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Notatioans:

() = (ét)

(=2,

teR,.

x € R, but extensions to x € RY, d = 2 or 3 are possible.
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Linear hyperbolic problems

data: A € Mp(R), p > 1, Wp € LY(R,RP), g € [1, o0].
Unknown: W : R x Ry — RP,

Equation: W; + AWy, =0inR x R,

Initial condition : W (x, 0) = W.

“Genuine-hyperbolic” system : The eignevalues of A are real
and A is diagonalizable. (simple case : strictly hyperbolic, the
eigenvalues are real and simple.)

In this case, the problem has a unique (weak) solution.

“Resonant-hyperbolic” system : The eignevalues of A are real
and A is not diagonalizable (then, p > 1).
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Linear resonant problem

The Cauchy problem for a linear resonant problem is ill-posed
in L>(or in LY, L2.. ., but well posed in C*).

Riemann problem for a typical example:
u 01 u
Lo o] lv] e
X
uC,0) 1 U] e 0 and | Y | x>0,
v(x,0) Y Vr

The solution is , for allt > 0, v(-,t) = v(-,0) and

U(',t) =ulg_ + U,—].]R+ —I—t(V| —Vr)50.
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Non linear hyperbolic system

Unknown: W : RxR, - RP, p>1
Equation: W; + A(W )Wy =0

“Simple case”: For all admissible W € RP, A(W) is
genuine-hyperbolic (real eigenvalues and diagonalizable).

Questions :

1. Existence and uniqueness of a solution if A(W) is only
resonant-hyperbolic (real eigenvalues and not diagonalizable)
for some admisible values of W € RP.

2. Behaviour of numerical schemes using a linearization of the
equation.

3. Other interesting question : systems where A(W) is not
hyperbolic for some admissible values of W € RP.
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Nonlinear resonant problem, academic example

Academic simple example:

ui + (au)x =0,

a; =0,
U 0) IR R e ot andl 2o | e X =0,
a(x,0) a ar

has no weak solution in L* if a; > 0, a; < 0 and ayu; # aru,
(and has infinetely many solution if a; < 0 and a, > 0).
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Nonlinear resonant problem, academic example

U)x =0,

||—|-

(@
0,

is equivalent (for regular solution) to W; + A(W )Wy = 0, with

W = [ : } and A(W) = [ g g } Resonance occurs when
a=0andu #0.

The Riemann problem for the nonlinear system is ill posed in
L>° provided that O is between a, and a, (except if u, = u; = 0).

This nonlinear case is “worse” than the linear case.
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Hyperbolic equation with a discontinuous coefficient

Two phase flow in an heterogeneous porous medium:
unknown: u : R x Ry — R:

ut(x,t) + (kg(u))x =0,

k(x) = ki, for x <0,

k(x) =k, forx > 0,

ki, ke > 0, ki # K¢,

g : [0,1] — R, Lipschitz continuous and such that

g(0) =g(1) = 0. Example: g(u) = u(1 —u)

This hyperbolic equation with a discontinuous coefficient can be
viewed has a conservative 2 x 2 hyperbolic system, adding k
has an unknown and the equation k; = 0.
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Hyperbolic equation with a discontinuous coefficient

ut(x,t) + (kg(u))x =0,
ki = 0.

} and F(W) = { (I;g(u) ]

Wt I (F(W))x S 07

u
w-[:

or equivalently (for regular solutions), with A(W) = DF(W):

W, + A(W )Wy = 0.
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Hyperbolic equation with a discontinuous coefficient

Unknown: W : RxR, — RP, p=2
Equation: W; + A(W )Wy =0

!/
W = [ E } ,AW) = kgo(u) g(ou) which is not
diagonalizable if g’(u) = 0 and g(u) # 0 (if g(u) = u(1 — u),
this is the case for u = 3).
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Hyperbolic equation with a discontinuous coefficient
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Resonance occurs for all (k,u) with u € (3, 3).
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Hyperbolic system with a source term

Saint Venant Equations with topography (nonflat bottom)
unknowns: h,u : R x R, — R (with h > 0):

ht + (hu)x =0,
(hu); + (hu? + 3gh?), = —ghz,,

g is a given constant and z is a given function of x.

