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Notations

Notations:

(·)t =
∂(·)
∂t

,

(·)x =
∂(·)
∂x

,

t ∈ R+.

x ∈ R, but extensions to x ∈ Rd , d = 2 or 3 are possible.
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Linear hyperbolic problems

data: A ∈ Mp(R), p ≥ 1, W0 ∈ Lq(R,Rp), q ∈ [1,∞].
Unknown: W : R× R+ → Rp,
Equation: Wt + AWx = 0 in R× R+,
Initial condition : W (x ,0) = W0.

“Genuine-hyperbolic” system : The eignevalues of A are real
and A is diagonalizable. (simple case : strictly hyperbolic, the
eigenvalues are real and simple.)

In this case, the problem has a unique (weak) solution.

“Resonant-hyperbolic” system : The eignevalues of A are real
and A is not diagonalizable (then, p > 1).
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Linear resonant problem

The Cauchy problem for a linear resonant problem is ill-posed
in L∞(or in L1, L2 . . ., but well posed in C∞).

Riemann problem for a typical example:[
u
v

]
t
+

[
0 1
0 0

] [
u
v

]
x

= 0,

[
u(x ,0)
v(x ,0)

]
=

[
ul

vl

]
, if x < 0, and

[
ur

vr

]
, if x > 0,

The solution is , for all t > 0, v(·, t) = v(·,0) and

u(·, t) = ul1R− + ur 1R+ + t(vl − vr )δ0.
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Non linear hyperbolic system

Unknown: W : R× R+ → Rp, p > 1
Equation: Wt + A(W )Wx = 0

“Simple case”: For all admissible W ∈ Rp, A(W ) is
genuine-hyperbolic (real eigenvalues and diagonalizable).

Questions :

1. Existence and uniqueness of a solution if A(W ) is only
resonant-hyperbolic (real eigenvalues and not diagonalizable)
for some admisible values of W ∈ Rp.

2. Behaviour of numerical schemes using a linearization of the
equation.

3. Other interesting question : systems where A(W ) is not
hyperbolic for some admissible values of W ∈ Rp.
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Nonlinear resonant problem, academic example

Academic simple example:

ut + (au)x = 0,
at = 0,[

u(x ,0)
a(x ,0)

]
=

[
ul

al

]
, if x < 0, and

[
ur

ar

]
, if x > 0,

has no weak solution in L∞ if al > 0, ar < 0 and alul 6= ar ur

(and has infinetely many solution if al < 0 and ar > 0).
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Nonlinear resonant problem, academic example

ut + (au)x = 0,
at = 0,

is equivalent (for regular solution) to Wt + A(W )Wx = 0, with

W =

[
u
a

]
and A(W ) =

[
a u
0 0

]
. Resonance occurs when

a = 0 and u 6= 0.

The Riemann problem for the nonlinear system is ill posed in
L∞ provided that 0 is between ar and al (except if ur = ul = 0).

This nonlinear case is “worse” than the linear case.
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Hyperbolic equation with a discontinuous coefficient

Two phase flow in an heterogeneous porous medium:
unknown: u : R× R+ → R:

ut(x , t) + (kg(u))x = 0,

k(x) = kl , for x < 0,
k(x) = kr , for x > 0,
kl , kr > 0, kl 6= kr ,
g : [0,1] → R, Lipschitz continuous and such that
g(0) = g(1) = 0. Example: g(u) = u(1− u)

This hyperbolic equation with a discontinuous coefficient can be
viewed has a conservative 2× 2 hyperbolic system, adding k
has an unknown and the equation kt = 0.
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Hyperbolic equation with a discontinuous coefficient

ut(x , t) + (kg(u))x = 0,
kt = 0.

