Resonance and nonlinearities

T. Gallouët¹

¹University of Marseille

Lyon, 17 july 2006

T. Gallouët Lyon, 17 july 2006

Notations: $(\cdot)_t = \frac{\partial(\cdot)}{\partial t},$ $(\cdot)_x = \frac{\partial(\cdot)}{\partial x},$

 $t \in \mathbb{R}_+$.

 $x \in \mathbb{R}$, but extensions to $x \in \mathbb{R}^d$, d = 2 or 3 are possible.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

-2

data: $A \in M_p(\mathbb{R}), p \ge 1, W_0 \in L^q(\mathbb{R}, \mathbb{R}^p), q \in [1, \infty]$. Unknown: $W : \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}^p$, Equation: $W_t + AW_x = 0$ in $\mathbb{R} \times \mathbb{R}_+$, Initial condition : $W(x, 0) = W_0$.

"Genuine-hyperbolic" system : The eignevalues of *A* are real and *A* is diagonalizable. (simple case : strictly hyperbolic, the eigenvalues are real and simple.)

In this case, the problem has a unique (weak) solution.

"Resonant-hyperbolic" system : The eignevalues of *A* are real and *A* is not diagonalizable (then, p > 1).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The Cauchy problem for a linear resonant problem is ill-posed in L^{∞} (or in L^1 , L^2 ..., but well posed in C^{∞}). Riemann problem for a typical example:

$$\begin{bmatrix} u \\ v \end{bmatrix}_{t} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}_{x} = 0,$$
$$\begin{bmatrix} u(x,0) \\ v(x,0) \end{bmatrix} = \begin{bmatrix} u_{l} \\ v_{l} \end{bmatrix}, \text{ if } x < 0, \text{ and } \begin{bmatrix} u_{r} \\ v_{r} \end{bmatrix}, \text{ if } x > 0,$$

The solution is , for all t > 0, $v(\cdot, t) = v(\cdot, 0)$ and

$$u(\cdot,t)=u_l\mathbf{1}_{\mathbb{R}_-}+u_r\mathbf{1}_{\mathbb{R}_+}+t(v_l-v_r)\delta_0.$$

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Unknown: $W : \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}^p$, p > 1Equation: $W_t + A(W)W_x = 0$

"Simple case": For all admissible $W \in \mathbb{R}^{p}$, A(W) is genuine-hyperbolic (real eigenvalues and diagonalizable).

Questions :

1. Existence and uniqueness of a solution if A(W) is only resonant-hyperbolic (real eigenvalues and not diagonalizable) for some admisible values of $W \in \mathbb{R}^{p}$.

2. Behaviour of numerical schemes using a linearization of the equation.

3. Other interesting question : systems where A(W) is not hyperbolic for some admissible values of $W \in \mathbb{R}^{p}$.

ヘロマ ヘ団マ ヘビマー

Academic simple example:

$$egin{aligned} & u_t + (au)_x = 0, \ & a_t = 0, \end{aligned} \ egin{bmatrix} & u_t (x,0) \ & a(x,0) \end{bmatrix} = egin{bmatrix} & u_l \ & a_l \end{bmatrix}, & ext{if } x < 0, & ext{and} & egin{bmatrix} & u_r \ & a_r \end{bmatrix}, & ext{if } x > 0, \end{aligned}$$

has no weak solution in L^{∞} if $a_l > 0$, $a_r < 0$ and $a_l u_l \neq a_r u_r$ (and has infinetely many solution if $a_l < 0$ and $a_r > 0$).

< ∰ > < ≣ >

Nonlinear resonant problem, academic example

$$\begin{array}{l} u_t+(au)_x=0,\\ a_t=0, \end{array}$$

is equivalent (for regular solution) to $W_t + A(W)W_x = 0$, with $W = \begin{bmatrix} u \\ a \end{bmatrix}$ and $A(W) = \begin{bmatrix} a & u \\ 0 & 0 \end{bmatrix}$. Resonance occurs when a = 0 and $u \neq 0$.

