A parabolic equation with a flux limiter

R. Eymard¹ T. Gallouët²

¹University of Marne-La-vallée

²University of Marseille

fvca4, 2005

The complete problem

Model of erosion and sedimentation process

$$H_t(x,t) - \operatorname{div}[\overline{u}(x,t)\Lambda(x)\nabla H(x,t)] = 0,$$
 $H_t(x,t) \ge -F(x),$
 $0 \le \overline{u}(x,t) \le 1,$
 $(\overline{u}(x,t)-1)(H_t(x,t)+F(x)) = 0.$

 $(x,t) \in \Omega \times (0,T)$, Ω : bounded open set of \mathbb{R}^d $(d \ge 1)$. Initial and Boundary Conditions on H. F > 0 a.e..

References, Modelization and Numerical Methods

- R.S. ANDERSON and N.F. HUMPHREY, Interaction of weathering and transport processes in the evolution of arid landscapes, *Quantitative Dynamics Stratigraphy, T.A.* Cross ed., Prentice Hall (1989), 349–361.
- D. GRANJEON, P. JOSEPH and B. DOLIGEZ, Using a 3-D stratigraphic model to optimise reservoir description, Hart's Petroleum Engineer International (1998), 51–58.
- J.C. RIVENAES Impact of sediment transport efficiency on large scale sequence architecture: results from stratigraphic computer simulation, *Basin Research* (1992), 4, 133–146.

References, Numerical methods

- R. EYMARD, T. GALLOUËT, V. GERVAIS and R. MASSON, Convergence of a numerical scheme for stratigraphic modeling, Accepted for publication in SIAM J. of Num. Anal. (2004).
- R. EYMARD, T. GALLOUËT, D. GRANJEON, R. MASSON and Q.H. TRAN, Multi-lithology stratigraphic model under maximum erosion rate constraint, *Internat. J. Numer. Methods Engrg.* (2004), 60, 527–548.

References, partial existence results

- S.N. ANTONTSEV, G. GAGNEUX and G. VALLET, On some stratigraphic control problems, *Journal of Applied* Mechanics and Technical Physics (2003), 44, 6, 821–828.
- G. GAGNEUX and G. VALLET, Sur des problèmes d'asservissements stratigraphiques, ESAIM: COCV -Control, Optimisation and Calculus of Variations (2002), 8, 715–739.
- R. EYMARD and T.GALLOUËT, Analytical and numerical study of a model of erosion and sedimentation. Accepted for publication (1/6/2005) in SIAM J. Numer. An..
- R. EYMARD and T.GALLOUËT, A finite volume scheme for the computation of erosion limiters. Finite Volume For Complex Applications, 4, Marrakech, July 2005.

The complete problem

$$egin{aligned} &oldsymbol{H}_t(x,t) - \operatorname{div}[\overline{oldsymbol{u}}(x,t) \wedge (x)
abla oldsymbol{H}(x,t)] = 0, \ &oldsymbol{H}_t(x,t) \geq -F(x), \ &0 \leq \overline{oldsymbol{u}}(x,t) \leq 1, \ &(\overline{oldsymbol{u}}(x,t) - 1) \left(oldsymbol{H}_t(x,t) + F(x)\right) = 0. \end{aligned}$$

The complete problem

$$H_t(x,t) - \operatorname{div}[\overline{u}(x,t)\Lambda(x)\nabla H(x,t)] = 0,$$
 $\operatorname{div}[\overline{u}(x,t)\Lambda(x)\nabla H(x,t)] \ge -F(x),$ $0 \le \overline{u}(x,t) \le 1,$ $(\overline{u}(x,t)-1)\left(\operatorname{div}[\overline{u}(x,t)\Lambda(x)\nabla H(x,t)] + F(x)\right) = 0.$

Time discretization of the complete problem

Time step :
$$k$$
, $t_n = nk$. $H_{n+1} = H(\cdot, t_{n+1})$, $u_{n+1} = \overline{u}(\cdot, t_{n+1})$.
$$\frac{H_{n+1} - H_n}{k} - \text{div}[u_{n+1}\Lambda(x)\nabla H_{n+1}(x, t)] = 0,$$

$$\text{div}[u_{n+1}\Lambda\nabla H_{n+1}] + F \ge 0,$$

$$0 \le u_{n+1} \le 1,$$

$$(u_{n+1} - 1) \left(\text{div}[u_{n+1}\Lambda\nabla H_{n+1}] + F(x)\right) = 0.$$