This 2 x 2 conservative hyperbolic system with a source term
can be viewed has a nonconservative 3 x 3 hyperbolic system,
adding z has an unknown and the equation z; = O.
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Hyperbolic system with a source term

ht + (hu)x — 0,
(hu); + (hu? + 1gh?), + ghz, =0,
zt = 0.

u hu
z

0

0

0

Wi + (F(W))x + B(W)Wx =0,

or equivalently (for regular solutions):
W + A(W)Wy =0, (with A(W) = DF (W) + B(W)).
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Hyperbolic system with a source term

Unknown: W : Rx Ry — RP,p=3
Equation: Wy + A(W)Wy =0

u 0 1 O
W=|hu [,AW)=| —u?+gh 2u gh |.
z 0 0O O

Eigenvalues of A(W) are u + ¢ and 0, with ¢ = /gh.
A(W) is not diagonalizable ifu—c =0oru+c =0 (and h > 0).
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Nonlinear resonant problem, porous media

First example

g : [0,1] — Ry, Lipschitz continuous and such that

g(0) = g(1) = 0. The Cauchy problem is well posed in the
following sense:

k(x) =k >0ifx <0,k(x)=k >0ifx >0, u(-,0) =ug € L*,
0 < ug < 1. Then, the Cauchy problem has a unique entropy
weak solution.

Karlsen-Risebro-Towers

Seguin-Vovelle, Bachmann-Vovelle

Bachmann: k(x)g(u) ~ g(x,u), g(x,0) =g(x,1) =0.
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Entropy weak solution

Up € L*(R), 0 <up < la.e..ueL>®R; xR)is an entropy

weak solution if:
Vk € [0,1], Vp € C(R4 x R,R,),

/OO/ u(t,x) — k[ g (t,x) dt dx

/ / ®(x, u(t, x), &) ox(t,x)dx dt

T /|uo(x)—m|so<o,x)dx+|kL—kR|/ 9(r) o(t,0)dt > 0,
R 0

®(u, k) = sgr(u — £)(9(u) — 9(~))
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sketch of proof (1)

Similar methods for proving existence:
1. Replace k par k. (regular) and pass to limit as e — 0.
2. Add — euxx and pass to limit as ¢ — 0.

3. Pass to the limit on (monotone) numerical schemes.

An L* estimate on u. iseasy, 0 <u. <1 a.e..

Main difficulty for existence (even if ug regular): Prove that
g(uc) converge to g(u) (a.e. convergence of u, to u)

Main difficulty for uniqueness : existence of trace for u on

{x = 0}.
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sketch of proof (2)

For this 2 difficulties, a technical (but not necessary)
assumption is used by some authors : g € C? and

mes({s € [0,1] : g”(s) =0}) =0.

Existence by Temple function, compensated compactness,
Uniqueness thanks to trace for u on {x = 0}.

without this assumption of nonlinearity on g. Existence and

uniqueness result are obtain using entropy process solution (or
Young measures) and a kinetic formulation.
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Nonlinear weak—x convergence, Young measures

Let Q be an open set of RN and (un)ner bounded in L°(Q).
Then, there exists a subsequence, still denoted (un)ney and
u € L*(Q x (0,1)) such that:

1
/H(Un(x))d;(x)dx —>/ /H(U(x,a))w(x)dx day, quAandn — 400

Q 0 Q
vy € L1(Q), V8 € C(R, R).

DiPerna, Tartar
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Entropy process solution

Up € L*(R),0<up <1la.e.
u € L*(R;: x R x [0, 1]) is an entropy process solution if:
Vk € [0,1], Vo € C(Ry x R, Ry),

/1 /OO/ u(t, x, o) — k)| ex(t, x) dtdx do
/ / / d(x, u(t,x, a), k) ex(t,x) dx dtda

+ Aruo(x)—n)|¢<o7x)dx +rkL—er/0°°g(n>so<t,0)dtzo,

®(u, k) = sgn(u — x)(g(u) — g(x).
If k is regular, uniqueness is obtained by doubling variable
technique (Krushkov)
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Kinetic process solution