W =

[
u
k

]
and F (W ) =

[
kg(u)
0

]
,

Wt + (F (W ))x = 0,

or equivalently (for regular solutions), with A(W ) = DF (W ):

Wt + A(W )Wx = 0.
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Hyperbolic equation with a discontinuous coefficient

Unknown: W : R× R+ → Rp, p = 2
Equation: Wt + A(W )Wx = 0

W =

[
u
k

]
, A(W ) =

[
kg′(u) g(u)

0 0

]
which is not

diagonalizable if g′(u) = 0 and g(u) 6= 0 (if g(u) = u(1− u),
this is the case for u = 1

2 ).
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Hyperbolic equation with a discontinuous coefficient

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

x

g(
x)
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Hyperbolic system with a source term

Saint Venant Equations with topography (nonflat bottom)
unknowns: h,u : R× R+ → R (with h > 0):

ht + (hu)x = 0,
(hu)t + (hu2 + 1

2gh2)x = −ghzx ,

g is a given constant and z is a given function of x .
This 2× 2 conservative hyperbolic system with a source term
can be viewed has a nonconservative 3× 3 hyperbolic system,
adding z has an unknown and the equation zt = 0.
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Hyperbolic system with a source term

ht + (hu)x = 0,
(hu)t + (hu2 + 1

2gh2)x + ghzx = 0,
zt = 0.

W =

 u
hu
z

, F (W ) =

 hu
(hu)2

h + 1
2gh2

0

 and

B(W ) =

 0 0 0
0 0 gh
0 0 0

,

Wt + (F (W ))x + B(W )Wx = 0,

or equivalently (for regular solutions):
Wt + A(W )Wx = 0, (with A(W ) = DF (W ) + B(W )).

T. Gallou ët Lyon, 17 july 2006



Hyperbolic system with a source term

Unknown: W : R× R+ → Rp, p = 3
Equation: Wt + A(W )Wx = 0

W =

 u
hu
z

, A(W ) =

 0 1 0
− u2 + gh 2u gh

0 0 0

.

Eigenvalues of A(W ) are u ± c and 0, with c =
√

gh.

A(W ) is not diagonalizable if u− c = 0 or u + c = 0 (and h > 0).
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Nonlinear resonant problem, porous media

First example
ut + (kg(u))x = 0,
kt = 0,

g : [0,1] → R+, Lipschitz continuous and such that
g(0) = g(1) = 0. The Cauchy problem is well posed in the
following sense:

k(x) = kl > 0 if x < 0, k(x) = kr > 0 if x > 0, u(·,0) = u0 ∈ L∞,
0 ≤ u0 ≤ 1. Then, the Cauchy problem has a unique entropy
weak solution.
Karlsen-Risebro-Towers
Seguin-Vovelle, Bachmann-Vovelle
Bachmann: k(x)g(u) g(x ,u), g(x ,0) = g(x ,1) = 0.
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Entropy weak solution

u0 ∈ L∞(R), 0 ≤ u0 ≤ 1 a.e.. u ∈ L∞(R+ × R) is an entropy
weak solution if:
∀κ ∈ [0,1], ∀ϕ ∈ C∞c (R+ × R,R+),∫ ∞

0

∫
R
|u(t , x)− κ|ϕt(t , x) dt dx

+

∫ ∞

0

∫
R

(
k(x)Φ(x ,u(t , x), κ)

)
ϕx(t , x) dx dt

+

∫
R
|u0(x)− κ|ϕ(0, x) dx + |kL − kR|

∫ ∞

0
g(κ)ϕ(t ,0) dt ≥ 0,

Φ(u, κ) = sgn(u − κ)(g(u)− g(κ))
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sketch of proof (1)

Similar methods for proving existence:

1. Replace k par kε (regular) and pass to limit as ε→ 0.

2. Add − εuxx and pass to limit as ε→ 0.

3. Pass to the limit on (monotone) numerical schemes.

An L∞ estimate on uε is easy, 0 ≤ uε ≤ 1 a.e..

Main difficulty for existence (even if u0 regular): Prove that
g(uε) converge to g(u) (a.e. convergence of uε to u)

Main difficulty for uniqueness : existence of trace for u on
{x = 0}.

