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Why upwinding 7

Otp+0xp=0, xeER, te Ry

1, x<0
p(x’o):{ 0, x>0

Upwind scheme, CFL=1/2, solution for T=1/2 (N = M = 100)
space step: h = 1/N, M = number of time steps, k = (CFL)h

43,9909

Good speed of discontinuity, bounds on the solution, large amount
of numerical diffusion



Why upwinding 7

Centered scheme, CFL=1/2, solution for T=1/20 (N = 100,
M = 10).
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no numerical diffusion but oscillations, no convergence.



Why upwinding 7

Centered scheme, CFL=1/2, solution for T=1/2 (N = 100,
M = 100).
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no numerical diffusion but oscillations, no convergence.



Downwind scheme, for joke

Downwind scheme, CFL=1/2, solution for T=1/2 (N = 100,
M = 100).

numerical antidiffusion, no convergence.



Burgers viewed as a coupled system, upwind

8tp+aX(up):Ov u=p, XGR, t€R+
2, x<0
p(XaO) * { ]_7 x>0
Upwind scheme, CFL=1, solution for T=1/2 (N = 100, M = 200)
Space step: h=1/N, M = number of time steps, k = (CFL)h/4

DI

Good localization of the discontinuity, few numerical diffusion,
bounds on the solution, convergence.



Burgers viewed as a coupled system, upwind-ncv

(h/K) (™ = p) + uf (pf — pf-1) =0, uf = pf
Upwind-ncv scheme, CFL=1, solution for T=1/2 (N = 100,
M = 200)
Space step: h=1/N, M = number of time steps, k = (CFL)h/4

36— Xm

Wrong localization of the discontinuity (0.75 instead of 1.5), few
numerical diffusion, bounds on the solution, no convergence.
But, it is due to fact that we discretize u0xp and not dy(up).



Burgers viewed as a coupled system, upwind-ncv
Upwind on udyp + pdxu. Since u = p (collocated), it gives

(h/K)(p7 ™ = p) + 20l (p] — 1) =0, uf = pf

Initial condition : 2 for x < 0 and 1 for x > 0

Upwind-ncv scheme, CFL=1, solution for T=1/4 (N = 100,

M = 200)

Space step: h=1/N, M = number of time steps, k = (CFL)h/4

not so bad, curious result. .. due to this particular initial condition



Burgers viewed as a coupled system, upwind-ncv
Upwind on udyp + pdxu. Since u = p (collocated), it gives

(h/k)(pT* — pf) +2uf (o] — pf1) =0, uf = p]
Initial condition : 1 for x < 0 and 0 for x > 0
Upwind-ncv scheme, CFL=1/4, solution for T=1/4 (N = 100,
M = 200)
Space step: h=1/N, M = number of time steps, k = (CFL)h/2
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Wrong localization of the discontinuity (0 instead of 0.25 !), no
numerical diffusion !, bounds on the solution, no convergence.



Burgers viewed as a coupled system, upwind-ncv
Upwind on udyp + pdxu. Since u = p (collocated), it gives

(h/k)(pT* — pf) +2uf (o] — pf1) =0, uf = p]
Initial condition : 3 for x < 0 and 1 for x >0
Upwind-ncv scheme, CFL=1/4, solution for T=1/4 (N = 100,
M = 200)
Space step: h=1/N, M = number of time steps, k = (CFL)h/2
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Wrong localization of the discontinuity, bounds on the solution, no
convergence.



Burgers viewed as a coupled system, upwind-ncv

Upwind on uOxp + pOxu.

Upwind-ncv=upwind + discretization of h(dxu)>.

No problem for a regular solution. A problem might arise if Oyu
not in L.



