1}{2}}=(1 / 2)\left(\rho_{i}^{n}+\rho_{i+1}^{n}\right)
\end{gathered}
$$

Upwind-staggered scheme, $\mathrm{CFL}=1$, solution for $\mathrm{T}=1 / 20$ ($N=100, M=20$)
Space step: $h=1 / N, M=$ number of time steps, $k=(C F L) h / 4$

Pretty good localization of the discontinuity (0.15), but no bound of the solution \rightsquigarrow time step too large

Burgers viewed as a coupled system, upwind-staggered

$$
\begin{gathered}
(h / k)\left(\rho_{i}^{n+1}-\rho_{i}^{n}\right)+\left(u_{i+\frac{1}{2}}^{n} \rho_{i}^{n}-u_{i-\frac{1}{2}}^{n} \rho_{i-1}^{n}\right)=0, \\
u_{i+\frac{1}{2}}=(1 / 2)\left(\rho_{i}^{n}+\rho_{i+1}^{n}\right)
\end{gathered}
$$

Upwind-staggered scheme, CFL=1/2(reduced CFL), solution for $\mathrm{T}=1 / 20(N=100, M=40)$
Space step: $h=1 / N, M=$ number of time steps, $k=(C F L) h / 4$

Good localization of the discontinuity (0.15), positivity but no upper bound on the solution.

Burgers viewed as a coupled system, upwind-staggered

$$
\begin{gathered}
(h / k)\left(\rho_{i}^{n+1}-\rho_{i}^{n}\right)+\left(u_{i+\frac{1}{2}}^{n} \rho_{i}^{n}-u_{i-\frac{1}{2}}^{n} \rho_{i-1}^{n}\right)=0, \\
u_{i+\frac{1}{2}}=(1 / 2)\left(\rho_{i}^{n}+\rho_{i+1}^{n}\right)
\end{gathered}
$$

Upwind-staggered scheme, CFL=1/2(reduced CFL), solution for $\mathrm{T}=1 / 4(N=100, M=200)$
Space step: $h=1 / N, M=$ number of time steps, $k=(C F L) h / 4$

Good localization of the discontinuity (0.75), positivity but no upper bound on the solution.

Burgers viewed as a coupled system

$$
\begin{gathered}
\partial_{t} \rho+\partial_{x}(u \rho)=0, \quad u=\rho, \quad x \in \mathbb{R}, t \in \mathbb{R}_{+} \\
\rho(x, 0)=\left\{\begin{array}{l}
2, x<0 \\
1, x>0
\end{array}\right.
\end{gathered}
$$

- Full upwind collocated scheme is perfect. Good discontinuity, bounds on the solution, convergence
- Non conservative upwind collocated scheme is not good.
- Upwind scheme with staggered grids is pretty good. . . Good discontinuity, positivity of the solution, no upper bound (and then reduced CFL is needed) but probably convergence.
Main properties for a good scheme : conservativity, stability
Two additional remarks
- Conservative upwinding has to be done on the true equation
- Numerical diffusion has to be conservative

Burgers, wrong upwinding

$$
\begin{aligned}
\partial_{t} \rho+\partial_{x}\left(\rho^{2}\right) & =0, x \in \mathbb{R}, t \in \mathbb{R}_{+} \\
\rho(x, 0) & =\left\{\begin{array}{l}
2, x<0 \\
1, x>0
\end{array}\right.
\end{aligned}
$$

For positive and regular solution, an equivalent equation is

$$
\partial_{t} \rho^{2}+\frac{4}{3} \partial_{x}\left(\rho^{3}\right)=0, x \in \mathbb{R}, t \in \mathbb{R}_{+}
$$

The classical upwind scheme on this latter equation leads to a solution which does not have the good localization of the discontinuity
The speed of the discontinuity is 3 for burgers and $28 / 9$ for the equivalent equation

Burgers, upwind on an "equivalent" equation

$$
(h / k)\left(\left(\rho_{i}^{n+1}\right)^{2}-\left(\rho_{i}^{n}\right)^{2}\right)+\frac{4}{3}\left(\left(\rho_{i}^{n}\right)^{3}-\left(\rho_{i-1}^{n}\right)^{3}\right)=0
$$

Upwind scheme on the "equivalent" equation, $C F L=1$, solution for $\mathrm{T}=1 / 2(N=100, M=200)$
Space step: $h=1 / N, M=$ number of time steps, $k=(C F L) h / 4$

Bad localization of the discontinuity (0.1555 instead of 1.5), bounds on the solution, no convergence

Burgers, numerical diffusion

$$
\partial_{t} \rho+\partial_{x}(f(\rho))=0
$$

On this equation, if $f^{\prime} \geq 0$, upwinding is "similar" to add a numerical diffusion. Namely, is similar to

$$
\partial_{t} \rho+\partial_{x}(f(\rho))-\partial_{x}\left(\frac{h f^{\prime}(\rho)-k f^{\prime 2}(\rho)}{2} \partial_{x} \rho\right)=0
$$

The CFL condition is for $h f^{\prime}(\rho)-k f^{\prime 2}(\rho) \geq 0$ (i.e. $k f^{\prime}(\rho) \leq h$)
In the case of the burgers equation it gives

$$
\partial_{t} \rho+\partial_{x}\left(\rho^{2}\right)-\partial_{x}\left(\left(h \rho-2 k \rho^{2}\right) \partial_{x} \rho\right)=0, x \in \mathbb{R}, t \in \mathbb{R}_{+}
$$

Burgers, non conservative numerical diffusion

In the case of the "equivalent" equation

$$
\partial_{t} \rho^{2}+(4 / 3) \partial_{x}\left(\rho^{3}\right)=0,
$$

upwinding is similar to (since $\rho>0$)

$$
\partial_{t} \rho^{2}+\frac{4}{3} \partial_{x}\left(\rho^{3}\right)-\partial_{x}\left(\left(2 h \rho^{2}-4 k \rho^{3}\right) \partial_{x} \rho\right)=0
$$

Turning back to the burgers equation, this leads to

$$
\partial_{t} \rho+\partial_{x}\left(\rho^{2}\right)-\frac{1}{\rho} \partial_{x}\left(\left(h \rho^{2}-2 k \rho^{3}\right) \partial_{x} \rho\right)=0, x \in \mathbb{R}, t \in \mathbb{R}_{+}
$$

This is a numerical diffusion (thanks to the CFL condition) but not on a conservative form.
The consequence is that a non conservative diffusion may lead to wrong discontinuities.