Time discretization of the complete problem

Time step :
$$k$$
, $t_n = nk$. $H_{n+1} = H(\cdot, t_{n+1})$, $u_{n+1} = \overline{u}(\cdot, t_{n+1})$.
$$\frac{H_{n+1} - H_n}{k} - \text{div}[u_{n+1} \wedge (x) \nabla H_{n+1}(x, t)] = 0,$$

$$\text{div}[u_{n+1} \wedge \nabla H_n] + F \ge 0,$$

$$0 \le u_{n+1} \le 1,$$

$$(u_{n+1} - 1) (\text{div}[u_{n+1} \wedge \nabla H_n] + F(x)) = 0.$$

Intermediate problem

$$g:\Omega \to \mathbb{R}^d$$
, Lipschitz continuous, $g\cdot n=0$ on $\partial\Omega$. $F\in L^\infty(\Omega),\, F\geq 0$ a.e..

$$\operatorname{div}(\underline{u}g)+F\geq 0, \text{ in } \Omega,$$

$$0 \leq \textcolor{red}{\textit{u}} \leq 1, \text{ in } \Omega,$$

$$(\underline{u}-1)(\operatorname{div}(\underline{u}g)+F)=0, \text{ in } \Omega.$$

 ${\color{red} u}$ is not unique (example : $g=0,\,F=0$ on ω). Hyperbolic Inequality.

Associated evolution problem

$$g:\Omega\to\mathbb{R}^d$$
, Lipschitz continuous, $g\cdot n=0$ on $\partial\Omega$. $F\in L^\infty(\Omega),\, F\geq 0$ a.e..

$$u_t - \operatorname{div}(ug) - F \leq 0, \text{ in } \Omega \times (0, \infty),$$

$$0 \le \underline{u} \le 1$$
, in $\Omega \times (0, \infty)$,

$$(\mathbf{u}-1)\mathbf{u}_t-(\mathbf{u}-1)\left(\operatorname{div}(\mathbf{u}\mathbf{g})+F\right)=0, \text{ in } \Omega\times(0,\infty),$$

with initial condition u(x, 0) = 1 for a.e. $x \in \Omega$. Hyperbolic Inequality.

Associated evolution problem

$$g:\Omega \to \mathbb{R}^d$$
, Lipschitz continuous, $g\cdot n=0$ on $\partial\Omega$. $F\in L^\infty(\Omega),\, F\geq 0$ a.e..

$$\mathbf{u}_t - \operatorname{div}(\mathbf{u}g) - F = 0, \text{ in } \Omega \times (0, \infty),$$

$$0 \le \underline{u} \le 1$$
, in $\Omega \times (0, \infty)$,

$$(\mathbf{u}-1)\mathbf{u}_t-(\mathbf{u}-1)\ (\mathrm{div}(\mathbf{u}g)+F)=0,\ \mathrm{in}\ \Omega\times(0,\infty),$$

with initial condition u(x,0) = 1 for a.e. $x \in \Omega$. u may not exist (example : div(g) + F > 0 on ω).

The intermediate problem

 $g: \Omega \to \mathbb{R}^d$, Lipschitz continuous, $g \cdot n = 0$ on $\partial \Omega$. $F \in L^{\infty}(\Omega)$, $F \geq 0$ a.e..

$$\operatorname{div}(\mathbf{u}g) + F \ge 0, \text{ in } \Omega, \tag{1}$$

$$0 \le \mathbf{u} \le 1, \text{ in } \Omega, \tag{2}$$

$$(\mathbf{u}-1)\left(\operatorname{div}(\mathbf{u}g)+F\right)=0, \text{ in }\Omega. \tag{3}$$

Existence of u, uniqueness of ug, computation of ug.

Weak solution of (1)-(3)

$$\mathbf{u} \in L^{\infty}(\Omega), \ 0 \le \mathbf{u} \le 1 \text{ a.e.},$$

$$\int_{\Omega} (\xi(\mathbf{u}(x))(-g(x) \cdot \nabla \varphi(x)) + (\xi'(\mathbf{u}(x))\mathbf{u}(x) - \xi(\mathbf{u}(x)))\varphi(x) \operatorname{div} g(x) + (4)$$

$$\xi'(\mathbf{u}(x))\varphi(x)F(x))dx \ge 0,$$

for all
$$\xi \in C^1(\mathbb{R})$$
, convex s.t. $\xi'(1) \geq 0$, and $\varphi \in C^1(\overline{\Omega}, \mathbb{R}_+)$.

$$\xi(s) = s$$
 gives (1) and $\xi(s) = (s-1)^2$ gives (3). (If gu is Lipschitz continuous (4) is equivalent to (1)-(3).)