T. Gallou ët Lyon, 17 july 2006



sketch of proof (2)

For this 2 difficulties, a technical (but not necessary)
assumption is used by some authors : g ∈ C2 and
mes({s ∈ [0,1] : g′′(s) = 0}) = 0.
Existence by Temple function, compensated compactness,
Uniqueness thanks to trace for u on {x = 0}.

without this assumption of nonlinearity on g. Existence and
uniqueness result are obtain using entropy process solution (or
Young measures) and a kinetic formulation.
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Nonlinear weak−? convergence, Young measures

Let Ω be an open set of RN and (un)n∈N bounded in L∞(Ω).
Then, there exists a subsequence, still denoted (un)n∈N and
u ∈ L∞(Ω× (0,1)) such that:

∫
Ω
θ(un(x))ψ(x) dx →

∫ 1

0

∫
Ω
θ(u(x , α))ψ(x) dx dα, quandn → +∞

∀ψ ∈ L1(Ω), ∀θ ∈ C(R,R).

DiPerna, Tartar
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Entropy process solution

u0 ∈ L∞(R), 0 ≤ u0 ≤ 1 a.e..
u ∈ L∞(R+ × R× [0,1]) is an entropy process solution if:
∀κ ∈ [0,1], ∀ϕ ∈ C∞c (R+ × R,R+),∫ 1

0

∫ ∞

0

∫
R
|u(t , x , α)− κ)|ϕt(t , x) dt dx dα

+

∫ 1

0

∫ ∞

0

∫
R

(
k(x)Φ(x ,u(t , x , α), κ)

)
ϕx(t , x) dx dt dα

+

∫
R
|u0(x)− κ)|ϕ(0, x) dx + |kL − kR|

∫ ∞

0
g(κ)ϕ(t ,0) dt ≥ 0,

Φ(u, κ) = sgn(u − κ)(g(u)− g(κ).
If k is regular, uniqueness is obtained by doubling variable
technique (Krushkov)
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Kinetic process solution

u0 ∈ L∞(R), 0 ≤ u0 ≤ 1 a.e.. u ∈ L∞(R+ × R× (0,1)) is a
kinetic process solution if it exists m± ∈ Cw−?(R,M+(R+ × R))
such that :
∀ϕ ∈ C∞

c (R3),

∫ 1

0

∫
R+×R×R

h±(t , x , α, ξ)(ϕt + k(x)a(ξ)ϕx) dt dx dξ dα

+

∫
R×R

h0
±(x , ξ)ϕ|t=0

dξ dx −
∫

R+×R
(kL − kR)±a(ξ)ϕ|x=0

dξ dt

=

∫
R+×R×R

∂ξϕ dm±.

with a(ξ) = g′(ξ).
and
h±(t , x , α, ξ) = sgn±(u(t , x , α)− ξ)

h0
±(x , ξ) = sgn±(u0(x)− ξ).
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Kinetic process solution

Entropy process solution is equivalent to kinetic process
solution
Uniqueness following the case “k constant” and without α
Brenier; Lions, Perthame et Tadmor; Perthame
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Nonlinear resonant problem, Saint Venant

Second example
Saint Venant Equations with topography. The Riemann
problem:

ht + (hu)x = 0,
(hu)t + (hu2 + 1

2gh2)x + ghzx = 0,
zt = 0 h

hu
z

 (x ,0) =

 hl

(hu)l

zl

 , if x < 0, and

 hr

(hu)r

zr

 , if x > 0,

has one (sometimes three. . . ) solution (composed of constant
states and waves), satisfying a classical entropy condition,
assuming continuity of (the Riemann invariants) hu and ψ at the
contact discontinuity (at x = 0) with ψ = 1

2u2 + g(h + z).
Chinnayya-LeRoux-Seguin, Goatin-LeFloch
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Nonlinear resonant problem, phase transition

Third example
Isentropic Euler Equations with an EOS taking into account a
simple model of “phase transition”, that is:

p = a1ρ, if 0 < ρ < ρ1,
p = a1ρ1, if ρ1 ≤ ρ ≤ ρ2,
p = a2ρ, if ρ2 < ρ,

with ρ1, ρ2,a1,a2 given constants, 0 < ρ1 < ρ2, 0 < a1 < a2.

