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Objective : To present discrete functional analysis tools for proving
the convergence of numerical schemes, mainly for parabolic
equations (Stefan problem, incompressible and compressible
Navier-Stokes equations)

Works with many co-authors



First example, compressible Navier-Stokes Equations

Q : bounded open connected set of R3
T>0,v>3/2 fel?]0, T[,L3(Q))

Orp + div(pu) =0,
O¢(pu) +div(pu @ u) — Au+Vp =",
p=p.

Dirichlet boundary condition : u =0
Initial condition on p and u (or on pu).



First example, compressible Navier-Stokes Equations

Q : bounded open connected set of R3
T>0,v>3/2 fecl?]0,T[,L[3R))

Ontp + divn(pnun) = 0,
af7,t(/0nun) + diVn(p,,un X Un) — ALUp Vpn = fa,
Pn =P}

> Estimates on uy,, pn, pn
» Passing to the limit on p,u, and pyu, ® up
» Passing to the limit on p, = p,.

For nonlinear terms, weak convergences are not sufficient



Second example, Stefan problem

Q : bounded open connected set of R3, T > 0
Oep — Au =0, u= p(p)
¢ € C(R,R) is nondecreasing ¢’ =0 on |a,b[, a< b

Dirichlet boundary condition : v =10
Initial condition on p



Second example, Stefan problem

Q : bounded open connected set of R3, T >0
8n,l'pn - Anun =0, u, = SD(pn)
¢ € C(R,R) is nondecreasing ¢' =0 on Ja, b[, a < b

» Estimates on u,, pn
» Passing to the limit on the equation, J:p — Au =0
» Prove u= p(p)

First step : Prove that / Pnlp — pu
10, T[xQ 10, T[xQ

Second step : Minty trick, u = ¢(p)



Common difficulty for this two examples

Q : bounded open connected set of R3, T > 0,

pn — p weakly in L2(]0, T[, L9(R))
u, — u weakly in L2(]0, T[, LP(2))

1 1 _

T T
Question :/ /p,,un—>/ /pu?
0 Q 0 Q

In general, no. We need an additional hypothesis



Continuous setting, Stationary case

Discrete setting mimics continuous setting.
Q bounded open set of R3. 1 < p, g < 400, %4— % =1

pn — p weakly in Lq(Q)
up — u weakly in LP(Q

Question : /pnun—>/,ou7

> in general, no.
» vyes if (uy)n is bounded in H}(Q2) and p < 6

Two methods,

» Compactness on (u,), (M1)
» Compactness on (p,)n (M2)



Continuous setting, Stationary case, M1

Q bounded open set of R3, 1 < p <6, g=p/(p—1)

pn — p weakly in L9(Q)
up — u weakly in LP(Q)
(un)n is bounded in H}(2)

Compact embedding of H}(R) in LP(Q)

Then
up, — uin LP(Q)
pn — p weakly in L9(Q)

and [ ppu, — | pu
Q Q



Continuous setting, Stationary case, M2

Q bounded open set of R3, 1 < p <6, g =p/(p—1)

pn — p weakly in L9(Q)
up — u weakly in LP(Q)
(un)n is bounded in H}(2)

Identify L2(Q)" with L?(Q)
Compact embedding of L9(Q) in H71(Q)

Then
u, — u weakly in H}()
pn— pin H1(Q)

and / Pnln = (Pn, un>H_1,H& — (p, U>H—1,H3 - / pu
Q Q



Discrete setting, stationary case

It is possible to adapt the previous methods to a discrete setting
where H}(Q) is replaced by a space H, which depends on n (with
a norm, depending on n, “close” to the Hj-norm).



Space discretization, Finite Volume scheme

Mesh M.

Figure: Here is an example of admissible mesh

size(M) = sup{diam(K), K € M}

Hxq : functions from Q to R, constant on each K, K € M



Discrete Hj-norm

Mesh: M (not necessarily admissible)

u € Hpq (that is u is a function constant on each K, K € M).