Up € L*(R),0<up<lae.uelL®R;yxRx(0,1)isa
kinetic process solution if it exists My € Cy—«(R, M (R4 x R))
such that :

Vi € C&(R®),

1
/ / hie(t, %, 0, €) (01 + k(x)a(€)gx) dt dx dé dar
0 JRixRxR

+ / hQ (x, £)g;_, de dx — / (ke — kg)*a()p, , dédt
RxR Ry xR

= / 85(,0 dmi.
Ry xRxR

with a(¢) = g'(¢).
and

ha(t,x, o, &) =sgn,_(u(t,x, ) — &)
hd(x, €) = sgn (Uo(x) — €).
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Kinetic process solution

Entropy process solution is equivalent to kinetic process
solution

Uniqueness following the case “k constant” and without o
Brenier; Lions, Perthame et Tadmor; Perthame
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Nonlinear resonant problem, Saint Venant

Second example
Saint Venant Equations with topography. The Riemann
problem:

ht + (hu)x = 0,
(hu); + (hu? + 2gh?), + ghz, = 0,
Zy = 0

h h hy
{hu ] (x,0) = {(hu) ] , If x <0, and { (hu), ] , If X >0,

z Z e

has one (sometimes three. . .) solution (composed of constant
states and waves), satisfying a classical entropy condition,
assuming continuity of (the Riemann invariants) hu and ¢ at the
contact discontinuity (at x = 0) with ¢ = Ju? + g(h + ).
Chinnayya-LeRoux-Seguin, Goatin-LeFloch
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Nonlinear resonant problem, phase transition

Third example
Isentropic Euler Equations with an EOS taking into account a
simple model of “phase transition”, that is:

p=ayp, if 0 <p<py,
p=aups, if p1 < p < p2,
p = azp, if p2 <p,

with pq1, p2, a1, a, given constants, 0 < p; < pp, 0 < a; < a,.

Pt + (Pu)x - 07
(pu)e + (pu? + p)x = 0.

For p1 < p < p and any u, the system is resonant (with u as
eigenvalue, and the 2 genuinely nonlinear fields lead to a linear
degenerate field). But the Riemann problem is well posed.
Recent result of Godlewski-Seguin.
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Discretization by Finite Volume Shemes

Wi + (F (W))x + B(W)Wy = 0,

NI

_1,X '+2
0 1 Xi+2
W = n Wo(x)dx, i € Z
X
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Riemann problem

Wi + (F(W))x + B(W)Wy =0,

. W, if x <0,
W(X’O)_{ W, if x > 0.

Let W be the (or a) self similar solution, that is:

X
W(x,t) = R(?thr)

and set

W*HE(W, W, ) = R(0%, W, W,).
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Godunov scheme for nonconservative system

ForieZ,n>0:

W_n+1 —Wh
— - +FY - F" 4+ BWhH(W, —w"
2

Jr
1 1)=0
k i+32 i+3 i—3 ’

: n+ s
with Fi+% = F(Wi+%),
Wir-]i:j%: = W*E(W, W ).

CFL condition: k < Ch.
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Godunov scheme, particular cases

W _wn
i i n n, n o n+y _
e R R BW(W W) =0,

© conservative case: F™"7 = F™ ], evenif W™ T £ W™
i+3 i4+3 i4+1 i4+1
(thanks to Rankine-Hugoniot condition on the Riemann

problem).

Q@ Inthe case of Saint Venant equations with topography, one

hasz"7 = z =z and then B(WW")(W"] —W"™1) =0.
+2 2 I+5 =3

The non conservativity of the equation (that is the source
term) appears only in the fact that, generally, Fn o+ ;é Fn _.
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Linearized system

@ Initial system: W; + A(W )Wy =0,
A(W) =DF(W)+ B(W).

@ Linearized system: W; + A(W )Wy = 0, with some fixed
W € RP.

@ Initial system with a change of unknown: Y = ¢(W). ¢ is
not necessarily invertible, but one assumes that there
exists C, G, D, such that A(IW) = C(Y), F(W) = G(Y),
B(W)Wx=D(W)Yy. Then W; + A(W )Wy leads to

Yi + C(W)Yy = 0.