ρt + (ρu)x = 0,
(ρu)t + (ρu2 + p)x = 0.

For ρ1 ≤ ρ ≤ ρ2 and any u, the system is resonant (with u as
eigenvalue, and the 2 genuinely nonlinear fields lead to a linear
degenerate field). But the Riemann problem is well posed.
Recent result of Godlewski-Seguin.
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Discretization by Finite Volume Shemes

Wt + (F (W ))x + B(W )Wx = 0,

W (·,0) = W0.

Time step: k , tn = nk

Space step: h, xi+ 1
2

= (i + 1
2)h

Approximate solution for x ∈ (xi− 1
2
, xi+ 1

2
) and t = tn: W n

i

W 0
i =

1
h

∫ x
i+ 1

2

x
i− 1

2

W0(x)dx , i ∈ Z.
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Riemann problem

Wt + (F (W ))x + B(W )Wx = 0,

W (x ,0) =

{
Wl if x < 0,
Wr if x > 0.

Let W be the (or a) self similar solution, that is:

W (x , t) = R(
x
t
,Wl ,Wr )

and set

W ?,±(Wl ,Wr ) = R(0±,Wl ,Wr ).
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Godunov scheme for nonconservative system

For i ∈ Z, n ≥ 0:

W n+1
i −W n

i

k
+ F n,−

i+ 1
2
− F n,+

i− 1
2

+ B(W n
i )(W n,−

i+ 1
2
−W n,+

i− 1
2
) = 0,

with F n,±
i+ 1

2
= F (W n,±

i+ 1
2
),

W n,±
i+ 1

2
= W ?,±(W n

i ,W
n
i+1).

CFL condition: k ≤ Ch.
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Godunov scheme, particular cases

W n+1
i −W n

i

k
+ F n,−

i+ 1
2
− F n,+

i− 1
2

+ B(W n
i )(W n,−

i+ 1
2
−W n,+

i− 1
2
) = 0,

1 conservative case: F n,+

i+ 1
2

= F n,−
i+ 1

2
, even if W n,+

i+ 1
2
6= W n,−

i+ 1
2

(thanks to Rankine-Hugoniot condition on the Riemann
problem).

2 In the case of Saint Venant equations with topography, one
has zn,−

i+ 1
2

= zn,+

i− 1
2

= zn
i and then B(W n

i )(W n,−
i+ 1

2
−W n,+

i− 1
2
) = 0.

The non conservativity of the equation (that is the source
term) appears only in the fact that, generally, F n,+

i+ 1
2
6= F n,−

i+ 1
2
.
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Linearized system

Initial system: Wt + A(W )Wx = 0,
A(W ) = DF (W ) + B(W ).

Linearized system: Wt + A(W )Wx = 0, with some fixed
W ∈ Rp.

Initial system with a change of unknown: Y = φ(W ). φ is
not necessarily invertible, but one assumes that there
exists C,G,D, such that A(W ) = C(Y ), F (W ) = G(Y ),
B(W )Wx=D(W )Yx . Then Wt + A(W )Wx leads to

Yt + C(W )Yx = 0.

Linearized system with a change of unknown: Y = φ(W ),

Yt + C(W )Yx = 0,

with some fixed W ∈ Rp.

T. Gallou ët Lyon, 17 july 2006



linearized Riemann problem

Yt + C(W )Yx = 0,

Y (x ,0) =

{
Yl = φ(Wl) if x < 0,
Yr = φ(Wr ) if x > 0.