The Riemann problem for the nonlinear system is ill posed in L^{∞} provided that 0 is between a_r and a_l (except if $u_r = u_l = 0$).

This nonlinear case is "worse" than the linear case.

・ロト ・四ト ・ヨト ・ヨト

Hyperbolic equation with a discontinuous coefficient

Two phase flow in an heterogeneous porous medium: unknown: $u : \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}$:

 $u_t(x,t)+(kg(u))_x=0,$

 $k(x) = k_l$, for x < 0, $k(x) = k_r$, for x > 0, $k_l, k_r > 0, k_l \neq k_r$, $g : [0, 1] \rightarrow \mathbb{R}$, Lipschitz continuous and such that g(0) = g(1) = 0. Example: g(u) = u(1 - u)This hyperbolic equation with a discontinuous coefficient can be viewed has a conservative 2 × 2 hyperbolic system, adding k

has an unknown and the equation $k_t = 0$.

(日)

Hyperbolic equation with a discontinuous coefficient

$$u_t(x, t) + (kg(u))_x = 0,$$

 $k_t = 0.$
 $W = \begin{bmatrix} u \\ k \end{bmatrix}$ and $F(W) = \begin{bmatrix} kg(u) \\ 0 \end{bmatrix},$
 $W_t + (F(W))_x = 0,$

or equivalently (for regular solutions), with A(W) = DF(W):

 $W_t + A(W)W_x = 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Unknown: $W : \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}^p$, p = 2Equation: $W_t + A(W)W_x = 0$

$$W = \begin{bmatrix} u \\ k \end{bmatrix}, A(W) = \begin{bmatrix} kg'(u) & g(u) \\ 0 & 0 \end{bmatrix}$$
 which is not diagonalizable if $g'(u) = 0$ and $g(u) \neq 0$ (if $g(u) = u(1 - u)$, this is the case for $u = \frac{1}{2}$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Hyperbolic equation with a discontinuous coefficient

Resonance occurs for all (k, u) with $u \in (\frac{1}{4}, \frac{3}{4})$.

Saint Venant Equations with topography (nonflat bottom) unknowns: $h, u : \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}$ (with h > 0):

$$h_t + (hu)_x = 0,$$

 $(hu)_t + (hu^2 + \frac{1}{2}gh^2)_x = -ghz_x,$

g is a given constant and *z* is a given function of *x*. This 2×2 conservative hyperbolic system with a source term can be viewed has a nonconservative 3×3 hyperbolic system, adding *z* has an unknown and the equation $z_t = 0$.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Hyperbolic system with a source term

$$h_{t} + (hu)_{x} = 0,$$

$$(hu)_{t} + (hu^{2} + \frac{1}{2}gh^{2})_{x} + ghz_{x} = 0,$$

$$z_{t} = 0.$$

$$W = \begin{bmatrix} u \\ hu \\ z \end{bmatrix}, F(W) = \begin{bmatrix} hu \\ \frac{(hu)^{2}}{h} + \frac{1}{2}gh^{2} \\ 0 \end{bmatrix} \text{ and }$$

$$B(W) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & gh \\ 0 & 0 & 0 \end{bmatrix},$$

$$W_{t} + (F(W))_{x} + B(W)W_{x} = 0,$$

or equivalently (for regular solutions): $W_t + A(W)W_x = 0$, (with A(W) = DF(W) + B(W)).

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ▶ ◆ □ ▶

Unknown: $W : \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}^p$, p = 3Equation: $W_t + A(W)W_x = 0$

$$W = \begin{bmatrix} u \\ hu \\ z \end{bmatrix}, A(W) = \begin{bmatrix} 0 & 1 & 0 \\ -u^2 + gh & 2u & gh \\ 0 & 0 & 0 \end{bmatrix}.$$

Eigenvalues of A(W) are $u \pm c$ and 0, with $c = \sqrt{gh}$.