Burgers viewed as a coupled system, upwind-staggered

(/KPS = o)+ (4 — U p0) = O,
up1 = (1/2)(pf + pit1)
Upwind-staggered scheme, CFL=1, solution for T=1/20

(N = 100, M = 20)
Space step: h=1/N, M = number of time steps, k = (CFL)h/4

Pretty good localization of the discontinuity (0.15), but no bound
of the solution ~~ time step too large



Burgers viewed as a coupled system, upwind-staggered

(h/R) P — o) + (ufy g 28— U p0) =0,
up1 = (1/2)(pf + pit1)
Upwind-staggered scheme, CFL=1/2(reduced CFL), solution for
T=1/20 (N = 100, M = 40)
Space step: h=1/N, M = number of time steps, k = (CFL)h/4

ﬁ
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Good localization of the discontinuity (0.15), positivity but no
upper bound on the solution.



Burgers viewed as a coupled system, upwind-staggered

(h/R) P — o) + (ufy g 28— U p0) =0,
up1 = (1/2)(pf + pit1)
Upwind-staggered scheme, CFL=1/2(reduced CFL), solution for
T=1/4 (N = 100, M = 200)
Space step: h=1/N, M = number of time steps, k = (CFL)h/4

Good localization of the discontinuity (0.75), positivity but no
upper bound on the solution.



Burgers viewed as a coupled system

Otp+ 0x(up) =0, u=p, xeR, teR;

2, x<0

» Full upwind collocated scheme is perfect. Good discontinuity,
bounds on the solution, convergence

» Non conservative upwind collocated scheme is not good.

» Upwind scheme with staggered grids is pretty good. .. Good
discontinuity, positivity of the solution, no upper bound (and
then reduced CFL is needed) but probably convergence.

Main properties for a good scheme : conservativity, stability
Two additional remarks
» Conservative upwinding has to be done on the true equation

» Numerical diffusion has to be conservative



Burgers, wrong upwinding

th—l-ax(pz) = 0, X € R, t e R+

2, x<0

For positive and regular solution, an equivalent equation is

4
3tp2 + §8X(,03) =0, xeR, te R+

The classical upwind scheme on this latter equation leads to a
solution which does not have the good localization of the
discontinuity

The speed of the discontinuity is 3 for burgers and 28/9 for the
equivalent equation



Burgers, upwind on an “equivalent” equation

n n 4 n n
(h/K)((p7 ™) = (p7)%) + 3((oi )> = (pl-1)°) =0,
Upwind scheme on the “equivalent” equation, CFL=1, solution for
T=1/2 (N =100, M = 200)
Space step: h=1/N, M = number of time steps, k = (CFL)h/4
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Bad localization of the discontinuity (0.1555 instead of 1.5),
bounds on the solution, no convergence



Burgers, numerical diffusion

Oep + 0x(f(p)) = 0

On this equation, if f/ > 0, upwinding is “similar’ to add a
numerical diffusion. Namely, is similar to

! _ 2
0ep + 05((0)) — (LKL ) g

The CFL condition is for hf'(p) — kf'?(p) > 0 (i.e. kf'(p) < h)

In the case of the burgers equation it gives

Dep 4+ 0 (p?) — Ox((hp — 2kp®)dxp) =0, x €ER, t € R,



Burgers, non conservative numerical diffusion

In the case of the “equivalent” equation
dep? + (4/3)0x(p*) = 0,
upwinding is similar to (since p > 0)
0up? + 50(6%) — 0u((2h0? — 4kp*)p) = 0,
Turning back to the burgers equation, this leads to
-+ 0(77) — Z0((hy = 2kp*)0hp) =0, x €R, tER,

This is a numerical diffusion (thanks to the CFL condition) but not
on a conservative form.

The consequence is that a non conservative diffusion may lead to
wrong discontinuities.