Stationary compressible Stokes equations

Work with R. Eymard, R. Herbin and J. C. Latché.
$d=2$ or $3, \Omega=] 0,1\left[{ }^{d}\right.$ (or $\Omega=\cup_{i=1}^{n} R_{i}$, where R_{i} 's are rectangles if $d=2$ or parallelipedus rectangulus if $d=3$).
$\gamma \geq 1, f \in L^{2}(\Omega)^{d}$ and $M>0$

$$
\begin{gathered}
-\Delta u+\nabla p=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \\
\operatorname{div}(\rho u)=0 \text { in } \Omega, \rho \geq 0 \text { in } \Omega, \int_{\Omega} \rho(x) d x=M \\
p=\rho^{\gamma} \text { in } \Omega
\end{gathered}
$$

- Discretization by the staggered schemes
- Existence of solution for the discrete problem
- Proof of the convergence (up to subsequence) of the solution of the discrete problem towards a weak solution of the continuous problem (no uniqueness result for this problem) as the mesh size goes to 0

Main result

- Two possible discretizations for the momentum equation : \rightsquigarrow MAC scheme (most commonly used scheme for incompressible Navier Stokes equations) \rightsquigarrow Crouzeix-Raviart Finite Element
- Discretization of the mass equation (and total mass constraint) by classical upwind Finite Volume
- Existence of solution for the discrete problem
- Proof of the convergence (up to subsequence) of the solution of the discrete problem towards a weak solution of the continuous problem (no uniqueness result for this problem) as the mesh size goes to 0

Generalizations

- (Easy) Complete Stokes problem:

$$
-\mu \Delta u-\frac{\mu}{3} \dot{\nabla}(\operatorname{div} u)+\nabla P=f, \text { with } \mu \in \mathbb{R}_{+}^{\star} \text { given }
$$

- (Ongoing work) Navier-Stokes Equations with $\gamma>1$ if $d=2$ and $\gamma>\frac{3}{2}$ if $d=3$ (probably sharp result with respect to γ without changing the diffusion term or the EOS)
- (Open question) Other boundary condition. Addition of an energy equation
- (Open question) Evolution equation (Stokes and Navier-Stokes)

Weak solution of the stationary compressible Stokes

 problemFunctional spaces : $u \in H_{0}^{1}(\Omega)^{d}, p \in L^{2}(\Omega), \rho \in L^{2 \gamma}(\Omega)$

- Momentum equation:

$$
\int_{\Omega} \nabla u: \nabla v d x-\int_{\Omega} p \operatorname{div}(v) d x=\int_{\Omega} f \cdot v d x \text { for all } v \in H_{0}^{1}(\Omega)^{d}
$$

- Mass equation:

$$
\begin{gathered}
\int_{\Omega} \rho u \cdot \nabla \varphi d x=0 \text { for all } \varphi \in C_{c}^{\infty}(\Omega) \\
\rho \geq 0 \text { a.e., } \quad \int_{\Omega} \rho d x=M
\end{gathered}
$$

- EOS: $p=\rho^{\gamma}$

MAC scheme, choice of the discrete unknowns

- \mathcal{T} : cartesian mesh of Ω, the mesh size is called h \mathcal{E} : edges of \mathcal{T}
- Discretization of $u p$ and ρ by piecewise constant functions.
n_{σ} is the normal vector to σ, with $n_{\sigma} \geq 0$.
Unknowns for $u_{\mathcal{T}}$:
$u_{\sigma}, \sigma \in \mathcal{E} . u_{\sigma}$ is an approximate value for $u \cdot n_{\sigma}\left(u_{\sigma} \in \mathbb{R}\right)$
$u_{\sigma}=0$ if $\sigma \subset \partial \Omega$

Unknowns for $p_{\mathcal{T}}$ and $\rho_{\mathcal{T}}$:
$p_{K}, \rho_{K}, K \in\{$ rectangles $\}$

MAC scheme, discrete functional spaces, $d=2$

- $p_{\mathcal{T}}, \rho_{\mathcal{T}} \in X_{\mathcal{T}}, p_{\mathcal{T}}=p_{K}, \rho_{\mathcal{T}}=\rho_{K}$ in $K, K \in \mathcal{T}$ (black cell)
- $u_{\mathcal{T}}=\left(u_{\mathcal{T}}^{(1)}, u_{\mathcal{T}}^{(2)}\right) \in H_{\mathcal{T}}$
$u_{\mathcal{T}}^{(1)}=u_{\sigma}$ in the magenta cell
$u_{\mathcal{T}}^{(2)}=u_{\sigma}$ in the green cell

Discretization of momentum equation (1)

- $v \in H_{\mathcal{T}} . \operatorname{div}_{\mathcal{T}} v$ is constant on $K, K \in \mathcal{T}$ and

$$
|K| \operatorname{div}_{\mathcal{T}} v=\sum_{\sigma \in \mathcal{E}_{K}} \varepsilon_{K, \sigma} v_{\sigma}|\sigma|
$$

$\varepsilon_{K, \sigma}=\operatorname{sign}\left(n_{\sigma} \cdot n_{K, \sigma}\right), n_{K, \sigma}$ is the normal vector to σ, outward K

- $u, v \in H_{\mathcal{T}}$, the discretization of $\int_{\Omega} \nabla u: \nabla v d x$ is:

$$
\int_{\Omega} \nabla_{\mathcal{T} u} u: \nabla_{\mathcal{T}} v d x=\sum_{(\sigma, \bar{\sigma}) \in \mathcal{N}} \frac{h_{\sigma, \bar{\sigma}}}{d_{\sigma, \bar{\sigma}}}\left(u_{\sigma}-u_{\bar{\sigma}}\right)\left(v_{\sigma}-v_{\bar{\sigma}}\right)
$$

$d_{\sigma, \bar{\sigma}}$: distance between the centers of σ and $\bar{\sigma}$ $h_{\sigma, \bar{\sigma}}$ is equal to $|\sigma|$ or to $\frac{1}{2}(|\underline{\sigma}|+|\underline{\underline{\sigma}}|)$, where $\underline{\sigma}$ and $\underline{\underline{\sigma}}$ are "between" σ and $\bar{\sigma}$

Discretization of the momentum equation (2)

Computation of $h_{\sigma, \bar{\sigma}}$ for $(\sigma, \bar{\sigma}) \in \mathcal{N}$

| - Case 1: | $\left\|\bar{\sigma} \quad h_{\sigma, \bar{\sigma}}=\|\sigma\|\right.$ |
| :--- | :--- | :--- |
| - Case 2: | $\frac{\underline{\sigma}}{}$$\bar{\sigma}$
 $\sigma$$\underline{\underline{\underline{\sigma}}} \quad h_{\sigma, \bar{\sigma}}=\frac{1}{2}(\|\underline{\sigma}\|+\|\underline{\underline{\sigma}}\|)$ |

(Slight modification if $\underline{\sigma}, \underline{\underline{\sigma}} \subset \partial \Omega, u_{\sigma}=-u_{\sigma}$)
Discrete momentum equation

$$
\begin{gathered}
u_{\mathcal{T}} \in H_{\mathcal{T}} \\
\nabla_{\mathcal{T}} u_{\mathcal{T}}: \nabla_{\mathcal{T} v} v d x-\int_{\Omega} p_{\mathcal{T}} \operatorname{div}_{\mathcal{T}} v d x=\int_{\Omega} f v d x \text {, for all } v \in H_{\mathcal{T}}
\end{gathered}
$$