Approximate solution of (1)-(3), mesh

$$T_{K,L} = m_{K,L}/d_{K,L}$$

 $\operatorname{size}(\mathcal{T}) = \sup\{\operatorname{diam}(K), K \in \mathcal{T}\}, m_K \text{ is the measure of } K$

Approximation of div(ug) + F on K

 \mathcal{N}_K is the subset of \mathcal{T} of all the control volumes having a common interface with K.

$$g_{K,L} = \int_{K|L} g(x) \cdot n_{K,L} d\gamma(x), \ \forall K \in \mathcal{T}, \ \forall L \in \mathcal{N}_K.$$

or, if $g = \nabla h$,

$$g_{K,L} = \tau_{KL}(h_L - h_K), \ \forall K \in \mathcal{T}, \ \forall L \in \mathcal{N}_K.$$

$$F_K = \int_K F(x) dx$$
.

Approximation of $\operatorname{div}(ug) + F$ on K with an upwind choice of u on K|L:

$$\sum_{oldsymbol{L} \in \mathcal{N}_{oldsymbol{K}}} (g_{K,oldsymbol{L}}^{+} oldsymbol{\mathsf{u}}_{oldsymbol{L}} - g_{K,oldsymbol{L}}^{-} oldsymbol{\mathsf{u}}_{oldsymbol{K}}) + oldsymbol{\mathsf{F}}_{oldsymbol{K}}$$

Approximate solution of (1)-(3), scheme

For all K:

$$\sum_{L \in \mathcal{N}_K} (g_{K,L}^+ \mathbf{u}_L - g_{K,L}^- \mathbf{u}_K) + F_K \ge 0,$$

$$0 \le \mathbf{u}_K \le 1,$$

$$(\sum_{K,L} (g_{K,L}^+ \mathbf{u}_L - g_{K,L}^- \mathbf{u}_K) + F_K) (\mathbf{u}_K - 1) = 0.$$
(5)

Definition of the approximate solution, u_T :

LENK

$$u_{\mathcal{T}}(x) = u_{\mathcal{K}}, \ \forall x \in \mathcal{K}, \ \forall \mathcal{K} \in \mathcal{T}.$$

difficulties...

- Existence of u_T , computation of u_T ,
- Estimates on U_T ,
- Convergence of u_T to a solution of (4) (weak formulation of (1)-(3)) as $\operatorname{size}(T) \to 0$.

Existence of u_T , computation of u_T , 1

Initialization: $u_K^{(0)} = 1$ and $p_K^{(0)} = 1$, for all $K \in \mathcal{T}$.

Iterations: Let $n \in \mathbb{N}^*$. Assume that $u_K^{(n-1)}$ and $p_K^{(n-1)}$ are known for all $K \in \mathcal{T}$.

① Computation of $\{p_K^{(n)}, K \in \mathcal{T}\}$:

$$\begin{array}{l} \boldsymbol{p}_{K}^{(n)} = 0, \text{ if } \sum_{L \in \mathcal{N}_{K}} (g_{K,L}^{+} u_{L}^{(n-1)} - g_{K,L}^{-} u_{K}^{(n-1)}) + F_{K} < 0, \\ \boldsymbol{p}_{K}^{(n)} = \boldsymbol{p}_{K}^{(n-1)}, \text{ if } \sum_{L \in \mathcal{N}_{K}} (g_{K,L}^{+} u_{L}^{(n-1)} - g_{K,L}^{-} u_{K}^{(n-1)}) + F_{K} \ge 0. \end{array}$$

② Computation of $\{u_K^{(n)}, K \in \mathcal{T}\}$ (linear system):

$$\begin{split} \sum_{L \in \mathcal{N}_K} (g_{K,L}^+ u_L^{(n)} - g_{K,L}^- u_K^{(n)}) &= -F_K, \text{ if } p_K^{(n)} = 0, \\ u_K^{(n)} &= 1, \text{ if } p_K^{(n)} = 1. \end{split}$$