For instance, W = Wr +Wl
2 or another mean value between Wl

and Wr .
Let Y be the self similar solution of this problem (when it
exists. . . ), that is:

Y (x , t) = LR(
x
t
,Yl ,Yr )

and set Y ?,±(Wl ,Wr ) = LR(0±,Yl ,Yr ).
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VFRoe-ncv scheme

For i ∈ Z, n ≥ 0:

W n+1
i −W n

i

k
+ F n,−

i+ 1
2
− F n,+

i− 1
2

+ D(W n
i )(Y n,−

i+ 1
2
− Y n,+

i− 1
2
) = 0,

with:
F n,±

i+ 1
2

= G(Y n,±
i+ 1

2
) (F (W ) = G(φ(W )), B(W )Wx = D(W )Yx ),

Y n,±
i+ 1

2
= Y ?,±(W n

i ,W
n
i+1)

CFL condition: k ≤ Ch.
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VFroe-ncv scheme

1 Modification for conservativity (null eigenvalue)
2 Discontinuity of the numerical flux when there is 0 as

eigenvalue. F (W ?(Wl ,Wr )) is a discontinuous fonction of
Wl and Wr ).

3 Choice of Y .
Y = (kg(u), k)t for porous media,
Y = (2c,u, z)t or Y = (q, ψ, z)t for Saint Venant with
topography.
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Remark on resonance, porous media

ut(x , t) + (kg(u))x = 0,
kt = 0.

With the choice Y = (kg(u), k)t the linearized system is
Yt + C(W )Yx = 0, W = (u, k)t ,

C(W ) =

[
kg′(u) 0

0 0

]
,

which is never resonant. . .
Eigenvalues: λ1 = kg′(u), λ2 = 0
Eigenvectors: e1 = (1,0)t , e2 = (0,1)t
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Remark on resonance, Saint Venant with topography

ht + (hu)x = 0,
(hu)t + (hu2 + 1

2gh2)x + ghzx = 0,
zt = 0

With the choice Y = (q, ψ, z)t , the linearized system is

Yt + C(W )Yx = 0, W = (h,hu, z)t , c =
√

gh,

C(W ) =

 u h 0
g u 0
0 0 0

 ,
which is never resonant (for h > 0). . .
Eigenvalues: λ1 = 0, λ2 = u + c, λ2 = u − c
Eigenvectors: e1 = (0,0,1)t , e2 = (h, c,0)t , e3 = (−h, c,0)t
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Remark on resonance, Saint Venant with topography

With the choice Y = (2c,u, z)t , the linearized system is

Yt + C(W )Yx = 0, W = (h,hu, z)t , c =
√

gh,

C(W ) =

 u c 0
c u g
0 0 0

 ,
which is resonant if u + c = 0 or u − c = 0.
Eigenvalues: λ1 = 0, λ2 = u + c, λ2 = u − c
Eigenvectors:

If u ± c 6= 0,
e1 = (cg,−ug,u2 − c2)t , e2 = (1,1,0)t , e3 = (1,−1,0)t

If u = c, e1 = (1,−1,0)t , e2 = (1,1,0)t

If u = −c, e1 = (1,1,0)t , e3 = (1,−1,0)t
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Numerical results

1 Perfect with Godunov. In particular, for Saint Venant with
topography, one has preservation of all steady state
solutions : q = hu and ψ = u2

2 + g(h + z) constant (and not
only those with u = 0 which are called ”lake at rest”)

2 Perfect also with VFRoe-ncv, sometimes with one
“incorrect point”. For Saint Venant with topography:
Preservation of steady state solution with u = 0 (for any
choice of the variable of linearizationY ) and preservation of
all steady state solutions for Y = (q, ψ, z)t
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numerical results, two phase flow in porous media

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

x

g(
x)

Resonance occurs for all (k ,u) with u ∈ (1
4 ,

3
4).
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numerical results, two phase flow in porous media
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numerical results, Saint Venant with topography
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A case with h = 0, steady state, sonic point. . . VFRoe-ncv with
Y = (2c,u, z)t (best choice for the problem of vanishing h).
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