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The complete problem

Model of erosion and sedimentation process

H t(x , t)− div[u(x , t)Λ(x)∇H(x , t)] = 0,

H t(x , t) ≥ −F (x),

0 ≤ u(x , t) ≤ 1,

(u(x , t)− 1) (H t(x , t) + F (x)) = 0.

(x , t) ∈ Ω× (0, T ), Ω : bounded open set of Rd (d ≥ 1).
Initial and Boundary Conditions on H.
F ≥ 0 a.e..
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The complete problem

H t(x , t)− div[u(x , t)Λ(x)∇H(x , t)] = 0,

H t(x , t) ≥ −F (x),

0 ≤ u(x , t) ≤ 1,

(u(x , t)− 1) (H t(x , t) + F (x)) = 0.
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The complete problem

H t(x , t)− div[u(x , t)Λ(x)∇H(x , t)] = 0,

div[u(x , t)Λ(x)∇H(x , t)] ≥ −F (x),

0 ≤ u(x , t) ≤ 1,

(u(x , t)− 1) (div[u(x , t)Λ(x)∇H(x , t)] + F (x)) = 0.
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Time discretization of the complete problem

Time step : k , tn = nk . Hn+1 = H(·, tn+1), un+1 = u(·, tn+1).

Hn+1 − Hn

k
− div[un+1Λ(x)∇Hn+1(x , t)] = 0,

div[un+1Λ∇Hn+1] + F ≥ 0,

0 ≤ un+1 ≤ 1,

(un+1 − 1) (div[un+1Λ∇Hn+1] + F (x)) = 0.
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Intermediate problem

g : Ω → Rd , Lipschitz continuous, g · n = 0 on ∂Ω.
F ∈ L∞(Ω), F ≥ 0 a.e..

div(ug) + F ≥ 0, in Ω,

0 ≤ u ≤ 1, in Ω,

(u − 1) (div(ug) + F ) = 0, in Ω.

u is not unique (example : g = 0, F = 0 on ω).
Hyperbolic Inequality.
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Associated evolution problem

g : Ω → Rd , Lipschitz continuous, g · n = 0 on ∂Ω.
F ∈ L∞(Ω), F ≥ 0 a.e..

ut − div(ug)− F ≤ 0, in Ω× (0,∞),

0 ≤ u ≤ 1, in Ω× (0,∞),

(u − 1)ut − (u − 1) (div(ug) + F ) = 0, in Ω× (0,∞),

with initial condition u(x , 0) = 1 for a.e. x ∈ Ω.
Hyperbolic Inequality.
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Associated evolution problem

g : Ω → Rd , Lipschitz continuous, g · n = 0 on ∂Ω.
F ∈ L∞(Ω), F ≥ 0 a.e..

ut − div(ug)− F = 0, in Ω× (0,∞),

0 ≤ u ≤ 1, in Ω× (0,∞),

(u − 1)ut − (u − 1) (div(ug) + F ) = 0, in Ω× (0,∞),

with initial condition u(x , 0) = 1 for a.e. x ∈ Ω.
u may not exist (example : div(g) + F > 0 on ω).
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The intermediate problem

g : Ω → Rd , Lipschitz continuous, g · n = 0 on ∂Ω.
F ∈ L∞(Ω), F ≥ 0 a.e..

div(ug) + F ≥ 0, in Ω, (1)

0 ≤ u ≤ 1, in Ω, (2)

(u − 1) (div(ug) + F ) = 0, in Ω. (3)

Existence of u, uniqueness of ug, computation of ug.
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Weak solution of (1)-(3)

u ∈ L∞(Ω), 0 ≤ u ≤ 1 a.e.,∫
Ω
(ξ(u(x))(−g(x) · ∇ϕ(x))+

(ξ′(u(x))u(x)− ξ(u(x)))ϕ(x)divg(x) + (4)

ξ′(u(x))ϕ(x)F (x))dx ≥ 0,

for all ξ ∈ C1(R), convex s.t. ξ′(1) ≥ 0, and ϕ ∈ C1(Ω, R+).

