A parabolic equation with a flux limiter

R. Eymard ${ }^{1} \quad$ T. Gallouët ${ }^{2}$
${ }^{1}$ University of Marne-La-vallée
${ }^{2}$ University of Marseille

fvca4, 2005

The complete problem

Model of erosion and sedimentation process

$$
\begin{gathered}
H_{t}(x, t)-\operatorname{div}[\bar{u}(x, t) \wedge(x) \nabla H(x, t)]=0 \\
H_{t}(x, t) \geq-F(x) \\
0 \leq \bar{u}(x, t) \leq 1 \\
(\bar{u}(x, t)-1)\left(H_{t}(x, t)+F(x)\right)=0
\end{gathered}
$$

$(x, t) \in \Omega \times(0, T), \Omega$: bounded open set of $\mathbb{R}^{d}(d \geq 1)$. Initial and Boundary Conditions on H.
$F \geq 0$ a.e..

References, Modelization and Numerical Methods

- R.S. Anderson and N.F. Humphrey, Interaction of weathering and transport processes in the evolution of arid landscapes, Quantitative Dynamics Stratigraphy, T.A. Cross ed., Prentice Hall (1989), 349-361.
- D. Granjeon, P. Joseph and B. Doligez, Using a 3-D stratigraphic model to optimise reservoir description, Hart's Petroleum Engineer International (1998), 51-58.
- J.C. Rivenaes Impact of sediment transport efficiency on large scale sequence architecture: results from stratigraphic computer simulation, Basin Research (1992), 4, 133-146.
- R. Eymard, T. GallouËt, V. Gervais and R. Masson, Convergence of a numerical scheme for stratigraphic modeling, Accepted for publication in SIAM J. of Num. Anal. (2004).
- R. Eymard, T. GallouËt, D. Granjeon, R. Masson and Q.H. Tran, Multi-lithology stratigraphic model under maximum erosion rate constraint, Internat. J. Numer. Methods Engrg. (2004), 60, 527-548.

References, partial existence results

- S.N. Antontsev, G. Gagneux and G. Vallet, On some stratigraphic control problems, Journal of Applied Mechanics and Technical Physics (2003), 44, 6, 821-828.
- G. Gagneux and G. Vallet, Sur des problèmes d'asservissements stratigraphiques, ESAIM : COCV Control, Optimisation and Calculus of Variations (2002), 8, 715-739.
- R. Eymard and T.GallouËt, Analytical and numerical study of a model of erosion and sedimentation. Accepted for publication (1/6/2005) in SIAM J. Numer. An..
- R. Eymard and T.GallouËT, A finite volume scheme for the computation of erosion limiters. Finite Volume For Complex Applications, 4, Marrakech, July 2005.

The complete problem

$$
\begin{gathered}
H_{t}(x, t)-\operatorname{div}[\bar{u}(x, t) \wedge(x) \nabla H(x, t)]=0 \\
H_{t}(x, t) \geq-F(x) \\
0 \leq \bar{u}(x, t) \leq 1 \\
(\bar{u}(x, t)-1)\left(H_{t}(x, t)+F(x)\right)=0
\end{gathered}
$$

The complete problem

$$
\begin{gathered}
H_{t}(x, t)-\operatorname{div}[\bar{u}(x, t) \wedge(x) \nabla H(x, t)]=0, \\
\operatorname{div}[\bar{u}(x, t) \wedge(x) \nabla H(x, t)] \geq-F(x), \\
0 \leq \bar{u}(x, t) \leq 1, \\
(\bar{u}(x, t)-1)(\operatorname{div}[\bar{u}(x, t) \wedge(x) \nabla H(x, t)]+F(x))=0 .
\end{gathered}
$$

Time discretization of the complete problem

Time step : $k, t_{n}=n k . H_{n+1}=H\left(\cdot, t_{n+1}\right), u_{n+1}=\bar{u}\left(\cdot, t_{n+1}\right)$.