Discretization of the mass equation

For all $K \in \mathcal{T}, \sum_{\sigma \in \mathcal{E}_{K}}|\sigma| \rho_{\sigma} \varepsilon_{K, \sigma} u_{\sigma}+M_{K}=0$
with an upstream choice for ρ_{σ}, that is

$$
\begin{aligned}
& \rho_{\sigma}=\rho_{K} \text { if } u_{\sigma} \geq 0 \\
& \rho_{\sigma}=\rho_{L} \text { if } u_{\sigma}<0, \sigma=K \mid L
\end{aligned}
$$

$$
M_{K}=|K| h^{\alpha}\left(\rho_{K}-\frac{M}{|\Omega|}\right)
$$

$\alpha>0$
The M_{K} term gives $\int_{\Omega} \rho_{\mathcal{T}} d x=M$
Upwinding is enough to ensure (with M) existence (and uniqueness) of a positive solution $\rho_{\mathcal{T}}$, to the discrete mass equation, for a given $u_{\mathcal{T}}$.

Discretization of the EOS

Discretization of the EOS:

$$
p_{K}=\rho_{K}^{\gamma}
$$

for all $K \in \mathcal{T}$

Existence of an approximate solution, convergence result

Existence of a solution $u_{\mathcal{T}}, p_{\mathcal{T}}$ and $\rho_{\mathcal{T}}$ of the scheme can be proven using the Brouwer Fixed Point Theorem.

For $\gamma>1$, convergence of the approximate solution can be proven in the following sense, up to a subsequence:

- $u_{\mathcal{T}} \rightarrow u$ in $L^{2}(\Omega)^{d}, u \in H_{0}^{1}(\Omega)^{d}$
- $p_{\mathcal{T}} \rightarrow p$ in $L^{q}(\Omega)$ for any $1 \leq q<2$ and weakly in $L^{2}(\Omega)$
- $\rho_{\mathcal{T}} \rightarrow \rho$ in $L^{q}(\Omega)$ for any $1 \leq q<2 \gamma$ and weakly in $L^{2 \gamma}(\Omega)$
where (u, p, ρ) is a weak solution of the compressible Stokes equations

For $\gamma=1$, the same result holds, at least with only weak convergences of $p_{\mathcal{T}}$ and $\rho_{\mathcal{T}}$

Proof of convergence, main steps

1. Estimate on the $H_{0}^{1}(\Omega)$-discrete norm of the components of $u_{\mathcal{T}}$
2. $L^{2}(\Omega)$ estimate on $p_{\mathcal{T}}$ and $L^{2 \gamma}(\Omega)$ estimate on $\rho_{\mathcal{T}}$

These two steps give (up to a subsequence), as $h \rightarrow 0$,

- $u_{\mathcal{T}} \rightarrow u$ in $L^{2}(\Omega)$ and $u \in H_{0}^{1}(\Omega)^{d}$
- $p_{\mathcal{T}} \rightarrow p$ weakly in $L^{2}(\Omega)$
- $\rho_{\mathcal{T}} \rightarrow \rho$ weakly in $L^{2 \gamma}(\Omega)$

3. (u, p, ρ) is a weak solution of $-\Delta u+\nabla p=f, \operatorname{div}(\rho u)=0$ $\rho \geq 0, \int_{\Omega} \rho d x=M$
4. Main difficulty, if $\gamma>1: p=\rho^{\gamma}$ and "strong" convergence of $p_{\mathcal{T}}$ and $\rho_{\mathcal{T}}$

Preliminary lemma

$\rho \in L^{2 \gamma}(\Omega), \gamma>1, \rho \geq 0$ a.e. in $\Omega, u \in\left(H_{0}^{1}(\Omega)\right)^{d}, \operatorname{div}(\rho u)=0$, then:

$$
\begin{aligned}
& \int_{\Omega} \rho \operatorname{div}(u) d x=0 \\
& \int_{\Omega} \rho^{\gamma} \operatorname{div}(u) d x=0
\end{aligned}
$$

The first result (and its discrete counterpart) is used for Step 4 (proof of $p=\rho^{\gamma}$)

The discrete counterpart (also true for $\gamma=1$) of the second result is used for Step 1 (estimate for $u_{\mathcal{T}}$)

Preliminary lemma for the approximate solution

Discretization of the mass equation $\operatorname{div}(\rho u)=0$ and $\int_{\Omega} \rho d x=M$:
For all $K \in \mathcal{T}, \sum_{\sigma \in \mathcal{E}_{K}}|\sigma| \rho_{\sigma} \varepsilon_{K, \sigma} u_{\sigma}+M_{K}=0$
One proves:

$$
\begin{aligned}
& \int_{\Omega} \rho_{\mathcal{T}}^{\gamma} \operatorname{div}_{\mathcal{T}} u_{\mathcal{T}} d x \leq C h^{\alpha}, \\
& \int_{\Omega} \rho_{\mathcal{T}} \operatorname{div}_{\mathcal{T}} u_{\mathcal{T}} d x \leq C h^{\alpha} .
\end{aligned}
$$

C depends on Ω, M and γ.
$C h^{\alpha}$ is due to M_{K}
\leq is due to upwinding

Estimate on $u_{\mathcal{T}}$

Taking $u_{\mathcal{T}}$ as test function in the discrete momentum equation

$$
\int_{\Omega} \nabla_{\mathcal{T}} u_{\mathcal{T}}: \nabla_{\mathcal{T}} u_{\mathcal{T}} d x-\int_{\Omega} p_{\mathcal{T}} \operatorname{div}_{\mathcal{T}}\left(u_{\mathcal{T}}\right) d x=\int_{\Omega} f \cdot u_{\mathcal{T}} d x
$$

But $p_{\mathcal{T}}=\rho_{\mathcal{T}}^{\gamma}$ a.e., Discrete mass equation and preliminary lemma gives $\int_{\Omega} p_{\mathcal{T}} \operatorname{div}\left(u_{\mathcal{T}}\right) d x \leq C h^{\alpha}$.
This gives an estimate on $u_{\mathcal{T}}$:

$$
\int_{\Omega} \nabla_{\mathcal{T}} u_{\mathcal{T}} \cdot \nabla_{\mathcal{T}} u_{\mathcal{T}} d x=\sum_{(\sigma, \bar{\sigma}) \in \mathcal{N}} \frac{h_{\sigma, \bar{\sigma}}}{d_{\sigma, \bar{\sigma}}}\left(u_{\sigma}-u_{\bar{\sigma}}\right)^{2} \leq C_{1}
$$

Then, up to a subsequence, $u_{\mathcal{T}} \rightarrow u$ in $L^{2}(\Omega)^{d}$ as $h \rightarrow 0$ and $u \in H_{0}^{1}(\Omega)^{d}$

Estimate on $p_{\mathcal{T}}$ (inf-sup condition, Nečas lemma)