A(W) is not diagonalizable if u - c = 0 or u + c = 0 (and h > 0).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

First example

$$u_t + (kg(u))_x = 0,$$

$$k_t = 0,$$

 $g : [0, 1] \rightarrow \mathbb{R}_+$, Lipschitz continuous and such that g(0) = g(1) = 0. The Cauchy problem is well posed in the following sense:

 $k(x) = k_l > 0$ if x < 0, $k(x) = k_r > 0$ if x > 0, $u(\cdot, 0) = u_0 \in L^{\infty}$, $0 \le u_0 \le 1$. Then, the Cauchy problem has a unique entropy weak solution.

Karlsen-Risebro-Towers

Seguin-Vovelle, Bachmann-Vovelle

Bachmann: $k(x)g(u) \rightsquigarrow g(x, u), g(x, 0) = g(x, 1) = 0.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

 $u_0 \in L^{\infty}(\mathbb{R}), 0 \leq u_0 \leq 1$ a.e., $u \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R})$ is an entropy weak solution if: $\forall \kappa \in [0, 1], \forall \varphi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}_{+} \times \mathbb{R}, \mathbb{R}_{+}),$ $\int_{0}^{\infty} \int_{\mathbb{T}} |u(t, \mathbf{x}) - \kappa| \varphi_t(t, \mathbf{x}) \, dt \, d\mathbf{x}$ + $\int_0^\infty \int_{\mathbb{D}} (k(x)\Phi(x,u(t,x),\kappa)) \varphi_x(t,x) \, dx \, dt$ + $\int_{\mathbb{T}} |u_0(x) - \kappa| \varphi(0, x) dx + |k_L - k_R| \int_0^\infty g(\kappa) \varphi(t, 0) dt \ge 0,$ $\Phi(u,\kappa) = \operatorname{sgn}(u-\kappa)(q(u)-q(\kappa))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Similar methods for proving existence:

- 1. Replace *k* par k_{ϵ} (regular) and pass to limit as $\epsilon \rightarrow 0$.
- 2. Add $-\epsilon u_{xx}$ and pass to limit as $\epsilon \rightarrow 0$.
- 3. Pass to the limit on (monotone) numerical schemes.

An L^{∞} estimate on u_{ϵ} is easy, $0 \le u_{\epsilon} \le 1$ a.e..

Main difficulty for existence (even if u_0 regular): Prove that $g(u_{\epsilon})$ converge to g(u) (a.e. convergence of u_{ϵ} to u)

Main difficulty for uniqueness : existence of trace for u on $\{x = 0\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

For this 2 difficulties, a technical (but not necessary) assumption is used by some authors : $g \in C^2$ and $mes(\{s \in [0, 1] : g''(s) = 0\}) = 0$. Existence by Temple function, compensated compactness, Uniqueness thanks to trace for *u* on $\{x = 0\}$.

without this assumption of nonlinearity on g. Existence and uniqueness result are obtain using entropy process solution (or Young measures) and a kinetic formulation.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Let Ω be an open set of \mathbb{R}^N and $(u_n)_{n\in\mathbb{N}}$ bounded in $L^{\infty}(\Omega)$. Then, there exists a subsequence, still denoted $(u_n)_{n\in\mathbb{N}}$ and $u \in L^{\infty}(\Omega \times (0, 1))$ such that:

$$\int_{\Omega} \theta(u_n(x))\psi(x) \, dx \to \int_0^1 \int_{\Omega} \theta(u(x,\alpha))\psi(x) \, dx \, d\alpha, \text{ quand } n \to +\infty$$
$$\forall \psi \in L^1(\Omega), \, \forall \theta \in \mathcal{C}(\mathbb{R},\mathbb{R}).$$