Stationary compressible Stokes equations
Work with R. Eymard, R. Herbin and J. C. Latché.
d=2or3, Q=]0,1[¢ (or Q = U"_,R;, where R;'s are rectangles if
d = 2 or parallelipedus rectangulus if d = 3).
y>1, fel?(Q)4and M >0

—Au+Vp=1FfinQ, u=0on 02,

div(pu) =0 in Q, p>0 in Q, / p(x)dx = M,
Q

p=p’in Q

» Discretization by the staggered schemes

» Existence of solution for the discrete problem

» Proof of the convergence (up to subsequence) of the solution
of the discrete problem towards a weak solution of the
continuous problem (no uniqueness result for this problem) as
the mesh size goes to 0



Main result

» Two possible discretizations for the momentum equation :
~» MAC scheme (most commonly used scheme for
incompressible Navier Stokes equations)
~ Crouzeix-Raviart Finite Element

» Discretization of the mass equation (and total mass
constraint) by classical upwind Finite Volume

» Existence of solution for the discrete problem

» Proof of the convergence (up to subsequence) of the solution
of the discrete problem towards a weak solution of the
continuous problem (no uniqueness result for this problem) as
the mesh size goes to 0



Generalizations

» (Easy) Complete Stokes problem:
—pAu — 5V (divu) + VP = f, with € R given

» (Ongoing work) Navier-Stokes Equations with v > 1 if d =2
and v > % if d = 3 (probably sharp result with respect to
without changing the diffusion term or the EOS)

> (Open question) Other boundary condition. Addition of an
energy equation

» (Open question) Evolution equation (Stokes and
Navier-Stokes)



Weak solution of the stationary compressible Stokes
problem

Functional spaces : u € H}(Q)9, p € L3(Q), p € L?7(Q)

» Momentum equation:

/ Vu:Vv dx—/ pdiv(v) dx :/ f-vdx for all v € H}(Q)?
Q Q Q

» Mass equation:

/pu-V«pdx: 0 for all ¢ € CZ°(Q)
Q

p >0 a.e., /pdx:M
Q

» EOS: p=p7



MAC scheme, choice of the discrete unknowns

» 7 : cartesian mesh of €2, the mesh size is called h
E: edges of T

» Discretization of u p and p by piecewise constant functions.

n, is the normal vector to o, with n, > 0.

Unknowns for u7:
Uy, 0 € £. u, is an approximate value for v - n, (u, € R)
uy, =0 if o C 00

— o K
o Unknowns for pr and pr:
Pk, pk, K € {rectangles}




MAC scheme, discrete functional spaces, d = 2

> pr,p7 € X7, PT = PK, pT = pK in K, K € T (black cell)

> ur = (u(Tl),u(Tz)) € Hr
u(Tl) = u, in the magenta cell

“(72) = U, in the green cell




Discretization of momentum equation (1)

» v € Hr. divzv is constant on K, K € 7 and

|K|divyv = Z €K o Vo|O]

oe€k

€K,o = sign(n, - Nk ), Nk o is the normal vector to o,
outward K

> u,v € Hr, the discretization of [, Vu: Vvdx is:

hO'E
/ V7u:Vyvdx = E = (uy — Us)(Ve — V&)
Q = dcrE
(o, 0)EN 7

dy5: distance between the centers of o and &
hez is equal to |o| or to 3(|o| + |g|), where o and o are
“between” o and &



Discretization of the momentum equation (2)
Computation of h,z for (0,5) € N

» Case 1: |o T s = @]

Q
[S]
>
S

» Case 2:

(Slight modification if o, o C 09, uz = —u,)

Discrete momentum equation

ur € HT

/ Vryur :Vyvdx — / prdivrvdx = / fvdx, for all v € Hr
Q Q Q



Discretization of the mass equation

Forall K € T, Z |o|poek olic + Mk =0
o€k
with an upstream choice for p,, that is
po = pk if uz >0
pe =pr if uy <0, 0 = K|L

) M
Mk = |K|h*(pk — TQ\)

a>0
The My term gives [, prdx = M
Upwinding is enough to ensure (with M) existence (and

uniqueness) of a positive solution p7, to the discrete mass
equation, for a given uz.