Let $m_{\mathcal{T}}=\frac{1}{|\Omega|} \int_{\Omega} p_{\mathcal{T}} d x$ and $q=p_{\mathcal{T}}-m_{\mathcal{T}}$.
Then, there exists $\bar{v}_{\mathcal{T}} \in\left(H_{0}^{1}(\Omega)\right)^{d}$ s.t. $\operatorname{div}\left(\bar{v}_{\mathcal{T}}\right)=q$ in Ω and $\left\|\bar{v}_{\mathcal{T}}\right\|_{\left(H_{0}^{1}(\Omega)\right)^{d}} \leq C_{2}\|q\|_{L^{2}(\Omega)}$ where C_{2} only depends on Ω

One defines $v_{\mathcal{T}} \in H_{\mathcal{T}}$ with $v_{\sigma}=\frac{1}{|\sigma|} \int_{\sigma} \bar{v}_{\mathcal{T}} \cdot n_{\sigma}$ for $\sigma \in \mathcal{E}$.
Then $\operatorname{div}_{\mathcal{T}}\left(v_{\mathcal{T}}\right)=p_{\mathcal{T}}-m_{\mathcal{T}}$ and

$$
\int_{\Omega} \nabla_{\mathcal{T}} v_{\mathcal{T}}: \nabla_{\mathcal{T}} v_{\mathcal{T}} d x=\sum_{(\sigma, \bar{\sigma}) \in \mathcal{N}} \frac{h_{\sigma, \bar{\sigma}}}{d_{\sigma, \bar{\sigma}}}\left(v_{\sigma}-v_{\bar{\sigma}}\right)^{2} \leq C_{3}\|q\|_{L^{2}(\Omega)}^{2}
$$

One takes $v_{\mathcal{T}}$ as test function in the discrete momentum equation

Estimate on $p_{\mathcal{T}}$ (2)

$$
\int_{\Omega} \nabla_{\mathcal{T} u_{\mathcal{T}}}: \nabla_{\mathcal{T}} v_{\mathcal{T}} d x-\int_{\Omega} p_{\mathcal{T}} \operatorname{div}_{\mathcal{T}}\left(v_{\mathcal{T}}\right) d x=\int_{\Omega} f \cdot v_{\mathcal{T}} d x
$$

Using $\int_{\Omega} \operatorname{div}_{\mathcal{T}}\left(v_{\mathcal{T}}\right) d x=0$:

$$
\int_{\Omega}\left(p_{\mathcal{T}}-m_{\mathcal{T}}\right)^{2} d x=\int_{\Omega}\left(f \cdot v_{\mathcal{T}}-\nabla_{\mathcal{T}} u_{\mathcal{T}}: \nabla_{\mathcal{T}} v_{\mathcal{T}}\right) d x .
$$

with the estimate on $u_{\mathcal{T}}$ and the bound on $v_{\mathcal{T}}$ linearly depending on the L^{2} norm of $p_{\mathcal{T}}-m_{\mathcal{T}}$, the preceding inequality leads to:

$$
\left\|p_{\mathcal{T}}-m_{\mathcal{T}}\right\|_{L^{2}(\Omega)} \leq C_{4}
$$

where C_{4} only depends on f and on Ω.

Estimates on $p_{\mathcal{T}}$ and $\rho_{\mathcal{T}}$

$$
\begin{gathered}
\left\|p_{\mathcal{T}}-m_{\mathcal{T}}\right\|_{L^{2}(\Omega)} \leq C_{4} . \\
\int_{\Omega} p_{\mathcal{T}}^{\frac{1}{\gamma}} d x=\int_{\Omega} \rho_{\mathcal{T}} d x=M
\end{gathered}
$$

Then:

$$
\left\|p_{\mathcal{T}}\right\|_{L^{2}(\Omega)} \leq C_{5}
$$

where C_{5} only depends on f, M, γ and Ω.
$p_{\mathcal{T}}=\rho_{\mathcal{T}}^{\gamma}$ a.e. in Ω, then:

$$
\left\|\rho_{\mathcal{T}}\right\|_{L^{2 \gamma}(\Omega)} \leq C_{6}=C_{5}^{\frac{1}{\gamma}}
$$

Convergence of $u_{\mathcal{T}}, p_{\mathcal{T}}, \rho_{\mathcal{T}}$ (weak for $p_{\mathcal{T}}$ and $\rho_{\mathcal{T}}$)

Thanks to the estimates on $u_{\mathcal{T}}, p_{\mathcal{T}}, \rho_{\mathcal{T}}$, it is possible to assume (up to a subsequence) that, as $h \rightarrow 0$:

$$
\begin{gathered}
u_{\mathcal{T}} \rightarrow u \text { in } L^{2}(\Omega)^{d} \text { and } u \in H_{0}^{1}(\Omega)^{d}, \\
p_{\mathcal{T}} \rightarrow p \text { weakly in } L^{2}(\Omega), \\
\rho_{\mathcal{T}} \rightarrow \rho \text { weakly in } L^{2 \gamma}(\Omega) .
\end{gathered}
$$

Passage to the limit in the momentum equation

Classical proof with FV scheme for elliptic equations $u \in H_{0}^{1}(\Omega)^{d}$

One proves

$$
\int_{\Omega} \nabla u: \nabla v d x-\int_{\Omega} p \operatorname{div}(v) d x=\int_{\Omega} f \cdot v d x \text { for all } v \in C_{c}^{\infty}(\Omega)^{d}
$$

and then, since $u \in H_{0}^{1}(\Omega)^{d}$, one concludes by density

$$
\int_{\Omega} \nabla u: \nabla v d x-\int_{\Omega} p \operatorname{div}(v) d x=\int_{\Omega} f \cdot v d x \text { for all } v \in H_{0}^{1}(\Omega)^{d}
$$

Passage to the limit in the mass equation

L^{1}-weak convergence of $\rho_{\mathcal{T}}$ (and $\rho_{\mathcal{T}} \geq 0$) gives positivity of ρ and convergence of total mass

$$
\rho \geq 0 \text { in } \Omega, \int_{\Omega} \rho(x) d x=M
$$

Using the fact that $u_{\mathcal{T}}$ converges in L^{2} and $\rho_{\mathcal{T}}$ weakly in L^{2}, one proves

$$
\int_{\Omega} \rho u \cdot \nabla \varphi d x=0 \text { for all } \varphi \in C_{c}^{\infty}(\Omega)
$$

This is quite classical with FV for hyperbolic equations. It uses some weak-BV estimate (to control $\rho_{K}-\rho_{L}$ if $\sigma=K \mid L$) coming from the upwinding of ρ

Quite easy for $\gamma \geq 2$. More difficult for $\gamma<2$.