ξ(s) = s gives (1) and ξ(s) = (s − 1)2 gives (3).
(If gu is Lipschitz continuous (4) is equivalent to (1)-(3).)
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Approximate solution of (1)-(3), mesh

TK,L=mK,L/dK,L

K

L

size(T ) = sup{diam(K ), K ∈ T }, mK is the measure of K
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Approximation of div(ug) + F on K

NK is the subset of T of all the control volumes having a
common interface with K .

gK ,L =

∫
K |L

g(x) · nK ,Ldγ(x), ∀K ∈ T , ∀L ∈ NK .

or, if g = ∇h,

gK ,L = τKL(hL − hK ), ∀K ∈ T , ∀L ∈ NK .

FK =

∫
K

F (x)dx .

Approximation of div(ug) + F on K with an upwind choice of u
on K |L: ∑

L∈NK

(g+
K ,LuL − g−K ,LuK ) + FK
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Approximate solution of (1)-(3), scheme

For all K : ∑
L∈NK

(g+
K ,LuL − g−K ,LuK ) + FK ≥ 0,

0 ≤ uK ≤ 1, (5)

(
∑

L∈NK

(g+
K ,LuL − g−K ,LuK ) + FK )(uK − 1) = 0.

Definition of the approximate solution, uT :

uT (x) = uK , ∀x ∈ K , ∀K ∈ T .
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difficulties. . .

Existence of uT , computation of uT ,
Estimates on uT ,
Convergence of uT to a solution of (4) (weak formulation of
(1)-(3)) as size(T ) → 0.
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Existence of uT , computation of uT , 1

Initialization: u(0)
K = 1 and p(0)

K = 1, for all K ∈ T .

Iterations: Let n ∈ N?. Assume that u(n−1)
K and p(n−1)

K are
known for all K ∈ T .

1 Computation of {p(n)
K , K ∈ T }:

p(n)
K = 0, if

∑
L∈NK

(g+
K ,Lu(n−1)

L − g−K ,Lu(n−1)
K ) + FK < 0,

p(n)
K = p(n−1)

K , if
∑

L∈NK
(g+

K ,Lu(n−1)
L − g−K ,Lu(n−1)

K ) + FK ≥ 0.

2 Computation of {u(n)
K , K ∈ T } (linear system):∑

L∈NK
(g+

K ,Lu(n)
L − g−K ,Lu(n)

K ) = −FK , if p(n)
K = 0,

u(n)
K = 1, if p(n)

K = 1.
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Existence of uT , computation of uT , 2

1 There exists a unique family {(p(n)
K , u(n)

K ), K ∈ T , n ∈ N}
solution of the preceding algorithm.

2 For all K ∈ T and all n ∈ N, one has u(n)
K ≥ 0.

3 For all K ∈ T , the sequence (u(n)
K )n∈N is nonincreasing.

4 There exists n ≤ card(T ) such that, setting uK = u(n)
K for all

K ∈ T , the family {uK , K ∈ T } is such that u(p)
K = uK for all

K ∈ T and p ≥ n. This family is therefore a solution of (5)
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Link with variational inequalities

Upwinding on u is related to add a diffusion term
(g = (g1, . . . , gd)t ):

size(T )
d∑

i=1

Di(|gi |Diu) + div(ug) + F ≥ 0, in Ω,

0 ≤ u ≤ 1, in Ω,

(u − 1) (size(T )
d∑

i=1

Di(|gi |Diu) + div(ug) + F ) = 0, in Ω.

which is a variational inequality (with a transport term).
The preceding algorithm works for many variational inequalities
(see Herbin ,SINUM, 2003, for obstacle and Signorini
problems).
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Estimate on uT

1 L∞-estimate: ‖uT ‖∞ ≤ 1,
2 Weak-BV inequality:∑

(K ,L)∈E

|gK ,L|(uK − uL)
2 ≤ C.

Only weak-? compactness in L∞.
The weak-BV estimate looks like

∑2
i=1 ‖giDiu‖L2 ≤ 1√

size(T )

(with g = (g1, . . . , gd)t ).
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Nonlinear weak convergence, young measures

L∞(Ω)-estimate on uT gives (up to subsequences of sequences
of approximate solutions) that there exists u ∈ L∞(Ω× (0, 1))
such that uT → u, as size(T ) → 0 in the following sense:∫

Ω
ξ(uT (x))ϕ(x)dx →

∫ 1

0

∫
Ω

ξ(u(x , α))ϕ(x)dxdα,

for all ϕ ∈ L1(Ω) and all ξ ∈ C(R, R).