Discretization of the EQS

Discretization of the EOS:

forall K e T

PK



Existence of an approximate solution, convergence result

Existence of a solution vz, pr and p7 of the scheme can be
proven using the Brouwer Fixed Point Theorem.

For v > 1, convergence of the approximate solution can be proven
in the following sense, up to a subsequence:

> ur — uin L2(Q)9, u e H}(Q)
> pr — pin L9(Q) for any 1 < g < 2 and weakly in L?(R)
> p7 — pin L9(Q) for any 1 < g < 27 and weakly in L27()

where (u, p, p) is a weak solution of the compressible Stokes
equations

For v =1, the same result holds, at least with only weak
convergences of py and pr



Proof of convergence, main steps

1. Estimate on the H}(Q)-discrete norm of the components of
ur
2. 1%(Q) estimate on pr and L?7(Q) estimate on pr

These two steps give (up to a subsequence), as h — 0,
» ur — uin L?(Q) and u € H}(Q)?
» pr — p weakly in L2(Q)
» pr — p weakly in L27(Q)
3. (u,p, p) is a weak solution of —Au+ Vp = f, div(pu) =0
p=>0, [opdx=M
4. Main difficulty, if v > 1: p = p” and “strong” convergence of
pr and pr



Preliminary lemma

p€LP(Q),y>1 p>0ae inQ uec (H}Q), div(pu) =0,
then:

/ pdiv(u)dx =0

Q

/ p div(u)dx =0
Q

The first result (and its discrete counterpart) is used for Step 4
(proof of p = p7)

The discrete counterpart (also true for v = 1) of the second result
is used for Step 1 (estimate for uy)



Preliminary lemma for the approximate solution

Discretization of the mass equation div(pu) = 0 and [, pdx = M:
Forall K€ T, Y |olpoek oty + Mk =0

o€k

One proves:

/ pydivy urdx < Ch®,
Q

/ prdivy urdx < Ch®.
Q

C depends on 2, M and ~.

Ch®* is due to Mk
< is due to upwinding



Estimate on us

Taking ur as test function in the discrete momentum equation

/VTUT :Vorur dx—/ prdivy(ur) dx :/ f - urdx.
Q Q Q

But pr = pJ a.e., Discrete mass equation and preliminary lemma
gives [, prdiv(ur) dx < Ch™.
This gives an estimate on u7:

hU,E
da,E

/ Vrur -Vyurdx = (uy — L@)2 < (.
Q

(o,0)eEN

Then, up to a subsequence, u7r — u in L?(Q)9 as h — 0 and
u € H}(Q)?



Estimate on py (inf-sup condition, Necas lemma)

Let my = ﬁfﬂpfdx and g = pr — mr.

Then, there exists vz € (H3(Q))9 s.t. div(vr) = g in Q and
VT ll(Hp ) < Cllalli2(q) where C; only depends on Q

One defines vy € Hy with v, = |71| [ VT - ng foroek.

Then diVT(VT) = p7 — Mt and

hUE
/ Vrvr :Vrvrdx = Z =(vo — VF)Z < C3||‘I||i2(9)
Q

(0,5)eN O

One takes vz as test function in the discrete momentum equation



Estimate on pr (2)

/ Voqur : Vyvrdx — / prdivy(vr) dx = / f - vrdx.
Q Q Q
Using [ divr(vy)dx = 0:

/(pq— — mq—)zdx = /(f vy — Vrur : Vrvr)dx.
Q Q

with the estimate on ug and the bound on v linearly depending
on the L? norm of p;y — m7, the preceding inequality leads to:

lpr — m7|2@) < Ca

where (4 only depends on f and on €.



Estimates on pr and pr

lpr — m7|l2) < Ca

1
/p}dxz/pfdle\/l
Q Q

Iprlli2@) < Gs

Then:

where Cs only depends on f, M, v and Q.

pr = py a.e. in §, then:

1

lpzll2ee) < G = G5 -



Convergence of ur, pr, pr (weak for pr and pr)

Thanks to the estimates on uy, p7, pr, it is possible to assume
(up to a subsequence) that, as h — 0:

ur — uin [2(Q)9 and u € H}(Q)?,
pr — p weakly in LQ(Q),

pr — p weakly in L27(Q).