Existence of u_T , computation of u_T , 2

- **1** There exists a unique family $\{(p_K^{(n)}, u_K^{(n)}), K \in \mathcal{T}, n \in \mathbb{N}\}$ solution of the preceding algorithm.
- ② For all $K \in \mathcal{T}$ and all $n \in \mathbb{N}$, one has $u_K^{(n)} \geq 0$.
- **③** For all $K \in \mathcal{T}$, the sequence $(u_K^{(n)})_{n \in \mathbb{N}}$ is nonincreasing.
- There exists $n \le \operatorname{card}(\mathcal{T})$ such that, setting $u_K = u_K^{(n)}$ for all $K \in \mathcal{T}$, the family $\{u_K, K \in \mathcal{T}\}$ is such that $u_K^{(p)} = u_K$ for all $K \in \mathcal{T}$ and $p \ge n$. This family is therefore a solution of (5)

Link with variational inequalities

Upwinding on u is related to add a diffusion term $(g = (g_1, \dots, g_d)^t)$:

$$size(\mathcal{T}) \sum_{i=1}^{d} D_{i}(|g_{i}|D_{i}\mathbf{u}) + div(\mathbf{u}g) + F \geq 0, \text{ in } \Omega,$$
$$0 < \mathbf{u} < 1, \text{ in } \Omega,$$

$$(\mathbf{u} - 1) \left(\operatorname{size}(\mathcal{T}) \sum_{i=1}^{d} D_i(|g_i|D_i\mathbf{u}) + \operatorname{div}(\mathbf{u}g) + F \right) = 0, \text{ in } \Omega.$$

which is a variational inequality (with a transport term). The preceding algorithm works for many variational inequalities (see Herbin ,SINUM, 2003, for obstacle and Signorini problems).

Estimate on u_T

- **1** L[∞]-estimate: $\|\mathbf{u}_{T}\|_{\infty} \leq 1$,
- Weak-BV inequality:

$$\sum_{(K,L)\in\mathcal{E}}|g_{K,L}|(\underline{\mathsf{u}_K}-\underline{\mathsf{u}_L})^2\leq C.$$

Only weak-* compactness in L^{∞} . The weak-BV estimate looks like $\sum_{i=1}^2 \|g_i D_i \mathbf{u}\|_{L^2} \leq \frac{1}{\sqrt{\operatorname{size}(\mathcal{T})}}$ (with $g = (g_1, \dots, g_d)^t$).

Nonlinear weak convergence, young measures

 $L^{\infty}(\Omega)$ -estimate on $u_{\mathcal{T}}$ gives (up to subsequences of sequences of approximate solutions) that there exists $u \in L^{\infty}(\Omega \times (0,1))$ such that $u_{\mathcal{T}} \to u$, as $\operatorname{size}(\mathcal{T}) \to 0$ in the following sense:

$$\int_{\Omega} \xi(\mathbf{u}_{T}(x))\varphi(x)dx \to \int_{0}^{1} \int_{\Omega} \xi(\mathbf{u}(x,\alpha))\varphi(x)dxd\alpha,$$

for all $\varphi \in L^1(\Omega)$ and all $\xi \in C(\mathbb{R}, \mathbb{R})$.

That is:

$$\xi(\mathbf{u}_{\mathcal{T}}) \to \int_0^1 \xi(\mathbf{u}(\cdot, \alpha)) d\alpha, \ L^{\infty}(\Omega) \text{ weak-}\star.$$

Weak solution of (1)-(3)

$$\mathbf{u} \in L^{\infty}(\Omega), \ 0 \le \mathbf{u} \le 1 \text{ a.e.},$$

$$\int_{\Omega} (\xi(\mathbf{u}(x))(-g(x) \cdot \nabla \varphi(x)) + (\xi'(\mathbf{u}(x))\mathbf{u}(x) - \xi(\mathbf{u}(x)))\varphi(x) \mathrm{div}g(x) + \xi'(\mathbf{u}(x))\varphi(x)F(x))dx \ge 0,$$

for all $\xi \in C^1(\mathbb{R})$, convex s.t. $\xi'(1) \geq 0$, and $\varphi \in C^1(\overline{\Omega}, \mathbb{R}_+)$.

Weak process solution of (1)-(3)

Assuming $u_T \to u$, as $\operatorname{size}(T) \to 0$, in the nonlinear weak sense, one proves (thanks to the weak BV estimate) that u is a weak process solution:

$$\mathbf{u} \in L^{\infty}(\Omega \times (0,1)), \ 0 \le \mathbf{u} \le 1 \text{ a.e.},$$

$$\int_{0}^{1} \int_{\Omega} (\xi(\mathbf{u}(x,\alpha))(-g(x) \cdot \nabla \varphi(x)) + (\xi'(\mathbf{u}(x,\alpha))\mathbf{u}(x,\alpha) - \xi(\mathbf{u}(x,\alpha)))\varphi(x) \mathrm{div}g(x) + \xi'(\mathbf{u}(x,\alpha))\varphi(x)F(x))dxd\alpha > 0.$$

for all $\xi \in C^1(\mathbb{R})$, convex s.t. $\xi'(1) \geq 0$, and $\varphi \in C^1(\overline{\Omega}, \mathbb{R}_+)$.