$$
\begin{gathered}
\frac{H_{n+1}-H_{n}}{k}-\operatorname{div}\left[u_{n+1} \wedge(x) \nabla H_{n+1}(x, t)\right]=0 \\
\operatorname{div}\left[u_{n+1} \wedge \nabla H_{n+1}\right]+F \geq 0 \\
0 \leq u_{n+1} \leq 1 \\
\left(u_{n+1}-1\right)\left(\operatorname{div}\left[u_{n+1} \wedge \nabla H_{n+1}\right]+F(x)\right)=0
\end{gathered}
$$

Time discretization of the complete problem

Time step : $k, t_{n}=n k . H_{n+1}=H\left(\cdot, t_{n+1}\right), u_{n+1}=\bar{u}\left(\cdot, t_{n+1}\right)$.

$$
\begin{gathered}
\frac{H_{n+1}-H_{n}}{k}-\operatorname{div}\left[u_{n+1} \wedge(x) \nabla H_{n+1}(x, t)\right]=0 \\
\operatorname{div}\left[u_{n+1} \wedge \nabla H_{n}\right]+F \geq 0 \\
0 \leq u_{n+1} \leq 1 \\
\left(u_{n+1}-1\right)\left(\operatorname{div}\left[u_{n+1} \wedge \nabla H_{n}\right]+F(x)\right)=0
\end{gathered}
$$

Intermediate problem

$g: \Omega \rightarrow \mathbb{R}^{d}$, Lipschitz continuous, $g \cdot n=0$ on $\partial \Omega$.
$F \in L^{\infty}(\Omega), F \geq 0$ a.e..

$$
\begin{gathered}
\operatorname{div}(u g)+F \geq 0, \text { in } \Omega, \\
0 \leq u \leq 1, \text { in } \Omega \\
(u-1)(\operatorname{div}(u g)+F)=0, \text { in } \Omega .
\end{gathered}
$$

u is not unique (example : $g=0, F=0$ on ω).
Hyperbolic Inequality.

Associated evolution problem

$g: \Omega \rightarrow \mathbb{R}^{d}$, Lipschitz continuous, $g \cdot n=0$ on $\partial \Omega$.
$F \in L^{\infty}(\Omega), F \geq 0$ a.e..

$$
u_{t}-\operatorname{div}(u g)-F \leq 0, \text { in } \Omega \times(0, \infty)
$$

$$
0 \leq u \leq 1, \text { in } \Omega \times(0, \infty)
$$

$$
(u-1) u_{t}-(u-1)(\operatorname{div}(u g)+F)=0, \text { in } \Omega \times(0, \infty)
$$

with initial condition $u(x, 0)=1$ for a.e. $x \in \Omega$. Hyperbolic Inequality.

Associated evolution problem

$g: \Omega \rightarrow \mathbb{R}^{d}$, Lipschitz continuous, $g \cdot n=0$ on $\partial \Omega$.
$F \in L^{\infty}(\Omega), F \geq 0$ a.e..

$$
u_{t}-\operatorname{div}(u g)-F=0, \text { in } \Omega \times(0, \infty),
$$

$$
0 \leq u \leq 1, \text { in } \Omega \times(0, \infty),
$$

$$
(u-1) u_{t}-(u-1)(\operatorname{div}(u g)+F)=0, \text { in } \Omega \times(0, \infty),
$$

with initial condition $u(x, 0)=1$ for a.e. $x \in \Omega$.
u may not exist (example : $\operatorname{div}(g)+F>0$ on ω).

The intermediate problem

$g: \Omega \rightarrow \mathbb{R}^{d}$, Lipschitz continuous, $g \cdot n=0$ on $\partial \Omega$.
$F \in L^{\infty}(\Omega), F \geq 0$ a.e..

$$
\begin{gather*}
\operatorname{div}(u g)+F \geq 0, \text { in } \Omega, \tag{1}\\
0 \leq u \leq 1, \text { in } \Omega, \tag{2}\\
(u-1)(\operatorname{div}(u g)+F)=0, \text { in } \Omega . \tag{3}
\end{gather*}
$$

Existence of u, uniqueness of $u g$, computation of $u g$.