[u
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Discrete setting, Stationary case, M1

Pny Un € Hu,, size(Mp) — 0 as n — oo (regularity of the meshes)
p = q = 2 (for simplicity)

pn — p weakly in L2(Q)

u, — u weakly in L2(Q)

(un)n is bounded in Hyq,, | - [l1.2.m,

“Compact embedding” of (H,, | - l1.2.0m,)n in L2(Q)

Then

up, — uin L2(Q)

pn — p weakly in L2(Q)

and Pntn — [ pu
Q Q

Admissible meshes: Compactness follows from
lu(- +n) = ull2 < CV/Inlllullizm, if u € Ha,



Discrete setting, Stationary case, M1

pn — p weakly in L2(Q)
u, — u weakly in L2(Q)
(un)n is bounded in Hq,, || - [l1.2.Mm,

“Compact embedding” of (Ha,, || - [|12.Mm,)n in L2(Q)

Then/p,,u,,—)/,ou
Q Q

Non admissible meshes: Compactness follows from (d=3)

luC-+ ) = ullz < Clals[[ul2.m, if u € Has,

Proof using, for u € H,,

(- + 1) — ull ey < VA ully2,0 and

[ull o3y < Cllull12,n if u € H, (Discrete Sobolev embedding)




Discrete setting, Stationary case, M2

Pny Un € Hag,, size(M,) — 0 as n — oo (regularity of the meshes)

pn — p weakly in L2(Q)
u, — u weakly in L2(Q)
(un)n is bounded in Has,, || - [|1,2,04,

This gives (up)n is bounded in H*(Q2), 0 < s < 2/5

Identify L2(Q)" with L2(Q), since H*() is compact in L%(),
Compact embedding of L?(Q) in H=5(Q)

Then

up — u weakly in H*(Q)
pn— pin H73(Q)

and / Pntn = (Pns Un) Hs Hs = (05 U)Hs Hs = / pu
Q Q



Continuous setting, evolution case

pn — p weakly in L2(]0, T, L2(R2))
u, — u weakly in L2(]0, T[, L2(R))

Question : / Pnln — pu?
10, T[xQ[ 10, T[xQ[

> in general, no. Even if (u,), is bounded in L2(]0, T[, H3(Q2))
No compactness of L2(]0, T[, H}(2)) in L2(]0, T, L2(R))

> vyes if (un)n is bounded in H(]0, T[, H3(R2)) since
compactness of H1(]0, T[, H3()) in L2(]0, T[, L3(Q))

» ves if (pn)n is bounded in H(]0, T, L?(R2)) since compactness
of H1(0, T[, L3(Q)) in L2(J0, T[, H~*())

s it possible to use weaker hypotheses on (O:un)n of (Otpn)n ?



Continuous setting, (Generalized) Aubin-Simon
Compactness Lemma

X, B, Y are three Banach spaces, X C B, X C Y such that
1. X compactly embedded in B
2. ||wallx < C, ||wn — w|g =0, ||wally — 0 implies w = 0
Let T>01< p < +oo and (up)nen be a sequence such that
> (un)nen is bounded in LP(]O, T, X),
> (O¢un)nen is bounded in L*(]0, T[, Y).
Then there exists u € LP(]0, T[, B) such that, up to a
subsequence, u, — u in LP(]0, T[, B)

Particular cases for hypothesis 2:

Easy case : Y = X or B or, more generally, || - |5 < C|| - ||y
Aubin Simon : B continuously embedded in Y, || - ||y < C| - ||s



Generalized Lions lemma (crucial if || - ||z £ C|| - ||v)

X, B, Y are three Banach spaces, X C B, X C Y such that
1. X compactly embedded in B
2. [[whllx < C, ||wh— wl|lg =0, ||wa||ly — 0 implies w =0

Then, for any € > 0, there exists C; such that, for w € X,

Iwlls <ellwllx + Cllwlly-

Proof: By contradiction



Classical Lions lemma, a particular case, simpler

B is a Hilbert space and X is a Banach space X C B. We define
on X the dual norm of || - || x, with the scalar product of B, namely

lully = sup{(ulv)g, v € X, [lv]x <1}.