DiPerna, Tartar

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

 $\begin{array}{l} u_0 \in L^{\infty}(\mathbb{R}), \, 0 \leq u_0 \leq 1 \text{ a.e.}, \\ u \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R} \times [0,1]) \text{ is an entropy process solution if:} \\ \forall \kappa \in [0,1], \, \forall \varphi \in \mathcal{C}^{\infty}_c(\mathbb{R}_+ \times \mathbb{R}, \mathbb{R}_+), \end{array}$

$$\int_{0}^{1} \int_{0}^{\infty} \int_{\mathbb{R}} |u(t, x, \alpha) - \kappa| |\varphi_{t}(t, x) dt dx d\alpha$$

+
$$\int_{0}^{1} \int_{0}^{\infty} \int_{\mathbb{R}} (k(x)\Phi(x, u(t, x, \alpha), \kappa))\varphi_{x}(t, x) dx dt d\alpha$$

+
$$\int_{\mathbb{R}} |u_{0}(x) - \kappa| |\varphi(0, x) dx + |k_{L} - k_{R}| \int_{0}^{\infty} g(\kappa) \varphi(t, 0) dt \ge 0,$$

 $\Phi(u, \kappa) = \operatorname{sgn}(u - \kappa)(g(u) - g(\kappa))$. If *k* is regular, uniqueness is obtained by doubling variable technique (Krushkov)

Kinetic process solution

 $u_0 \in L^{\infty}(\mathbb{R}), 0 \leq u_0 \leq 1 \text{ a.e.} \ u \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R} \times (0, 1)) \text{ is a}$ kinetic process solution if it exists $m_{\pm} \in \mathcal{C}_{w-\star}(\mathbb{R}, \mathcal{M}_+(\mathbb{R}_+ \times \mathbb{R}))$ such that : $\forall \varphi \in C_c^{\infty}(\mathbb{R}^3),$

$$\int_{0}^{1} \int_{\mathbb{R}_{+} \times \mathbb{R} \times \mathbb{R}} h_{\pm}(t, x, \alpha, \xi) (\varphi_{t} + k(x)a(\xi)\varphi_{x}) dt dx d\xi d\alpha$$

$$+ \int_{\mathbb{R} \times \mathbb{R}} h_{\pm}^{0}(x, \xi)\varphi_{|_{t=0}} d\xi dx - \int_{\mathbb{R}_{+} \times \mathbb{R}} (k_{L} - k_{R})^{\pm} a(\xi)\varphi_{|_{x=0}} d\xi dt$$

$$= \int_{\mathbb{R}_{+} \times \mathbb{R} \times \mathbb{R}} \partial_{\xi}\varphi dm_{\pm}.$$
with $a(\xi) = g'(\xi)$.
and
 $h_{\pm}(t, x, \alpha, \xi) = \operatorname{sgn}_{\pm}(u(t, x, \alpha) - \xi)$
 $h_{\pm}^{0}(x, \xi) = \operatorname{sgn}_{+}(u_{0}(x) - \xi).$

Entropy process solution is equivalent to kinetic process solution Uniqueness following the case "k constant" and without α Brenier; Lions, Perthame et Tadmor; Perthame

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Second example

Saint Venant Equations with topography. The Riemann problem:

$$\begin{array}{l} h_t + (hu)_x = 0, \\ (hu)_t + (hu^2 + \frac{1}{2}gh^2)_x + ghz_x = 0, \\ z_t = 0 \end{array}$$

$$\begin{bmatrix} h\\ hu\\ z \end{bmatrix} (x,0) = \begin{bmatrix} h_l\\ (hu)_l\\ z_l \end{bmatrix}, \text{ if } x < 0, \text{ and } \begin{bmatrix} h_r\\ (hu)_r\\ z_r \end{bmatrix}, \text{ if } x > 0,$$

has one (sometimes three...) solution (composed of constant states and waves), satisfying a classical entropy condition, assuming continuity of (the Riemann invariants) *hu* and ψ at the contact discontinuity (at *x* = 0) with $\psi = \frac{1}{2}u^2 + g(h + z)$. Chinnayya-LeRoux-Seguin, Goatin-LeFloch