Weak solution of (1)-(3)

$u \in L^{\infty}(\Omega), 0 \leq u \leq 1$ a.e.,

$$
\begin{gathered}
\int_{\Omega}(\xi(u(x))(-g(x) \cdot \nabla \varphi(x))+ \\
\left(\xi^{\prime}(u(x)) u(x)-\xi(u(x))\right) \varphi(x) \operatorname{div} g(x)+ \\
\left.\xi^{\prime}(u(x)) \varphi(x) F(x)\right) d x \geq 0,
\end{gathered}
$$

for all $\xi \in C^{1}(\mathbb{R})$, convex s.t. $\xi^{\prime}(1) \geq 0$, and $\varphi \in C^{1}\left(\bar{\Omega}, \mathbb{R}_{+}\right)$.
$\xi(s)=s$ gives (1) and $\xi(s)=(s-1)^{2}$ gives (3)
(If $g u$ is Lipschitz continuous (4) is equivalent to (1)-(3).)

Approximate solution of (1)-(3), mesh

$$
T_{K, L}=m_{K, L} / d_{K, L}
$$

$\operatorname{size}(\mathcal{T})=\sup \{\operatorname{diam}(K), K \in \mathcal{T}\}, m_{K}$ is the measure of K

Approximation of $\operatorname{div}(u g)+F$ on K

\mathcal{N}_{K} is the subset of \mathcal{T} of all the control volumes having a common interface with K.

$$
g_{K, L}=\int_{K \mid L} g(x) \cdot n_{K, L} d \gamma(x), \forall K \in \mathcal{T}, \forall L \in \mathcal{N}_{K}
$$

or, if $g=\nabla h$,

$$
\begin{gathered}
g_{K, L}=\tau_{K L}\left(h_{L}-h_{K}\right), \forall K \in \mathcal{T}, \forall L \in \mathcal{N}_{K} \\
F_{K}=\int_{K} F(x) d x
\end{gathered}
$$

Approximation of $\operatorname{div}(u g)+F$ on K with an upwind choice of u on $K \mid L$:

$$
\sum_{L \in \mathcal{N}_{K}}\left(g_{K, L}^{+} u_{L}-g_{K, L}^{-} u_{K}\right)+F_{K}
$$

Approximate solution of (1)-(3), scheme

For all K :

$$
\begin{gathered}
\sum_{L \in \mathcal{N}_{K}}\left(g_{K, L}^{+} u_{L}-g_{K, L}^{-} u_{K}\right)+F_{K} \geq 0 \\
0 \leq u_{K} \leq 1 \\
\left(\sum_{L \in \mathcal{N}_{K}}\left(g_{K, L}^{+} u_{L}-g_{K, L}^{-} u_{K}\right)+F_{K}\right)\left(u_{K}-1\right)=0 .
\end{gathered}
$$

Definition of the approximate solution, $u_{\mathcal{T}}$:

$$
u_{\mathcal{T}}(x)=u_{K}, \forall x \in K, \forall K \in \mathcal{T} .
$$

- Existence of $u_{\mathcal{T}}$, computation of $u_{\mathcal{T}}$,
- Estimates on $u_{\mathcal{T}}$,
- Convergence of $u_{\mathcal{T}}$ to a solution of (4) (weak formulation of (1)-(3)) as $\operatorname{size}(\mathcal{T}) \rightarrow 0$.