Then, for any € > 0 and w € X,

1
Iwlle < ellwlix + Zliwlly.

The proof is simple since

1 1 1
lulls = (ulu)g < (llullylullx)z < elwllx + =lwlly-

Compactness of X in B is not needed here (but this compactness
is needed for Aubin-Simon Compactness Lemma).



Continuous setting, evolution case, compressible NS, M2
pn — p weakly in L2(]0, T[, L?(2)), if y > 2
u, — u weakly in L2(]0, T[, L2(Q)%)
(un)n is bounded in L2(]0, T[, H}(22)3)
Otpn + div(ppun) =0
Then (O¢pn)n is bounded in L1(]0, T[, W—11(Q))

This gives compactness of (p,), in L2(]0, T[, H=1(Q))
(Aubin-Simon compactness Theorem with :

X =1%2(Q), B=HQ), Y = Ww-1(Q)))

u, — u weakly in L2(]0, T[, H}(2)3)

pn = pin L2(J0, T, H-1(Q))

and, for any regular ¢,

/ Patin - Vo = (pn, tn - Vo) 20141y, 12(HY) = pu-Vo
10, T[xQ 10, T[xQ

which gives d;p + div(pu) =0



Continuous setting, evolution case, compressible NS, M2

u, — u weakly in L2(]0, T[, H}(Q)3
pntn — pu weakly in L2(]0, T[, L7(2)3)
with r =67/(6+v) >2ify>3

Ot(pnun) + div(ppun @ up) — Aup + Vp, =f
Then (0:(pntn))n is bounded in L1(J0O, T[, W=11(Q)3)

This gives compactness of (pnun)a in L*(]0, T[, H'(Q)?)
(Aubin-Simon compactness Theorem with :

X =1%(Q), B=HYQ), Y =w"1YQ))

u, — u weakly in L2(]0, T[, H3(22)3)

PnUn — puU in Lz(]oa T[v Hil(Q)?’)

Which gives the convergence (in the distributional sense) of

Pnln @ up to pu® u (and allows passing to the limit in the
momentum equation)



Continuous setting, evolution case, Stefan, M1

pn — p weakly in L2(]0, T[, L2(Q2))
u, — u weakly in L2(]0, T[, L2(R))
(un)n is bounded in L2(]0, T[, H}(R))
Otpn — Aup = 0, up = p(pn)

¢ € C(R,R) is nondecreasing ¢’ =0 on |a,b[, a < b

one has Oyp — Au =0, but u=¢(p) ?
First step : pass to the limit on [ ppup,

no direct estimate on O;up, but (Alt-Luckaus trick) estimate on the
time-translates of u,
Then compactness of (u,), in L2(]0, T[, L3(Q))

u, — uin L2(]0, T[, L2(Q))
pn — p weakly in L2(]0, T[, L2(R2))

and, f]o,T[xQ Pnln — f]o,T[xQ pu
Second step :Minty trick, u = ¢(p)



Minty trick

pn — p weakly in L2 (L2 = L2(Q) or L2(]0, T[, L2()))
up, — u weakly in L2

[ potin — [ pu

Un = ¢(pn)

¢ € C(R,R) is nondecreasing, |p(s)| < C|s|
Question : u = o(p) ? for any p € L?

0 < [(pn — P)(0(pn) — 0(P)) = [(pn — P)(un — ()
as n— 00, 0< f(p—ﬁ)(u—sO(ﬁ))
p=p—ep, € >0 and 1 regular function,

0< /«b(u—w(p—ew))

e — 0, ¢ and —¢ give [¢(u— ¢(p)) =0 and then u = ¢(p)



Continuous setting, evolution case, Stefan, M2

pn — p weakly in L2(]0, T[, L2(R2))
u, — u weakly in L2(]0, T[, L2(Q))
(un)n is bounded in L2(]0, T[, H}(Q))
Otpn — Aup =0, up = p(pn)
Then (O¢pn)n bounded in L2(]0, T[, H=1(Q))
This gives compactness of (p,), in L2(]0, T[, H"1(Q))
(Aubin-Simon Theorem with :
X =1%2(Q), B=Y =HQ))
u, — u weakly in L2(]0, T[, H3())
pn = pin L2(]0, T[, H1(Q))
and, Pnln — pu
10, T[xQ 10, T[xQ

which gives (Minty trick) u = ¢(p)