Third example

Isentropic Euler Equations with an EOS taking into account a simple model of "phase transition", that is:

 $p = a_1 \rho, \text{ if } 0 < \rho < \rho_1, \\ p = a_1 \rho_1, \text{ if } \rho_1 \le \rho \le \rho_2, \\ p = a_2 \rho, \text{ if } \rho_2 < \rho, \end{cases}$

with ρ_1, ρ_2, a_1, a_2 given constants, $0 < \rho_1 < \rho_2, 0 < a_1 < a_2$.

$$\rho_t + (\rho u)_x = 0,$$

$$(\rho u)_t + (\rho u^2 + p)_x = 0.$$

For $\rho_1 \leq \rho \leq \rho_2$ and any *u*, the system is resonant (with *u* as eigenvalue, and the 2 genuinely nonlinear fields lead to a linear degenerate field). But the Riemann problem is well posed. Recent result of Godlewski-Seguin.

(日)

Discretization by Finite Volume Shemes

$$W_t + (F(W))_x + B(W)W_x = 0,$$

 $W(\cdot,0)=W_0.$

Time step: k, $t_n = nk$

Space step: $h, x_{i+\frac{1}{2}} = (i + \frac{1}{2})h$

Approximate solution for $x \in (x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}})$ and $t = t_n$: W_i^n

$$W_i^0 = rac{1}{h} \int_{x_{i-rac{1}{2}}}^{x_{i+rac{1}{2}}} W_0(x) dx, \ i \in \mathbb{Z}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Riemann problem

$$W_t + (F(W))_x + B(W)W_x = 0,$$

$$W(x,0) = \begin{cases} W_l \text{ if } x < 0, \\ W_r \text{ if } x > 0. \end{cases}$$

Let W be the (or a) self similar solution, that is:

$$W(x,t) = R(\frac{x}{t}, W_l, W_r)$$

and set

$$W^{\star,\pm}(W_l,W_r)=R(0^{\pm},W_l,W_r).$$

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

-2

Godunov scheme for nonconservative system

For
$$i \in \mathbb{Z}, n \ge 0$$
:

$$\frac{W_i^{n+1} - W_i^n}{k} + F_{i+\frac{1}{2}}^{n,-} - F_{i-\frac{1}{2}}^{n,+} + B(W_i^n)(W_{i+\frac{1}{2}}^{n,-} - W_{i-\frac{1}{2}}^{n,+}) = 0$$

with
$$F_{i+\frac{1}{2}}^{n,\pm} = F(W_{i+\frac{1}{2}}^{n,\pm}),$$

 $W_{i+\frac{1}{2}}^{n,\pm} = W^{\star,\pm}(W_{i}^{n},W_{i+1}^{n}).$

CFL condition: $k \leq Ch$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

-2

Godunov scheme, particular cases

$$\frac{W_{i}^{n+1}-W_{i}^{n}}{k}+F_{i+\frac{1}{2}}^{n,-}-F_{i-\frac{1}{2}}^{n,+}+B(W_{i}^{n})(W_{i+\frac{1}{2}}^{n,-}-W_{i-\frac{1}{2}}^{n,+})=0,$$

• conservative case: $F_{i+\frac{1}{2}}^{n,+} = F_{i+\frac{1}{2}}^{n,-}$, even if $W_{i+\frac{1}{2}}^{n,+} \neq W_{i+\frac{1}{2}}^{n,-}$ (thanks to Rankine-Hugoniot condition on the Riemann problem).