Existence of $u_{\mathcal{T}}$, computation of $u_{\mathcal{T}}, 1$

Initialization: $u_{k}^{(0)}=1$ and $p_{K}^{(0)}=1$, for all $K \in \mathcal{T}$.
Iterations: Let $n \in \mathbb{N}^{\star}$. Assume that $u_{k}^{(n-1)}$ and $p_{k}^{(n-1)}$ are known for all $K \in \mathcal{T}$.
(1) Computation of $\left\{p_{K}^{(n)}, K \in \mathcal{T}\right\}$:

$$
\begin{aligned}
& p_{K}^{(n)}=0, \text { if } \sum_{L \in \mathcal{N}_{K}}\left(g_{K, L}^{+} u_{L}^{(n-1)}-g_{K, L}^{-} u_{K}^{(n-1)}\right)+F_{K}<0, \\
& p_{K}^{(n)}=p_{K}^{(n-1)}, \text { if } \sum_{L \in \mathcal{N}_{K}}\left(g_{K, L}^{+} L_{L}^{(n-1)}-g_{K, L}^{-} u_{K}^{(n-1)}\right)+F_{K} \geq 0 .
\end{aligned}
$$

(2) Computation of $\left\{u_{k}^{(n)}, K \in \mathcal{T}\right\}$ (linear system):

$$
\begin{aligned}
& \sum_{L \in \mathcal{N}_{K}}\left(g_{K, L}^{+} u_{L}^{(n)}-g_{K, L}^{-} u_{K}^{(n)}\right)=-F_{K}, \text { if } p_{K}^{(n)}=0, \\
& u_{K}^{(n)}=1, \text { if } p_{K}^{(n)}=1 .
\end{aligned}
$$

Existence of $u_{\mathcal{T}}$, computation of $u_{\mathcal{T}}, 2$

(1) There exists a unique family $\left\{\left(p_{K}^{(n)}, u_{K}^{(n)}\right), K \in \mathcal{T}, n \in \mathbb{N}\right\}$ solution of the preceding algorithm.
(2) For all $K \in \mathcal{T}$ and all $n \in \mathbb{N}$, one has $u_{k}^{(n)} \geq 0$.
(3) For all $K \in \mathcal{T}$, the sequence $\left(u_{K}^{(n)}\right)_{n \in \mathbb{N}}$ is nonincreasing.
(9) There exists $n \leq \operatorname{card}(\mathcal{T})$ such that, setting $u_{K}=u_{K}^{(n)}$ for all $K \in \mathcal{T}$, the family $\left\{u_{K}, K \in \mathcal{T}\right\}$ is such that $u_{K}^{(p)}=u_{K}$ for all $K \in \mathcal{T}$ and $p \geq n$. This family is therefore a solution of (5)

Link with variational inequalities

Upwinding on u is related to add a diffusion term $\left(g=\left(g_{1}, \ldots, g_{d}\right)^{t}\right)$:

$$
\begin{gathered}
\operatorname{size}(\mathcal{T}) \sum_{i=1}^{d} D_{i}\left(\left|g_{i}\right| D_{i} u\right)+\operatorname{div}(u g)+F \geq 0, \text { in } \Omega, \\
0 \leq u \leq 1, \text { in } \Omega, \\
(u-1)\left(\operatorname{size}(\mathcal{T}) \sum_{i=1}^{d} D_{i}\left(\left|g_{i}\right| D_{i} u\right)+\operatorname{div}(u g)+F\right)=0, \text { in } \Omega .
\end{gathered}
$$

which is a variational inequality (with a transport term).
The preceding algorithm works for many variational inequalities (see Herbin ,SINUM, 2003, for obstacle and Signorini problems).

Estimate on $u_{\mathcal{T}}$

(1) L^{∞}-estimate: $\left\|u_{\mathcal{T}}\right\|_{\infty} \leq 1$,
(2) Weak-BV inequality:

$$
\sum_{(K, L) \in \mathcal{E}}\left|g_{K, L}\right|\left(u_{K}-u_{L}\right)^{2} \leq C
$$

Only weak-^ compactness in L^{∞}.
The weak-BV estimate looks like $\sum_{i=1}^{2}\left\|g_{i} D_{i} u\right\|_{L^{2}} \leq \frac{1}{\sqrt{\operatorname{size}(\mathcal{T})}}$ (with $\left.g=\left(g_{1}, \ldots, g_{d}\right)^{t}\right)$.