Weak-BV estimate, $\gamma \geq 2$

Roughly speaking, upwinding replaces $\operatorname{div}(\rho u)=0$ by $\operatorname{div}(\rho u)-h \operatorname{div}(|u| \nabla \rho)=0$ (the term M_{K} is easy to handle) Taking ρ as test function leads to

$$
-\frac{1}{2} \int_{\Omega} u \cdot \nabla \rho^{2}+h|u||\nabla \rho|^{2}=0
$$

which leads to

$$
\int_{\Omega} h|u||\nabla \rho|^{2}=-\frac{1}{2} \int_{\Omega} \operatorname{div}(u) \rho^{2} \leq C
$$

if ρ is bounded in $L^{4}(\Omega)$ (since $\operatorname{div}(u)$ is bounded in $\left.L^{2}(\Omega)\right)$ This proves the weak-BV estimate on ρ if $\gamma \geq 2$

It allows to pass to the limit in the mass equation using the weak convergence of $\rho_{\mathcal{T}}$ in $L^{2}(\Omega)$ and the convergence of $u_{\mathcal{T}}$ in $L^{2}(\Omega)^{d}$ as $h \rightarrow 0$

Weak-BV estimate, $\gamma<2$

- Method 1: Use ρ-weighted weak-BV estimates
- Method 2: Add another diffusion term in the discrrete mass equation which is a discretization of

$$
h^{\xi} \operatorname{div}\left(\rho^{2-\gamma} \nabla \rho\right)=0
$$

ξ is a parameter, $0<\xi<2$
Small diffusion term (ξ close to 2), leading to a weak-BV estimate (taking $\rho^{\gamma-1}$ as test function in the discrete mass equation)

Passage to the limit in EOS

- No problem if $\gamma=1, p=\rho$
- If $\gamma>1$, question:

$$
p=\rho^{\gamma} \text { in } \Omega \text { ? }
$$

$p_{\mathcal{T}}$ and $\rho_{\mathcal{T}}$ converge only weakly...
Idea : prove $\int_{\Omega} p_{\mathcal{T}} \rho_{\mathcal{T}} \rightarrow \int_{\Omega} p \rho$ and deduce a.e. convergence (of $p_{\mathcal{T}}$ and $\left.\rho_{\mathcal{T}}\right)$ and $p=\rho^{\gamma}$.

$\nabla: \nabla=$ divdiv + curl \cdot curl

For all \bar{u}, \bar{v} in $H_{0}^{1}(\Omega)^{d}$,

$$
\int_{\Omega} \nabla \bar{u}: \nabla \bar{v}=\int_{\Omega} \operatorname{div}(\bar{u}) \operatorname{div}(\bar{v})+\int_{\Omega} \operatorname{curl}(\bar{u}) \cdot \operatorname{curl}(\bar{v}) .
$$

Assuming, for simplicity that $u_{\mathcal{T}} \in H_{0}^{1}(\Omega)^{d}$ and
$-\Delta u_{\mathcal{T}}+\nabla p_{\mathcal{T}}=f_{\mathcal{T}} \in L^{2}(\Omega), f_{\mathcal{T}} \rightarrow f$ in $L^{2}(\Omega)^{d}$ as $h \rightarrow 0$ (not true...). Then, for all \bar{v} in $H_{0}^{1}(\Omega)^{d}$
$\int_{\Omega} \operatorname{div}\left(u_{\mathcal{T}}\right) \operatorname{div}(\bar{v})+\int_{\Omega} \operatorname{curl}\left(u_{\mathcal{T}}\right) \cdot \operatorname{curl}(\bar{v})-\int_{\Omega} p_{\mathcal{T}} \operatorname{div}(\bar{v})=\int_{\Omega} f_{\mathcal{T}} \cdot \bar{v}$.
Choice of $\bar{v} ? \bar{v}=\bar{v}_{\mathcal{T}}$ with $\operatorname{curl}\left(\bar{v}_{\mathcal{T}}\right)=0, \operatorname{div}\left(\bar{v}_{\mathcal{T}}\right)=\rho_{\mathcal{T}}$ and $\bar{v}_{\mathcal{T}}$ bounded in H_{0}^{1} (unfortunately, 0 is impossible).
Then, up to a subsequence,
$\bar{v}_{\mathcal{T}} \rightarrow v$ in $L^{2}(\Omega)$ and weakly in $H_{0}^{1}(\Omega)$,
$\operatorname{curl}(v)=0, \operatorname{div}(v)=\rho$.

Proof using $\bar{v}_{\mathcal{T}}$ (1)

$$
\int_{\Omega} \operatorname{div}\left(u_{\mathcal{T}}\right) \operatorname{div}\left(\bar{v}_{\mathcal{T}}\right)+\int_{\Omega} \operatorname{curl}\left(u_{\mathcal{T}}\right) \cdot \operatorname{curl}\left(\bar{v}_{\mathcal{T}}\right)-\int_{\Omega} p_{\mathcal{T}} \operatorname{div}\left(\bar{v}_{\mathcal{T}}\right)=\int_{\Omega} f_{\mathcal{T}} \cdot \bar{v}_{\mathcal{T}} .
$$

But, $\operatorname{div}\left(\bar{v}_{\mathcal{T}}\right)=\rho_{\mathcal{T}}$ and $\operatorname{curl}\left(\bar{v}_{\mathcal{T}}\right)=0$. Then:

$$
\int_{\Omega}\left(\operatorname{div}\left(u_{\mathcal{T}}\right)-p_{\mathcal{T}}\right) \rho_{\mathcal{T}}=\int_{\Omega} f_{\mathcal{T}} \cdot \bar{v}_{\mathcal{T}} .
$$

Convergence of $f_{\mathcal{T}}$ in $L^{2}(\Omega)^{d}$ to f and convergence of $\bar{v}_{\mathcal{T}}$ in $L^{2}(\Omega)^{d}$ to v :

$$
\lim _{h \rightarrow 0} \int_{\Omega}\left(\operatorname{div}\left(u_{\mathcal{T}}\right)-p_{\mathcal{T}}\right) \rho_{\mathcal{T}}=\int_{\Omega} f \cdot v .
$$

Proof using $\bar{v}_{\mathcal{T}}$ (2)

But, since $-\Delta u+\nabla p=f$:

$$
\int_{\Omega} \operatorname{div}(u) \operatorname{div}(v)+\int_{\Omega} \operatorname{curl}(u) \cdot \operatorname{curl}(v)-\int_{\Omega} p \operatorname{div}(v)=\int_{\Omega} f \cdot v .
$$

which gives (using $\operatorname{div}(v)=\rho$ and $\operatorname{curl}(v)=0$):
$\int_{\Omega}(\operatorname{div}(u)-p) \rho=\int_{\Omega} f \cdot v$. Then:

$$
\lim _{h \rightarrow 0} \int_{\Omega}\left(p_{\mathcal{T}}-\operatorname{div}\left(u_{\mathcal{T}}\right)\right) \rho_{\mathcal{T}}=\int_{\Omega}(p-\operatorname{div}(u)) \rho
$$