That is:

ξ(uT ) →
∫ 1

0
ξ(u(·, α))dα, L∞(Ω) weak-?.
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Weak solution of (1)-(3)

u ∈ L∞(Ω), 0 ≤ u ≤ 1 a.e.,∫
Ω
(ξ(u(x))(−g(x) · ∇ϕ(x))+

(ξ′(u(x))u(x)− ξ(u(x)))ϕ(x)divg(x)+

ξ′(u(x))ϕ(x)F (x))dx ≥ 0,

for all ξ ∈ C1(R), convex s.t. ξ′(1) ≥ 0, and ϕ ∈ C1(Ω, R+).
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Weak process solution of (1)-(3)

Assuming uT → u, as size(T ) → 0, in the nonlinear weak
sense, one proves (thanks to the weak BV estimate) that u is a
weak process solution:
u ∈ L∞(Ω× (0, 1)), 0 ≤ u ≤ 1 a.e.,∫ 1

0

∫
Ω
(ξ(u(x , α))(−g(x) · ∇ϕ(x))+

(ξ′(u(x , α))u(x , α)− ξ(u(x , α)))ϕ(x)divg(x)+

ξ′(u(x , α))ϕ(x)F (x))dxdα ≥ 0,

for all ξ ∈ C1(R), convex s.t. ξ′(1) ≥ 0, and ϕ ∈ C1(Ω, R+).
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Uniqueness of the weak process solution

g = Λ∇h, g Lipschitz continuous and g · n = 0 on ∂Ω.
If u ∈ L∞(Ω× (0, 1)), 0 ≤ u ≤ 1 a.e., is a weak process solution
of (1)-(3), then:

u(x , α) does not depends on α for a.e. x in {g 6= 0}.
x 7→ g(x)u(x) is the unique solution of (4) (weak
formulation of (1)-(3)).
guT converges to gu in (Lp(Ω))d for all p < ∞.

The proof uses the doubling variables method of Krushkov.
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Conclusion for the intermediate problem

g = Λ∇h, g Lipschitz continuous and g · n = 0 on ∂Ω.
F ∈ L∞(Ω), F ≥ 0 a.e..

div(ug) + F ≥ 0, in Ω,

0 ≤ u ≤ 1, in Ω,

(u − 1) (div(ug) + F ) = 0, in Ω.

Existence of a weak solution u (in the sense of (4)) and
uniqueness of ug. Computation of an approximate solution.
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Another weak formulation of (1)-(3)

g : Ω → Rd , g Lipschitz continuous and g · n = 0 on ∂Ω.
F ∈ L∞(Ω), F ≥ 0 a.e..
C(g, F ) is the set of functions v ∈ L2(Ω) such that:

0 ≤ v ≤ 1, a.e. in Ω

∫
Ω
(−vg · ∇ϕ + Fϕ)dx ≥ 0, ∀ϕ ∈ C1(Ω, R+).

C(g, F ) is a closed convex subset of L2(Ω), and 0 ∈ C(g, F ).
Then, uT → u in Lp(Ω), for all p < ∞, as size(T ) → 0, and:

u = PC(g,F )1Ω.

u is the “mild” solution of (1)-(3).
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Characterization of uT

g : Ω → Rd , g Lipschitz continuous and g · n = 0 on ∂Ω.
F ∈ L∞(Ω), F ≥ 0 a.e..
C(g, F , T ) is the set of functions v ∈ L2(Ω) such that v = vK
a.e. in K , with vK ∈ R, for all K ∈ T and:

0 ≤ vK ≤ 1, for all K ∈ T

∑
L∈NK

(g+
K ,LvL − g−K ,LvK ) + FK ≥ 0.

C(g, F , T ) is a closed convex subset of L2(Ω), and
0 ∈ C(g, F , T ).

uT = PC(g,F ,T )1Ω.
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Open questions. . .

Existence, uniqueness, convergence of the numerical scheme
for the complete problem

H t(x , t)− div[u(x , t)Λ(x)∇H(x , t)] = 0,

H t(x , t) ≥ −F (x),

0 ≤ u(x , t) ≤ 1,

(u(x , t)− 1) (H t(x , t) + F (x)) = 0.

(x , t) ∈ Ω× (0, T ), Ω : bounded open set of Rd (d ≥ 1).
Initial and Boundary Conditions on H.
F ≥ 0 a.e..
Solve the intermediate problem with less regularity on g = Λ∇h.
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