Nonlinear weak convergence, young measures

$L^{\infty}(\Omega)$-estimate on $u_{\mathcal{T}}$ gives (up to subsequences of sequences of approximate solutions) that there exists $u \in L^{\infty}(\Omega \times(0,1))$ such that $u_{\mathcal{T}} \rightarrow u$, as $\operatorname{size}(\mathcal{T}) \rightarrow 0$ in the following sense:

$$
\int_{\Omega} \xi\left(u_{\mathcal{T}}(x)\right) \varphi(x) d x \rightarrow \int_{0}^{1} \int_{\Omega} \xi(u(x, \alpha)) \varphi(x) d x d \alpha
$$

for all $\varphi \in L^{1}(\Omega)$ and all $\xi \in C(\mathbb{R}, \mathbb{R})$.
That is:

$$
\xi\left(u_{\mathcal{T}}\right) \rightarrow \int_{0}^{1} \xi(u(\cdot, \alpha)) d \alpha, L^{\infty}(\Omega) \text { weak-ᄎ. }
$$

Weak solution of (1)-(3)

$u \in L^{\infty}(\Omega), 0 \leq u \leq 1$ a.e.,

$$
\begin{gathered}
\int_{\Omega}(\xi(u(x))(-g(x) \cdot \nabla \varphi(x))+ \\
\left(\xi^{\prime}(u(x)) u(x)-\xi(u(x))\right) \varphi(x) \operatorname{div} g(x)+ \\
\left.\xi^{\prime}(u(x)) \varphi(x) F(x)\right) d x \geq 0,
\end{gathered}
$$

for all $\xi \in C^{1}(\mathbb{R})$, convex s.t. $\xi^{\prime}(1) \geq 0$, and $\varphi \in C^{1}\left(\bar{\Omega}, \mathbb{R}_{+}\right)$.

Weak process solution of (1)-(3)

Assuming $u_{\mathcal{T}} \rightarrow u$, as $\operatorname{size}(\mathcal{T}) \rightarrow 0$, in the nonlinear weak sense, one proves (thanks to the weak BV estimate) that u is a weak process solution:
$u \in L^{\infty}(\Omega \times(0,1)), 0 \leq u \leq 1$ a.e.,

$$
\begin{gathered}
\int_{0}^{1} \int_{\Omega}(\xi(u(x, \alpha))(-g(x) \cdot \nabla \varphi(x))+ \\
\left(\xi^{\prime}(u(x, \alpha)) u(x, \alpha)-\xi(u(x, \alpha))\right) \varphi(x) \operatorname{div} g(x)+ \\
\left.\xi^{\prime}(u(x, \alpha)) \varphi(x) F(x)\right) d x d \alpha \geq 0
\end{gathered}
$$

for all $\xi \in C^{1}(\mathbb{R})$, convex s.t. $\xi^{\prime}(1) \geq 0$, and $\varphi \in C^{1}\left(\bar{\Omega}, \mathbb{R}_{+}\right)$.

Uniqueness of the weak process solution

$g=\Lambda \nabla h, g$ Lipschitz continuous and $g \cdot n=0$ on $\partial \Omega$.
If $u \in L^{\infty}(\Omega \times(0,1)), 0 \leq u \leq 1$ a.e., is a weak process solution of (1)-(3), then:

- $u(x, \alpha)$ does not depends on α for a.e. x in $\{g \neq 0\}$.
- $x \mapsto g(x) u(x)$ is the unique solution of (4) (weak formulation of (1)-(3)).
- $g u_{\mathcal{T}}$ converges to $g u$ in $\left(L^{p}(\Omega)\right)^{d}$ for all $p<\infty$.