Finally, the preliminary lemma gives, thanks to the mass equations, $\int_{\Omega} \rho_{\mathcal{T}} \operatorname{div}\left(u_{\mathcal{T}}\right) \leq C h^{\alpha}$ and $\int_{\Omega} \rho \operatorname{div}(u)=0$. Then, at least for a subsequence

$$
\lim _{h \rightarrow 0} \int_{\Omega} p_{\mathcal{T}} \rho_{\mathcal{T}} \leq \int_{\Omega} p \rho
$$

Unfortunately, two difficulties: it is impossible to have $\bar{v}_{\mathcal{T}} \in H_{0}^{1}$ and $\left(u_{\mathcal{T}}, p_{\mathcal{T}}\right)$ is solution of the discrete momentum equation

First difficulty: not 0 at the boundary

Let $w_{\mathcal{T}} \in H_{0}^{1}(\Omega),-\Delta w_{\mathcal{T}}=\rho_{\mathcal{T}}$,
One has $w_{\mathcal{T}} \in H_{\text {loc }}^{2}(\Omega)$ since, for $\varphi \in C_{c}^{\infty}(\Omega)$, one has
$\Delta\left(w_{\mathcal{T}} \varphi\right) \in L^{2}(\Omega)$ and

$$
\begin{gathered}
\sum_{i, j=1}^{d} \int_{\Omega} \partial_{i} \partial_{j}\left(w_{\mathcal{T}} \varphi\right) \partial_{i} \partial_{j}\left(w_{\mathcal{T}} \varphi\right)=\sum_{i, j=1}^{d} \int_{\Omega} \partial_{i} \partial_{i}\left(w_{\mathcal{T}} \varphi\right) \partial_{j} \partial_{j}\left(w_{\mathcal{T}} \varphi\right) \\
=\int_{\Omega}\left(\Delta\left(w_{\mathcal{T}} \varphi\right)\right)^{2}<\infty
\end{gathered}
$$

Then, taking $v_{\mathcal{T}}=\nabla w_{\mathcal{T}}$

- $v_{\mathcal{T}} \in\left(H_{l o c}^{1}(\Omega)\right)^{d}$,
- $\operatorname{div}\left(v_{\mathcal{T}}\right)=\rho_{\mathcal{T}}$ a.e. in Ω,
- $\operatorname{curl}\left(v_{\mathcal{T}}\right)=0$ a.e. in Ω,
- $H_{l o c}^{1}(\Omega)$-estimate on $v_{\mathcal{T}}$ with respect to $\left\|\rho_{\mathcal{T}}\right\|_{L^{2}(\Omega)}$.

Then, up to a subsequence, as $h \rightarrow 0, v_{\mathcal{T}} \rightarrow v$ in $L_{\text {loc }}^{2}(\Omega)$ and weakly in $H_{l o c}^{1}(\Omega), \operatorname{curl}(v)=0, \operatorname{div}(v)=\rho$.

Proof of $\int_{\Omega}\left(p_{\mathcal{T}}-\operatorname{div}\left(u_{\mathcal{T}}\right)\right) \rho_{\mathcal{T}} \varphi \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi$

Let $\varphi \in C_{c}^{\infty}(\Omega)$ (so that $\left.v_{\mathcal{T}} \varphi \in H_{0}^{1}(\Omega)^{d}\right)$). Taking $\bar{v}=v_{\mathcal{T}} \varphi$:

$$
\begin{gathered}
\int_{\Omega} \operatorname{div}\left(u_{\mathcal{T}}\right) \operatorname{div}\left(v_{\mathcal{T}} \varphi\right)+\int_{\Omega} \operatorname{curl}\left(u_{\mathcal{T}}\right) \cdot \operatorname{curl}\left(v_{\mathcal{T}} \varphi\right)-\int_{\Omega} p_{\mathcal{T}} \operatorname{div}\left(v_{\mathcal{T}} \varphi\right) \\
=\int_{\Omega} f_{\mathcal{T}} \cdot\left(v_{\mathcal{T}} \varphi\right) .
\end{gathered}
$$

Using a proof smilar to that given if $\varphi=1$ (with additionnal terms involving φ), we obtain :

$$
\lim _{h \rightarrow 0} \int_{\Omega}\left(p_{\mathcal{T}}-\operatorname{div}\left(u_{\mathcal{T}}\right)\right) \rho_{\mathcal{T}} \varphi=\int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi
$$

Proving $\int_{\Omega}\left(p_{\mathcal{T}}-\operatorname{div}\left(u_{\mathcal{T}}\right)\right) \rho_{\mathcal{T}} \varphi \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi$

Let $\varphi \in C_{c}^{\infty}(\Omega)$ (so that $\left.v_{\mathcal{T}} \varphi \in H_{0}^{1}(\Omega)^{d}\right)$). Taking $\bar{v}=v_{\mathcal{T}} \varphi$:

$$
\begin{gathered}
\int_{\Omega} \operatorname{div}\left(u_{\mathcal{T}}\right) \operatorname{div}\left(v_{\mathcal{T}} \varphi\right)+\int_{\Omega} \operatorname{curl}\left(u_{\mathcal{T}}\right) \cdot \operatorname{curl}\left(v_{\mathcal{T}} \varphi\right)-\int_{\Omega} p_{\mathcal{T}} \operatorname{div}\left(v_{\mathcal{T}} \varphi\right) \\
=\int_{\Omega} f_{\mathcal{T}} \cdot\left(v_{\mathcal{T}} \varphi\right) .
\end{gathered}
$$

But, $\operatorname{div}\left(v_{\mathcal{T}} \varphi\right)=\rho_{\mathcal{T}} \varphi+v_{\mathcal{T}} \cdot \nabla \varphi$ and $\operatorname{curl}\left(v_{\mathcal{T}} \varphi\right)=L(\varphi) v_{\mathcal{T}}$, where $L(\varphi)$ is a matrix involving the first order derivatives of φ. Then:

$$
\begin{aligned}
& \int_{\Omega}\left(\operatorname{div}\left(u_{\mathcal{T}}\right)-p_{\mathcal{T}}\right) \rho_{\mathcal{T}} \varphi=\int_{\Omega} f_{\mathcal{T}} \cdot\left(v_{\mathcal{T}} \varphi\right) \\
& -\int_{\Omega} \operatorname{div}\left(u_{\mathcal{T}}\right) v_{\mathcal{T}} \cdot \nabla \varphi-\int \operatorname{curl}\left(u_{\mathcal{T}}\right) \cdot L(\varphi) v_{\mathcal{T}}+\int_{\Omega} p_{\mathcal{T}} v_{\mathcal{T}} \cdot \nabla \varphi .
\end{aligned}
$$

Weak convergence of $u_{\mathcal{T}}$ in $H_{0}^{1}(\Omega)^{d}$, weak convergence of $p_{\mathcal{T}}$ in $L^{2}(\Omega)$ and convergence of $v_{\mathcal{T}}$ and $f_{\mathcal{T}}$ in $L_{l o c}^{2}(\Omega)^{d}$ and $L^{2}(\Omega)^{d}$:

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \int_{\Omega}\left(\operatorname{div}\left(u_{\mathcal{T}}\right)-p_{\mathcal{T}}\right) \rho_{\mathcal{T}} \varphi=\int_{\Omega} f \cdot(v \varphi) \\
& -\int_{\Omega} \operatorname{div}(u) v \cdot \nabla \varphi-\int \operatorname{curl}(u) \cdot L(\varphi) v+\int_{\Omega} p v \cdot \nabla \varphi .
\end{aligned}
$$

Proof of $\int_{\Omega}\left(p_{\mathcal{T}}-\operatorname{div}\left(u_{\mathcal{T}}\right)\right) \rho_{\mathcal{T}} \varphi \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi$

But, since $-\Delta u+\nabla p=f$:

$$
\begin{gathered}
\int_{\Omega} \operatorname{div}(u) \operatorname{div}(v \varphi)+\int_{\Omega} \operatorname{curl}(u) \cdot \operatorname{curl}(v \varphi)-\int_{\Omega} p \operatorname{div}(v \varphi) \\
=\int_{\Omega} f \cdot(v \varphi) .
\end{gathered}
$$

which gives (using $\operatorname{div}(v)=\rho$ and $\operatorname{curl}(v)=0$):

$$
\begin{aligned}
& \int_{\Omega}(\operatorname{div}(u)-p) \rho \varphi=\int_{\Omega} f \cdot(v \varphi) \\
& -\int_{\Omega} \operatorname{div}(u) v \cdot \nabla \varphi-\int \operatorname{curl}(u) \cdot L(\varphi) v+\int_{\Omega} p v \cdot \nabla \varphi .
\end{aligned}
$$

Then:

$$
\lim _{h \rightarrow 0} \int_{\Omega}\left(p_{\mathcal{T}}-\operatorname{div}\left(u_{\mathcal{T}}\right)\right) \rho_{\mathcal{T}} \varphi=\int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi
$$

Second difficulty: Discrete momentum equation

Miracle for the MAC scheme: for all \bar{u}, \bar{v} in $H_{\mathcal{T}}$,

$$
\int_{\Omega} \nabla_{\mathcal{T}} \bar{u}: \nabla_{\mathcal{T}} \bar{v}=\int_{\Omega} \operatorname{div}_{\mathcal{T}}(\bar{u}) \operatorname{div}_{\mathcal{T}}(\bar{v})+\int_{\Omega} \operatorname{curl}_{\mathcal{T}}(\bar{u}) \cdot \operatorname{curl}_{\mathcal{T}}(\bar{v}) .
$$

Then, for all \bar{v} in $H_{\mathcal{T}}$
$\int_{\Omega} \operatorname{div}_{\mathcal{T}}\left(u_{\mathcal{T}}\right) \operatorname{div}_{\mathcal{T}}(\bar{v})+\int_{\Omega} \operatorname{curl}_{\mathcal{T}}\left(u_{\mathcal{T}}\right) \cdot \operatorname{curl}_{\mathcal{T}}(\bar{v})-\int_{\Omega} p_{\mathcal{T}} \operatorname{div}(\bar{v})=\int_{\Omega} f_{\mathcal{T}} \cdot \bar{v}$.

Choice of $\bar{v} ? \bar{v}=\bar{v}_{\mathcal{T}}$ with $\operatorname{curl}_{\mathcal{T}}\left(\bar{v}_{\mathcal{T}}\right)=0, \operatorname{div}\left(\bar{v}_{\mathcal{T}}\right)=\rho_{\mathcal{T}}$ and $\bar{v}_{\mathcal{T}} \in H_{\mathcal{T}}$ and bounded for the natural norm of
$H_{\mathcal{T}} \ldots$ impossible... (as in the continuous setting)

Choice of the test function in the momentum equation

Let $\left\{w_{K}, K \in \mathcal{T}\right\}$ be the FV solution of the $-\Delta w_{\mathcal{T}}=\rho_{\mathcal{T}}$, with the homogeneous Dirichlet boundary condition, that is, for all $K \in \mathcal{T}$,

$$
\sum_{\sigma \in \mathcal{E}_{K}} \frac{|\sigma|}{d_{\sigma}}\left(w_{K}-w_{L}\right)=|K| \rho_{K}
$$

In the preceding equality, $\sigma=K \mid L$, with the usual modification at the boundary
For $\sigma \in \mathcal{E}, \sigma=K \mid L, n_{K, \sigma}=n_{\sigma} \geq 0$, one defines $v_{\sigma}=u_{L}-u_{K}$ A proof similar to the proof for the continous case, gives some discrete- $H_{l o c}^{2}(\Omega)$ estimate on $w_{\mathcal{T}}$ and then some discrete- $H_{l o c}^{1}(\Omega)$ estimate on $v_{\mathcal{T}}$ in term of L^{2} norm of $\rho_{\mathcal{T}}$

Furthermore, at least "far" from the boundary, $\operatorname{div}_{\mathcal{T}}\left(v_{\mathcal{T}}\right)=\rho_{\mathcal{T}}$ and $\operatorname{curl}_{\mathcal{T}}\left(v_{\mathcal{T}}\right)=0$
Then, up to a subsequence, as $h \rightarrow 0, v_{\mathcal{T}} \rightarrow v$ in $L_{\text {loc }}^{2}(\Omega)$ and $v \in H_{l o c}^{1}(\Omega)^{d}, \operatorname{curl}(v)=0, \operatorname{div}(v)=\rho$.

Proof of $\int_{\Omega}\left(p_{\mathcal{T}}-\operatorname{div}\left(u_{\mathcal{T}}\right)\right) \rho_{\mathcal{T}} \varphi \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi$

Let $\varphi \in C_{c}^{\infty}(\Omega)$ (so that $v_{\mathcal{T}} \varphi_{\mathcal{T}} \in H_{\mathcal{T}}$). Taking $\bar{v}=v_{\mathcal{T}} \varphi_{\mathcal{T}}$:

$$
\begin{aligned}
& \int_{\Omega} \operatorname{div}_{\mathcal{T}}\left(u_{\mathcal{T}}\right) \operatorname{div}_{\mathcal{T}}\left(v_{\mathcal{T}} \varphi\right)+\int_{\Omega} \operatorname{curl}_{\mathcal{T}}\left(u_{\mathcal{T}}\right) \cdot \operatorname{curl}_{\mathcal{T}}\left(v_{\mathcal{T}} \varphi_{\mathcal{T}}\right) \\
& -\int_{\Omega} p_{\mathcal{T}} \operatorname{div}_{\mathcal{T}}\left(v_{\mathcal{T}} \varphi_{\mathcal{T}}\right) \quad=\int_{\Omega} f_{\mathcal{T}} \cdot\left(v_{\mathcal{T}} \varphi_{\mathcal{T}}\right)
\end{aligned}
$$

Using a proof smilar to that given in the continuous case we obtain:

$$
\lim _{h \rightarrow 0} \int_{\Omega}\left(p_{\mathcal{T}}-\operatorname{div}\left(u_{\mathcal{T}}\right)\right) \rho_{\mathcal{T}} \varphi=\int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi
$$

Proof of $\int_{\Omega}\left(p_{\mathcal{T}}-\operatorname{div}\left(u_{\mathcal{T}}\right)\right) \rho_{\mathcal{T}} \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho$

Lemma : $F_{\mathcal{T}} \rightarrow F$ in $D^{\prime}(\Omega),\left(F_{\mathcal{T}}\right)_{n \in \mathbb{N}}$ bounded in L^{q} for some $q>1$. Then $F_{\mathcal{T}} \rightarrow F$ weakly in L^{1}.