2 In the case of Saint Venant equations with topography, one has $z_{i+\frac{1}{2}}^{n,-} = z_{i-\frac{1}{2}}^{n,+} = z_i^n$ and then $B(W_i^n)(W_{i+\frac{1}{2}}^{n,-} - W_{i-\frac{1}{2}}^{n,+}) = 0$. The non conservativity of the equation (that is the source term) appears only in the fact that, generally, $F_{i+\frac{1}{2}}^{n,+} \neq F_{i+\frac{1}{2}}^{n,-}$.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Linearized system

- Initial system: $W_t + A(W)W_x = 0$, A(W) = DF(W) + B(W).
- Linearized system: $W_t + A(\overline{W})W_x = 0$, with some fixed $\overline{W} \in \mathbb{R}^p$.
- Initial system with a change of unknown: Y = φ(W). φ is not necessarily invertible, but one assumes that there exists C, G, D, such that A(W) = C(Y), F(W) = G(Y), B(W)W_x=D(W)Y_x. Then W_t + A(W)W_x leads to

 $Y_t + C(W) Y_x = 0.$

• Linearized system with a change of unknown: $Y = \phi(W)$,

$$Y_t + C(\overline{W}) Y_x = 0,$$

with some fixed $\overline{W} \in \mathbb{R}^{p}$.

・ロト ・雪 ・ ・ ヨ ・

linearized Riemann problem

 $Y_t + C(\overline{W}) Y_x = 0,$

$$\mathbf{Y}(\mathbf{x},\mathbf{0}) = \begin{cases} \mathbf{Y}_l = \phi(W_l) \text{ if } \mathbf{x} < \mathbf{0}, \\ \mathbf{Y}_r = \phi(W_r) \text{ if } \mathbf{x} > \mathbf{0}. \end{cases}$$

For instance, $\overline{W} = \frac{W_r + W_l}{2}$ or another mean value between W_l and W_r .

Let Y be the self similar solution of this problem (when it exists...), that is:

$$Y(x,t) = LR(\frac{x}{t}, Y_l, Y_r)$$

and set $Y^{\star,\pm}(W_l, W_r) = LR(0^{\pm}, Y_l, Y_r)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

VFRoe-ncv scheme

For $i \in \mathbb{Z}$, $n \ge 0$:

$$\frac{W_{i}^{n+1}-W_{i}^{n}}{k}+F_{i+\frac{1}{2}}^{n,-}-F_{i-\frac{1}{2}}^{n,+}+D(W_{i}^{n})(Y_{i+\frac{1}{2}}^{n,-}-Y_{i-\frac{1}{2}}^{n,+})=0,$$

with: $F_{i+\frac{1}{2}}^{n,\pm} = G(Y_{i+\frac{1}{2}}^{n,\pm}) (F(W) = G(\phi(W)), B(W)W_x = D(W)Y_x),$ $Y_{i+\frac{1}{2}}^{n,\pm} = Y^{\star,\pm}(W_i^n, W_{i+1}^n)$

CFL condition: $k \leq Ch$.

- Modification for conservativity (null eigenvalue)
- Discontinuity of the numerical flux when there is 0 as eigenvalue. F(W*(W_l, W_r)) is a discontinuous fonction of W_l and W_r).
- Ohoice of Y.

 $Y = (kg(u), k)^t$ for porous media, $Y = (2c, u, z)^t$ or $Y = (q, \psi, z)^t$ for Saint Venant with topography.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Remark on resonance, porous media

$$u_t(x, t) + (kg(u))_x = 0,$$

 $k_t = 0.$

With the choice $Y = (kg(u), k)^t$ the linearized system is $Y_t + C(\overline{W}) Y_x = 0$, $\overline{W} = (\overline{u}, \overline{k})^t$,

$$C(\overline{W}) = \left[egin{array}{cc} \overline{k}g'(\overline{u}) & 0 \ 0 & 0 \end{array}
ight],$$

which is never resonant... Eigenvalues: $\lambda_1 = \overline{k}g'(\overline{u}), \lambda_2 = 0$ Eigenvectors: $e_1 = (1, 0)^t, e_2 = (0, 1)^t$

Remark on resonance, Saint Venant with topography

$$\begin{array}{l} h_t + (hu)_x = 0, \\ (hu)_t + (hu^2 + \frac{1}{2}gh^2)_x + ghz_x = 0, \\ z_t = 0 \end{array}$$