Passage to the limit in the momentum equation

Classical proof with FV scheme for elliptic equations
u € H}(Q)?

One proves

/Vu:Vvdx—/pdiv(v)dx:/ f - vdx for all v e C°(Q)?
Q Q Q

and then, since u € H}(Q)?, one concludes by density

/ Vu:Vvdx —/ pdiv(v) dx = / f - vdx for all v e H}(Q)?
Q Q Q



Passage to the limit in the mass equation

L*-weak convergence of pr (and pr > 0) gives positivity of p and
convergence of total mass

p>0 in Q, /p(x)dx:l\/l.
Q

Using the fact that uz converges in L2 and p7 weakly in L?, one
proves

/pu-Vgpdx:O for all p € CZ°(Q)
Q

This is quite classical with FV for hyperbolic equations. It uses
some weak-BV estimate (to control px — p if 0 = K|L) coming
from the upwinding of p

Quite easy for v > 2. More difficult for v < 2.



Weak-BV estimate, v > 2

Roughly speaking, upwinding replaces div(pu) = 0 by
div(pu) — hdiv(|u|Vp) = 0 (the term My is easy to handle)
Taking p as test function leads to

1
—/ u- V5 + hlul[Vpl2 =0
2 Jq

which leads to

1
/ ||V o2 = _2/ Fll < €
Q Q

if p is bounded in L*(Q) (since div(u) is bounded in L?(2))
This proves the weak-BV estimate on p if v > 2
It allows to pass to the limit in the mass equation using the weak

convergence of pr in L2(Q) and the convergence of uz in L?(Q)9
ash—20



Weak-BV estimate, v < 2

» Method 1: Use p-weighted weak-BV estimates

» Method 2: Add another diffusion term in the discrrete mass
equation which is a discretization of

hediv(p®~7Vp) =0

& is a parameter, 0 < £ < 2

Small diffusion term (¢ close to 2), leading to a weak-BV
estimate (taking p?~! as test function in the discrete mass
equation)



Passage to the limit in EOS

» No problemifvy=1, p=p
» If v > 1, question:
p=p"in Q7
pr and p7 converge only weakly. ..

Idea : prove fQ prpPT — fQ pp and deduce a.e. convergence (of
pr and p7) and p = p7.



V : V = divdiv + curl - curl
For all &, v in H3(Q)¢,

/Q Vi T = /Q S5 () () - / curl(@) - curl(v).

Q

Assuming, for simplicity that ur € H3(Q)9 and
—Aur + Vpr = fr € [2(Q), fr — f in L2(Q)9 as h — 0 (not
true...). Then, for all v in H}(Q)9

/Q div(u7)div(7) + /Q curl(u7 ) -curl(7) — /Q (7)) = /Q -

Choice of v ? v = v7 with curl(vy) =0, div(vr) = p7 and v
bounded in H} (unfortunately, 0 is impossible).

Then, up to a subsequence,

vz — v in L?(Q) and weakly in H}(Q),

curl(v) = 0, div(v) = p.



Proof using vy (1)

/Qdiv(uT)div(VT)—F/Q curl(uT)-curl(VT)—/

QpTdiV(VT) :/ fr-vr.

Q

But, div(vr) = pr and curl(v7) = 0. Then:

/Q(diV(UT)_PT)PT:/ fr - vr.

Q

Convergence of fr in L2(Q)9 to f and convergence of V7 in
[2(Q)9 to v :

tim, [ (divtur) = prior = [ £-v.



Proof using vy (2)
But, since —Au+ Vp = f:

/Qdiv(u)div(v) +/chr1(u)-curl(v) —/deiv(v) :/Qf~ v.

which gives (using div(v) = p and curl(v) = 0):
/(div(u) —p)p = / f - v. Then:
Q Q

lim /Q (pr — div(ur))or = /Q (b — div(w))p.