@ Linearized system with a change of unknown: Y = ¢(W),

Yi + C(W)Yx =0,
with some fixed W € RP.
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linearized Riemann problem

Yi + C(W)Yx =0,

[ Yi=¢(W)if x <O,
Y(X’O)—{ Yo — (W) if X > 0.

For instance, W = Wi or another mean value between W,
and W;.

Let Y be the self similar solution of this problem (when it
exists. ..), that is:

Y (x,t) = LR(%,Yth)

and set Y **(W;, W,) = LR(0%, Y}, Y;).
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VFRoe-ncv scheme

Fori€Z,n>0:

W_I"I+1 _ W-n
— L 4R - Fi”_’J%“ + DMWY, — Y_””%L) =0,

k i+% i+% i—
with:
FITT = G(Y[11) (F(W) = G(#(W)), B(W)Wy = D(W)Y5),
R
Yil% = Y (WL W)

CFL condition: k < Ch.
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VFroe-ncv scheme

© Modification for conservativity (null eigenvalue)

@ Discontinuity of the numerical flux when there is 0 as
eigenvalue. F(W*(W,, W,)) is a discontinuous fonction of
W, and W,).

© Choice of Y.
Y = (kg(u),k)! for porous media,
Y = (2c,u,z)  orY = (q,%,2z)! for Saint Venant with
topography.
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Remark on resonance, porous media

Ut(X,t) + (kg(U))X =0,
ki = 0.

With the choice Y = (kg(u), k)" the linearized system is
Yi + C(W)Yx =0, W = (T, k),

o kg'(t)
cw=| %7 .
which is never resonant. . .

Eigenvalues: \; = kg'(U), \2 =0
Eigenvectors: e; = (1,0)!, e, = (0,1)!
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Remark on resonance, Saint Venant with topography

ht + (hu)x — 0,
(hu); + (hu? + 3gh?), + ghz. = 0,
Zt = 0

With the choice Y = (q,,z)!, the linearized system is
Yt + C(W)Yx =0, W = (h,hT,z)!, T = /gh,

c

o Q
cNeoNe
[

() - [

which is never resonant (for h > 0). ..
Eigenvalues: \; =0, A =U+C, A\, =U — 7
Eigenvectors: e; = (0,0,1)!, e, = (h,c,0)!, e3 = (—h,C,0)!
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Remark on resonance, Saint Venant with topography

With the choice Y = (2c,u,z)!, the linearized system is
Yt + C(W)Yx =0, W = (h,hT,z)!, T = /gh,

o uco
CW)=|c u g |,
0 0O
which is resonantifu+c=0oru —c¢ = 0.
Eigenvalues: Ay =0, \, =U+C, A\, =Uu—-C
Eigenvectors:
e Ifutc+#0,

€, = (Ega _Ug7U2 - EZ)t! € = (17 170)t' e3 = (17 _170)t
e Ifu=c,e; =(1,-1,0), e; =(1,1,0)"
@ Ifu=-C,e; =(1,1,0), e3=(1,-1,0)
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Numerical results

@ Perfect with Godunov. In particular, for Saint Venant with
topography, one has preservation of all steady state
solutions : g = hu and ¢ = “72 + g(h + z) constant (and not
only those with u = 0 which are called "lake at rest”)

© Perfect also with VFRoe-ncv, sometimes with one
“incorrect point”. For Saint Venant with topography:
Preservation of steady state solution with u = 0 (for any
choice of the variable of linearizationY) and preservation of
all steady state solutions for Y = (q,,2z)!
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numerical results, two phase flow in porous media
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Resonance occurs for all (k,u) with u € (3, 3).
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numerical results, two phase flow in porous media

k =15, k=1, u =3/8, u_=5/8, T=2s, 50 cells

Resonance occurs for all (k,u) with u € (3, 3).
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numerical results, Saint Venant with topography
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A case with h = 0, steady state, sonic point...VFRoe-ncv with
Y = (2c,u,z)! (best choice for the problem of vanishing h).
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