Use of the compactness lemma in the previous examples

For compressible Navier Stokes eqs :
B=HYQ), X=1%Q), Y=w1YQ)

For Stefan problem :
X=101%(Q),B=Y=H1Q)

Is it possible to have discrete versions of these compactness results,
for proving the convergence of numerical schemes ?



Space-Time discretization

T >0, time step k = %

» Hpq the space of functions from €2 to R, constant on each K,
K e M.

» The function u is constant on K x ((p — 1)k, pk) with
KeMandpe{l,...,N}.
u(-,t) = ulP) for t € ((p — 1)k, pk) and u(P) € Hy.

> Discrete derivatives in time, O; xu, defined by:

Deu(,t) = 0y = () — uP~V) for t € ((p— 1)k, pk),

for pe{2,..., N} (and O ku(-, t) =0 for t € (0, k)).

M can be different for p, p and each component of the velocity
(MAC-scheme)



Discrete Lions lemma

B is a Banach space, (Bp)nen is a sequence of finite dimensional
subspaces of B. || - ||x, and || - ||y, are two norms on B, such that:
If (||wnlx,)nen is bounded, then,

> up to a subsequence, there exists w € B s.t. w,, — w in B.

» If ||w, — w||g — 0 and ||w,]ly, — 0, then w = 0.
Then, for any € > 0, there exists C. such that, for n € N and
w E B,

Iwlls <ellwllx, + Cllwlly,

Example: B, = H4, (the finite dimensional space given by the
mesh M,). We have to choose B, || - ||x, and | - ||v,.



Discrete Lions lemma, proof

Proof by contradiction. There exists £ > 0 and (wj)nen such that,
for all n, w, € B,, and

Iwnllg > ellwanllx, + Callwallv,,

with lim,_ . C, = +o0.

It is possible to assume that ||w,||g = 1. Then (||wn||x,)nen is
bounded and, up to a subsequence, w, — w in B (so that

|lw|lg = 1). But ||wal||y, — 0, so that w = 0, in contradiction with
[wllg =1.



Discrete Compactness Lemma

B a Banach, 1 < p < 400, (Bn)nen family of finite dimensional
subspaces of B. || - ||x, and || - ||y, two norms on B, such that:
If (||wn|lx,)nen is bounded, then,

> up to a subsequence, there exists w € B s.t. w, — w in B.
> If ||w, — wl|lg — 0 and ||w,]ly, — 0, then w = 0.
Xn = Bp with norm || - ||x,, Y = B, with norm || - ||y,. Let
T >0, kn > 0 and (up)nen be a sequence such that
» for all n, u,(-,t) = ulP) € B, for t € ((p — 1)kn, pkn)
» (un)nen is bounded in LP((0, T), Xy),
> (Dt.k,Un)nen is bounded in L1((0, T), Ya).
Then there exists u € LP((0, T), B) such that, up to a
subsequence, u, — v in LP((0, T), B).

Example: B, = Hp,. We have to choose B, || - ||x,, || - ||y,



Discrete setting, evolution case, compressible NS, M2
pn — p weakly in L2(]0, T[, L3(Q)) (v > 2)
u, — u weakly in L2(]0, T[, L2(Q)3)
(un)n is bounded in L2(]0, T[, H,), with || - ||
Ot kpPn + diva(pnun) =0
Then (¢ x,pn)n is bounded in L1(]0, T, Y,)
where Y, = H,(,i) with :

1,2,M)

Iwlly, = max{ /Q wi 0 € H; [Vl ooy + ol omgy = 13-

Compactness Theorem with

B =H5(Q) and X, = H{" with L2(Q)-norm

gives compactness of (p,), in L2(]0, T[,H5(Q)), 0 < s < 1/2
u, — u weakly in L2(]0, T[, H5(Q)?)