With the choice $Y = (q, \psi, z)^t$, the linearized system is $Y_t + C(\overline{W}) Y_x = 0$, $\overline{W} = (\overline{h}, \overline{h}\overline{u}, \overline{z})^t$, $\overline{c} = \sqrt{g\overline{h}}$,

$$C(\overline{W}) = \left[egin{array}{ccc} \overline{u} & \overline{h} & 0 \ g & \overline{u} & 0 \ 0 & 0 & 0 \end{array}
ight],$$

which is never resonant (for $\overline{h} > 0$)... Eigenvalues: $\lambda_1 = 0$, $\lambda_2 = \overline{u} + \overline{c}$, $\lambda_2 = \overline{u} - \overline{c}$ Eigenvectors: $e_1 = (0, 0, 1)^t$, $e_2 = (\overline{h}, \overline{c}, 0)^t$, $e_3 = (-\overline{h}, \overline{c}, 0)^t$

(部) (語) (語) (語)

Remark on resonance, Saint Venant with topography

With the choice $Y = (2c, u, z)^t$, the linearized system is $Y_t + C(\overline{W}) Y_x = 0$, $\overline{W} = (\overline{h}, \overline{h}\overline{u}, \overline{z})^t$, $\overline{c} = \sqrt{g\overline{h}}$,

$$C(\overline{W}) = \begin{bmatrix} \overline{u} & \overline{c} & 0 \\ \overline{c} & \overline{u} & g \\ 0 & 0 & 0 \end{bmatrix},$$

which is resonant if $\overline{u} + \overline{c} = 0$ or $\overline{u} - \overline{c} = 0$. Eigenvalues: $\lambda_1 = 0$, $\lambda_2 = \overline{u} + \overline{c}$, $\lambda_2 = \overline{u} - \overline{c}$ Eigenvectors:

• If
$$\overline{u} \pm \overline{c} \neq 0$$
,
 $e_1 = (\overline{c}g, -\overline{u}g, \overline{u}^2 - \overline{c}^2)^t$, $e_2 = (1, 1, 0)^t$, $e_3 = (1, -1, 0)^t$
• If $\overline{u} = \overline{c}$, $e_1 = (1, -1, 0)^t$, $e_2 = (1, 1, 0)^t$
• If $\overline{u} = -\overline{c}$, $e_1 = (1, 1, 0)^t$, $e_3 = (1, -1, 0)^t$

・ロト ・聞 ト ・ ヨト ・ ヨト - 三三

- Perfect with Godunov. In particular, for Saint Venant with topography, one has preservation of all steady state solutions : q = hu and $\psi = \frac{u^2}{2} + g(h + z)$ constant (and not only those with u = 0 which are called "lake at rest")
- 2 Perfect also with VFRoe-ncv, sometimes with one "incorrect point". For Saint Venant with topography: Preservation of steady state solution with u = 0 (for any choice of the variable of linearization Y) and preservation of all steady state solutions for $Y = (q, \psi, z)^t$

・ ・ 回 ・ ・ ヨ ・ ・

numerical results, two phase flow in porous media

Resonance occurs for all (k, u) with $u \in (\frac{1}{4}, \frac{3}{4})$.

numerical results, two phase flow in porous media

Resonance occurs for all (k, u) with $u \in (\frac{1}{4}, \frac{3}{4})$.

numerical results, Saint Venant with topography

A case with h = 0, steady state, sonic point... VFRoe-ncv with $Y = (2c, u, z)^t$ (best choice for the problem of vanishing *h*).

- Porous medium: Towers, Seguin-Vovelle, Bachmann-Vovelle, Bachmann
- Saint Venant: Kurganov-Levy, Simeoni-Perthame, Chinnayya-LeRoux-Seguin, Goutal, Karni Hérard-Gallouët-Seguin...

★ 聞 ▶ ★ 国 ▶ ★ 国 ▶