Uniqueness of the weak process solution

 $g = \Lambda \nabla h$, g Lipschitz continuous and $g \cdot n = 0$ on $\partial \Omega$. If $\mathbf{u} \in L^{\infty}(\Omega \times (0,1))$, $0 \le \mathbf{u} \le 1$ a.e., is a weak process solution of (1)-(3), then:

- $u(x, \alpha)$ does not depends on α for a.e. x in $\{g \neq 0\}$.
- $x \mapsto g(x)u(x)$ is the unique solution of (4) (weak formulation of (1)-(3)).
- g_{u_T} converges to g_u in $(L^p(\Omega))^d$ for all $p < \infty$.

The proof uses the doubling variables method of Krushkov.

Conclusion for the intermediate problem

$$g = \Lambda \nabla h$$
, g Lipschitz continuous and $g \cdot n = 0$ on $\partial \Omega$. $F \in L^{\infty}(\Omega)$, $F \geq 0$ a.e..

$$\operatorname{div}(\underline{u}g) + F \ge 0, \text{ in } \Omega,$$
 $0 \le \underline{u} \le 1, \text{ in } \Omega,$ $(\underline{u} - 1) (\operatorname{div}(\underline{u}g) + F) = 0, \text{ in } \Omega.$

Existence of a weak solution u (in the sense of (4)) and uniqueness of ug. Computation of an approximate solution.

Another weak formulation of (1)-(3)

 $g:\Omega \to \mathbb{R}^d$, g Lipschitz continuous and $g\cdot n=0$ on $\partial\Omega$. $F\in L^\infty(\Omega),\, F\geq 0$ a.e..

C(g, F) is the set of functions $v \in L^2(\Omega)$ such that:

$$0 \le v \le 1$$
, a.e. in Ω

$$\int_{\Omega} (-vg \cdot \nabla \varphi + F\varphi) dx \geq 0, \ \forall \varphi \in C^{1}(\overline{\Omega}, \mathbb{R}_{+}).$$

C(g,F) is a closed convex subset of $L^2(\Omega)$, and $0 \in C(g,F)$. Then, $\mathbf{u_T} \to \mathbf{u}$ in $L^p(\Omega)$, for all $p < \infty$, as $\operatorname{size}(\mathcal{T}) \to 0$, and:

$$\mathbf{u} = P_{C(g,F)} \mathbf{1}_{\Omega}.$$

u is the "mild" solution of (1)-(3).

Characterization of u_T

 $g: \Omega \to \mathbb{R}^d$, g Lipschitz continuous and $g \cdot n = 0$ on $\partial \Omega$. $F \in L^{\infty}(\Omega)$, $F \geq 0$ a.e..

C(g, F, T) is the set of functions $v \in L^2(\Omega)$ such that $v = v_K$ a.e. in K, with $v_K \in \mathbb{R}$, for all $K \in T$ and:

$$0 \le v_K \le 1$$
, for all $K \in \mathcal{T}$

$$\sum_{L \in \mathcal{N}_K} (g_{K,L}^+ v_L - g_{K,L}^- v_K) + F_K \geq 0.$$

C(g, F, T) is a closed convex subset of $L^2(\Omega)$, and $0 \in C(g, F, T)$.

$$\mathbf{u}_{\mathcal{T}} = P_{C(g,F,\mathcal{T})} \mathbf{1}_{\Omega}.$$

Open questions...

Existence, uniqueness, convergence of the numerical scheme for the complete problem

$$H_t(x,t) - \operatorname{div}[\overline{\boldsymbol{u}}(x,t) \wedge (x) \nabla \boldsymbol{H}(x,t)] = 0,$$
 $H_t(x,t) \geq -F(x),$
 $0 \leq \overline{\boldsymbol{u}}(x,t) \leq 1,$
 $(\overline{\boldsymbol{u}}(x,t) - 1) (H_t(x,t) + F(x)) = 0.$

 $(x,t) \in \Omega \times (0,T)$, Ω : bounded open set of \mathbb{R}^d $(d \ge 1)$. Initial and Boundary Conditions on H. F > 0 a.e..

Solve the intermediate problem with less regularity on $g = \Lambda \nabla h$.