Finally, the preliminary lemma gives, thanks to the mass equations,
Jq prdiv(ur) < Ch* and [, pdiv(u) = 0. Then, at least for a

| | / ﬂ‘{ < ‘)

Unfortunately, two difficulties: it is impossible to have v € H}
and (ur, pr) is solution of the discrete momentum equation



First difficulty: not O at the boundary
Let wr € HY(Q), —Awr = pr,
One has wy € H2 (Q) since, for ¢ € C°(Q), one has

loc

A(wrp) € L%(Q) and

d d
> [ oawre)odwre) = Y. [ a0 twre) ooy (wre)

ij=1 ij=1

= / (A(wrg))? < oo
Q

Then, taking v = Vwyr
> vr € (Hp(Q))7,
» div(vy) = pr a.e. in Q,
» curl(vy) =0 a.e. in Q,
> H; (Q)-estimate on vz with respect to o7l 2(0)-

Then, up to a subsequence, as h — 0, v — v in L,20C(Q) and

weakly in HE (Q), curl(v) = 0, div(v) = p.

loc



Proof of [o(pr — div(ur))pre — [o(p — div(u))pe

Let p € C°(Q) (so that vz € H(Q)?)). Taking v = vr:

/Qdiv(uT)diV(ngo)+/chrl(uT)-curl(ngo)—/qu—diV(va)

= [ fr-(vry).
Q

Using a proof smilar to that given if ¢ = 1 (with additionnal terms
involving ), we obtain :

im /Q (pr — div(ur))ore = /Q (p — div(u))ow,

h—0



Proving [o(pr — div(u7))pre — [o(p — div(u))py
Let p € CZ(R) (so that vy € H(Q)9)). Taking v = vr:
Jo div(ur)div(vre) + [ curl(ur) - curl(vre) — [ prdiv(vre)
= Jofr - (vro).
But, div(vry) = pre + vr - Vo and curl(vry) = L(¢)vr, where
L(p) is a matrix involving the first order derivatives of . Then:
Jo(div(ur) = pr)ore = o fr - (vre)
— Jodiv(ur)vr - Vo — [curl(ur) - L(p)vr + [ pTVT - Ve

Weak convergence of ur in H}(Q2)9, weak convergence of pr in
L%(2) and convergence of vz and fr in L2 ()9 and L?(Q)9:
limp—o Jo(div(ur) = pr)pre = o f - (ve)
— Jodiv(u)v - Vo — [curl(u) - L(p)v + [o pv - V.



Proof of [,(pr — div(ur))pre — [o(p — div(u))py

But, since —Au+ Vp = f:

Jo div(u)div(ve) + [, curl(u) curl (vp) — [q pdiv(ve)

=Jaf-

which gives (using div(v) = p and curl(v) = 0):

Ja(div(u) = p)op = [o f - (ve)
— Jodiv(u)v - Vo — [curl(u) - L(p)v + [o pv - Ve

Then:

lim /(PT —div(ur))pre = /Q(p — div(v))pe.

h—0 Jo



Second difficulty: Discrete momentum equation

Miracle for the MAC scheme: for all &, v in Hr,

/Q Tl T = /Q div(3)divr(7) + /Q curly () - curly (7).