The proof uses the doubling variables method of Krushkov.

Conclusion for the intermediate problem

$g=\Lambda \nabla h, g$ Lipschitz continuous and $g \cdot n=0$ on $\partial \Omega$.
$F \in L^{\infty}(\Omega), F \geq 0$ a.e..

$$
\begin{gathered}
\operatorname{div}(u g)+F \geq 0, \text { in } \Omega, \\
0 \leq u \leq 1, \text { in } \Omega \\
(u-1)(\operatorname{div}(u g)+F)=0, \text { in } \Omega .
\end{gathered}
$$

Existence of a weak solution u (in the sense of (4)) and uniqueness of $u g$. Computation of an approximate solution.

Another weak formulation of (1)-(3)

$g: \Omega \rightarrow \mathbb{R}^{d}, g$ Lipschitz continuous and $g \cdot n=0$ on $\partial \Omega$.
$F \in L^{\infty}(\Omega), F \geq 0$ a.e..
$C(g, F)$ is the set of functions $v \in L^{2}(\Omega)$ such that:

$$
\begin{gathered}
0 \leq v \leq 1, \text { a.e. in } \Omega \\
\int_{\Omega}(-v g \cdot \nabla \varphi+F \varphi) d x \geq 0, \forall \varphi \in C^{1}\left(\bar{\Omega}, \mathbb{R}_{+}\right) .
\end{gathered}
$$

$C(g, F)$ is a closed convex subset of $L^{2}(\Omega)$, and $0 \in C(g, F)$. Then, $u_{\mathcal{T}} \rightarrow u$ in $L^{p}(\Omega)$, for all $p<\infty$, as $\operatorname{size}(\mathcal{T}) \rightarrow 0$, and:

$$
u=P_{C(g, F)} 1_{\Omega} .
$$

u is the "mild" solution of (1)-(3).

Characterization of $u_{\mathcal{T}}$

$g: \Omega \rightarrow \mathbb{R}^{d}, g$ Lipschitz continuous and $g \cdot n=0$ on $\partial \Omega$.
$F \in L^{\infty}(\Omega), F \geq 0$ a.e..
$C(g, F, \mathcal{T})$ is the set of functions $v \in L^{2}(\Omega)$ such that $v=v_{K}$ a.e. in K, with $v_{K} \in \mathbb{R}$, for all $K \in \mathcal{T}$ and:

$$
\begin{gathered}
0 \leq v_{K} \leq 1, \text { for all } K \in \mathcal{T} \\
\sum_{L \in \mathcal{N}_{K}}\left(g_{K, L}^{+} v_{L}-g_{K, L}^{-} v_{K}\right)+F_{K} \geq 0 .
\end{gathered}
$$

$C(g, F, \mathcal{T})$ is a closed convex subset of $L^{2}(\Omega)$, and $0 \in C(g, F, \mathcal{T})$.

$$
u_{\mathcal{T}}=P_{C(g, F, \mathcal{T})}{ }^{1} \Omega .
$$

Open questions. . .

Existence, uniqueness, convergence of the numerical scheme for the complete problem

$$
H_{t}(x, t)-\operatorname{div}[\bar{u}(x, t) \wedge(x) \nabla H(x, t)]=0,
$$

$$
\begin{gathered}
H_{t}(x, t) \geq-F(x) \\
0 \leq \bar{u}(x, t) \leq 1, \\
(\bar{u}(x, t)-1)\left(H_{t}(x, t)+F(x)\right)=0 .
\end{gathered}
$$

$(x, t) \in \Omega \times(0, T), \Omega$: bounded open set of $\mathbb{R}^{d}(d \geq 1)$.
Initial and Boundary Conditions on H.
$F \geq 0$ a.e..
Solve the intermediate problem with less regularity on $g=\Lambda \nabla \underline{\underline{\underline{h}}}$.