With $F_{\mathcal{T}}=\left(p_{\mathcal{T}}-\operatorname{div}\left(u_{\mathcal{T}}\right)\right) \rho_{\mathcal{T}}, F=(p-\operatorname{div}(u)) \rho$ and since $\gamma>1$, the lemma gives

$$
\int_{\Omega}\left(p_{\mathcal{T}}-\operatorname{div}\left(u_{\mathcal{T}}\right)\right) \rho_{\mathcal{T}} \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho .
$$

Proving $\int_{\Omega} p_{\mathcal{T}} \rho_{\mathcal{T}} \rightarrow \int_{\Omega} p \rho$

$$
\int_{\Omega}\left(p_{\mathcal{T}}-\operatorname{div}\left(u_{\mathcal{T}}\right)\right) \rho_{\mathcal{T}} \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho
$$

But thanks to the mass equations, the preliminary lemma gives:

$$
\int_{\Omega} \operatorname{div}\left(u_{\mathcal{T}}\right) \rho_{\mathcal{T}} \leq C h^{\alpha}, \int_{\Omega} \operatorname{div}(u) \rho=0
$$

Then:

$$
\lim _{h \rightarrow 0} \int_{\Omega} p_{\mathcal{T}} \rho_{\mathcal{T}} \leq \int_{\Omega} p \rho
$$

a.e. convergence of $\rho_{\mathcal{T}}$ and $p_{\mathcal{T}}$

Let $G_{\mathcal{T}}=\left(\rho_{\mathcal{T}}^{\gamma}-\rho^{\gamma}\right)\left(\rho_{\mathcal{T}}-\rho\right) \in L^{1}(\Omega)$ and $G_{\mathcal{T}} \geq 0$ a.e. in Ω.
Futhermore $G_{\mathcal{T}}=\left(p_{\mathcal{T}}-\rho^{\gamma}\right)\left(\rho_{\mathcal{T}}-\rho\right)=p_{\mathcal{T}} \rho_{\mathcal{T}}-p_{\mathcal{T}} \rho-\rho^{\gamma} \rho_{\mathcal{T}}+\rho^{\gamma} \rho$ and:

$$
\int_{\Omega} G_{\mathcal{T}}=\int_{\Omega} p_{\mathcal{T}} \rho_{\mathcal{T}}-\int_{\Omega} p_{\mathcal{T}} \rho-\int_{\Omega} \rho^{\gamma} \rho_{\mathcal{T}}+\int_{\Omega} \rho^{\gamma} \rho .
$$

Using the weak convergence in $L^{2}(\Omega)$ of $p_{\mathcal{T}}$ and $\rho_{\mathcal{T}}$ and $\lim _{h \rightarrow 0} \int_{\Omega} p_{\mathcal{T}} \rho_{\mathcal{T}} \leq \int_{\Omega} p \rho:$

$$
\lim _{h \rightarrow 0} \int_{\Omega} G_{\mathcal{T}} \leq 0
$$

Then (up to a subsequence), $G_{\mathcal{T}} \rightarrow 0$ a.e. and then $\rho_{\mathcal{T}} \rightarrow \rho$ a.e. (since $y \mapsto y^{\gamma}$ is an increasing function on \mathbb{R}_{+}). Finally:
$\rho_{\mathcal{T}} \rightarrow \rho$ in $L^{q}(\Omega)$ for all $1 \leq q<2 \gamma$,
$p_{\mathcal{T}}=\rho_{\mathcal{T}}^{\gamma} \rightarrow \rho^{\gamma}$ in $L^{q}(\Omega)$ for all $1 \leq q<2$, and $p=\rho^{\gamma}$.
(\rightsquigarrow EOS and EOT ?)

Additional difficulty for stat. comp. NS equations

Ω is a bounded open set of $\mathbb{R}^{d}, d=2$ or 3 , with a Lipschitz continuous boundary, $\gamma>1, f \in L^{2}(\Omega)^{d}$ and $M>0$

$$
\begin{gathered}
-\Delta u+\operatorname{div}(\rho u \otimes u)+\nabla p=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \\
\operatorname{div}(\rho u)=0 \text { in } \Omega, \rho \geq 0 \text { in } \Omega, \int_{\Omega} \rho(x)=M, \\
p=\rho^{\gamma} \text { in } \Omega
\end{gathered}
$$

$d=2$: no aditional difficulty
$d=3$: no additional difficulty if $\gamma \geq 3$. But for $\gamma<3$, no estimate on p in $L^{2}(\Omega)$.

Estimates in the case of NS equations, $\frac{3}{2}<\gamma<3$

Estimate on u : Taking u as test function in the momentum leads to an estimate on u in $\left(H_{0}^{1}(\Omega)^{d}\right.$ since

$$
\int_{\Omega} \rho u \otimes u: \nabla u=0 .
$$

Then, we have also an estimate on u in $L^{6}(\Omega)^{d}$ (using Sobolev embedding).

Estimate on p in $L^{q}(\Omega)$, with some $1<q<2$ and $q=1$ when $\gamma=\frac{3}{2}$ (using Nečas Lemma in some L^{r} instead of L^{2}).
Estimate on ρ in $L^{q}(\Omega)$, with some $\frac{3}{2}<q<6$ and $q=\frac{3}{2}$ when $\gamma=\frac{3}{2}$ (since $p=\rho^{\gamma}$).

Remark : $\rho u \otimes u \in L^{1}(\Omega)$, since $u \in L^{6}(\Omega)^{d}$ and $\rho \in L^{\frac{3}{2}}(\Omega)$ (and $\frac{1}{6}+\frac{1}{6}+\frac{2}{3}=1$).

NS equations, $\gamma<3$, how to pass to the limit in the EOS

We prove

$$
\lim _{h \rightarrow 0} \int_{\Omega} p_{\mathcal{T}} \rho_{\mathcal{T}}^{\theta}=\int_{\Omega} p \rho^{\theta}
$$

with some convenient choice of $\theta>0$ instead of $\theta=1$.
This gives, as for $\theta=1$, the a.e. convergence (up to a subsequence) of $p_{\mathcal{T}}$ and $\rho_{\mathcal{T}}$.