pn— pin L2(]0, T[,H™*(Q))

and, for any regular ¢,

/pnun “V Mup = (pny tn - V@) 12(1-5),12(Hs) + R — /pu - Ve



Discrete setting, evolution case, compressible NS, M2

Similarly it is possible to prove the convergence of div,p,u, ® u,
to divpu ® u

pntn — pu weakly in L2(]0, T, L2(R2)3) (if v > 3)
u, — u weakly in L2(]0, T[, L2(Q)3)

(un)n is bounded in L2(]0, T[, H,), with || - I3 )

Using the discrete momentum equation, one has essentially (for
each component of uj,)
(Ot.k,(Pntin))n is bounded in L1(]0, T[, ;)

where Y, = H,(,') (mesh for a component of u,) with :

Iwlly, = max{ /Q wp; © € HD, [V aplliooqay + 0l =ay = 13-

Compactness Theorem with

B = H=5(Q) and X, = H" with L2(Q)-norm

gives compactness of (p,up), in L2(]0, T[,H5(Q)3), 0 < s < 1/2
which allows to prove O:pu + div(pu @ u) — Au+Vp =1



Discrete setting, evolution case, Stefan, M1

pn — p weakly in L2(]0, T[, L2(Q2))

u, — u weakly in L2(]0, T[, L2(R))

(un)n is bounded in L2(]0, T[, Ha, () with || - |l1.2.0,
8,t,k,,pn — Apquy, =0, u, = SO(Pn)

¢ € C(R,R) is nondecreasing ¢’ =0 on |a,b[, a < b

one has Oyp — Au =0, but u=¢(p) ?
First step: pass to the limit on [ ppup,

no direct estimate on O x,un, but a discrete version of Alt-Luckaus
trick gives an estimate on the time-translates of u,
Then compactness of (u,), in L2(]0, T[, L3(Q))

u, — uin L2(]0, T[, L2(Q))
pn — p weakly in L2(]0, T[, L2(R2))

and, f]o,T[xQ Pnln — f]o,T[xQ pu
Second step: Minty trick, u = ¢(p)



Discrete setting, evolution case, Stefan, M2

pn — p weakly in L2(]0, T[, L2(R2))

u, — u weakly in L2(]0, T[, L2(Q))

(un)n is bounded in L2(]0, T, Ha,) with || - [|1.2.m,

O t ko — Bpt,un = 0, up = ©(pn)

First step: pass to the limit on fp,,un

(Ot kyPn)n bounded in L2(]0, T[, Hat,) with || - [|—1.2,0,
This gives compactness of (p,), in L2(]0, T[, H=5(Q))
B=H™(Q), Br=Hm, |- 1 = I - 2.

|- llv, =1 - [|=12,m, (the dual norm of the norm || - ||12,Mm,)
pn— pin L2(]0, T[,H=5(Q)) (0 < s < 1/2)

u, — u weakly in L2(]0, T[, H5(Q))

and, f]O,T[XQ Pnln — f]O,T[xQ pu

Second step: Minty trick, u = ¢(p)



Spaces B, X,, Y, for compressible NS
B=H"5(Q),0<s<1/2
Yo = Hu, with || - [l -11.0m,
Xy = H, with L2(Q)-norm
» Compact embedding of L2(Q) in H=5(Q)
> If w, € Hry,, Wy — w weakly in L?(Q) and
|Wnll-1,1,Mm, — 0, then w =0 ? Yes. .. Proof :
Let ¢ € WOI’OO(Q) and its “projection” mpp € Hag,. One has
[mnpll1,00M, < H‘PHWLOO(Q) and then

| /Q wn(Tp)dx| < [Wall—11 0ol wroeqy = 0.
and, since w, — w weakly in L1(Q) and 7,9 — ¢ uniformly,

/Wn(wngo)dx—>/ wpdx.
Q Q

This gives [ wpdx = 0 for all ¢ € Wol’OO(Q) and then
w=20a.e.