Then, for all v in Hf

/divT(uT)diVT(V)+/ curly (ur)-curly (v /p7d1v /f V.
Q

Q

Choice of v ? v = vz with curly(vr) =0, div(vr) = pr and
V7 € H7 and bounded for the natural norm of
Hy...impossible. .. (as in the continuous setting)



Choice of the test function in the momentum equation

Let {wk, K € T} be the FV solution of the —Awy = p7, with the
homogeneous Dirichlet boundary condition, that is, for all K € 7T,
o
> e — wa) = IKlox

o€k g

In the preceding equality, 0 = K|L, with the usual modification at
the boundary
For o € £, 0 = K|L, nk, = ny > 0, one defines v, = u; — ug

A proof similar to the proof for the continous case, gives some
discrete-H2 () estimate on wz and then some discrete-H} ()

estimate on v in term of L% norm of pr

Furthermore, at least “far” from the boundary, divy(vz) = pr and
curly(vr) =0

Then, up to a subsequence, as h — 0, v — v in L%OC(Q) and

v € HL ()9, curl(v) = 0, div(v) = p.

loc



Proof of [,(pr — div(ur))pre — [o(p — div(u))py

Let ¢ € C°(Q) (so that vrpr € Hr). Taking v = vrpr:

/divT(uT)diVT(vT<p) +/ curly (ur) - curly(vror)
Q Q

— Jo prdivr(vreT) = /Q fr - (vreor).

Using a proof smilar to that given in the continuous case we obtain:

lim /Q (s i i — /Q (p— div(u))pw,



Proof of [,(pr — div(ur))pr — [o(p — div(u))p

Lemma : Fr — F in D'(Q), (F7)nen bounded in L9 for some
g > 1. Then Fr — F weakly in L.

With Fr = (pr — div(uz))pr, F = (p — div(u))p and since
~v > 1, the lemma gives

[ (pr = divtur)lor — [ (p - div(u))p.
Q Q



Proving [ prpr — Jq PP

/(PT — div(ur))pr — /(p — div(u))p.
Q Q

But thanks to the mass equations, the preliminary lemma gives:

/diV(UT),OT < Ch*, /div(u)p =0:
Q Q

l < ,
lim /Q proT < /Q pp

Then:



a.e. convergence of pr and pr
Let Gr = (p) — p")(pT — p) € L1(Q) and G7 >0 a.e. in Q.
Futhermore Gr = (pr — p")(pr — p) = PrPT —PTP— P PT + PP

and:
/sz/pfp:r—/pfp—/p”pﬁL/p”p-
Q Q Q Q Q

Using the weak convergence in L?(Q) of pr and pr and
limp—o Jq PTPT < [ PP

|im/GT§0,
h—0 Jo

Then (up to a subsequence), Gr — 0 a.e. and then p7r — p a.e.
(since y +— y7 is an increasing function on R, ). Finally:

pr — pin L9(Q) for all 1 < g < 27,
pr = py — p7in L9(Q) for all 1 < g < 2,
and p = p7.

(~» EOS and EOT ?)



Additional difficulty for stat. comp. NS equations

Q is a bounded open set of RY, d = 2 or 3, with a Lipschitz
continuous boundary, v > 1, f € L2(Q)¢ and M > 0

—Au+div(pu®@u)+Vp=1Ffin Q, uv=0on 09,
div(pu) =0 in Q, p>0 in Q, / p(x) =M,
Q
p=p’in Q
d = 2 : no aditional difficulty

d = 3 : no additional difficulty if v > 3. But for v < 3, no
estimate on p in L?(9Q).



Estimates in the case of NS equations, % <v<3

Estimate on v : Taking u as test function in the momentum leads
to an estimate on u in (H3(Q)? since

/pu®u:Vu:0.
Q

Then, we have also an estimate on v in L°(Q)? (using Sobolev
embedding).

Estimate on p in L9(2), with some 1 < g < 2 and g = 1 when
v = 3 (using Neas Lemma in some L instead of L?).

Estimate on p in L9(£2), with some % <g<6andg= % when
= 3 (since p = p7).

Remark : pu® u € L1(Q), since u € L5(Q)? and p € L2(Q) (and

i B

Lili2=0)



NS equations, v < 3, how to pass to the limit in the EOS

We prove
lim / proy = / pr’,
h—0 Jo Q
with some convenient choice of 6 > 0 instead of 6§ = 1.

This gives, as for § = 1, the a.e. convergence (up to a
subsequence) of pr and pr.



