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Objective : To present discrete functional analysis tools for proving
the convergence of numerical schemes, mainly for parabolic
equations (Stefan problem, incompressible and compressible
Navier-Stokes equations)

Works with many co-authors



First example, compressible Navier-Stokes Equations

Ω : bounded open connected set of R3

T > 0, γ > 3/2, f ∈ L2(]0,T [, L2(Ω))

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u)−∆u +∇p = f ,

p = ργ .

Dirichlet boundary condition : u = 0
Initial condition on ρ and u (or on ρu).



First example, compressible Navier-Stokes Equations

Ω : bounded open connected set of R3

T > 0, γ > 3/2, f ∈ L2(]0,T [, L2(Ω))

∂n,tρ+ divn(ρnun) = 0,

∂n,t(ρnun) + divn(ρnun ⊗ un)−∆nun +∇npn = fn,

pn = ργn .

I Estimates on un, ρn, pn
I Passing to the limit on ρnun and ρnun ⊗ un
I Passing to the limit on pn = ργn .

For nonlinear terms, weak convergences are not sufficient



Second example, Stefan problem

Ω : bounded open connected set of R3, T > 0

∂tρ−∆u = 0, u = ϕ(ρ)

ϕ ∈ C (R,R) is nondecreasing ϕ′ = 0 on ]a, b[, a < b

Dirichlet boundary condition : u = 0
Initial condition on ρ



Second example, Stefan problem

Ω : bounded open connected set of R3, T > 0

∂n,tρn −∆nun = 0, un = ϕ(ρn)

ϕ ∈ C (R,R) is nondecreasing ϕ′ = 0 on ]a, b[, a < b

I Estimates on un, ρn
I Passing to the limit on the equation, ∂tρ−∆u = 0

I Prove u = ϕ(ρ)

First step : Prove that

∫
]0,T [×Ω

ρnun →
∫

]0,T [×Ω
ρu

Second step : Minty trick, u = ϕ(ρ)



Common difficulty for this two examples

Ω : bounded open connected set of R3, T > 0,

ρn → ρ weakly in L2(]0,T [, Lq(Ω))
un → u weakly in L2(]0,T [, Lp(Ω))

1 < p, q < +∞, 1
p + 1

q = 1

Question :

∫ T

0

∫
Ω
ρnun →

∫ T

0

∫
Ω
ρu ?

In general, no. We need an additional hypothesis



Continuous setting, Stationary case

Discrete setting mimics continuous setting.

Ω bounded open set of R3. 1 < p, q < +∞, 1
p + 1

q = 1

ρn → ρ weakly in Lq(Ω)
un → u weakly in Lp(Ω)

Question :

∫
Ω
ρnun →

∫
Ω
ρu ?

I in general, no.

I yes if (un)n is bounded in H1
0 (Ω) and p < 6

Two methods,

I Compactness on (un)n (M1)

I Compactness on (ρn)n (M2)



Continuous setting, Stationary case, M1

Ω bounded open set of R3, 1 < p < 6, q = p/(p − 1)

ρn → ρ weakly in Lq(Ω)
un → u weakly in Lp(Ω)
(un)n is bounded in H1

0 (Ω)

Compact embedding of H1
0 (Ω) in Lp(Ω)

Then
un → u in Lp(Ω)
ρn → ρ weakly in Lq(Ω)

and

∫
Ω
ρnun →

∫
Ω
ρu



Continuous setting, Stationary case, M2

Ω bounded open set of R3, 1 < p < 6, q = p/(p − 1)

ρn → ρ weakly in Lq(Ω)
un → u weakly in Lp(Ω)
(un)n is bounded in H1

0 (Ω)

Identify L2(Ω)′ with L2(Ω)

Compact embedding of Lq(Ω) in H−1(Ω)

Then
un → u weakly in H1

0 (Ω)
ρn → ρ in H−1(Ω)

and

∫
Ω
ρnun = 〈ρn, un〉H−1,H1

0
→ 〈ρ, u〉H−1,H1

0
=

∫
Ω
ρu



Discrete setting, stationary case

It is possible to adapt the previous methods to a discrete setting
where H1

0 (Ω) is replaced by a space Hn which depends on n (with
a norm, depending on n, “close” to the H1

0 -norm).



Space discretization, Finite Volume scheme

Mesh M.

•

•

xL

xK

K

L

σ = K |L

dσ nK ,σ

Figure: Here is an example of admissible mesh

size(M) = sup{diam(K ),K ∈M}

HM : functions from Ω to R, constant on each K , K ∈M



Discrete H1
0 -norm

Mesh: M (not necessarily admissible)

u ∈ HM (that is u is a function constant on each K , K ∈M).

‖u‖2
1,2,n =

∑
σ∈Eint ,σ=K |L

mσdσ|
uK − uL

dσ
|2 +

∑
σ∈Eext ,σ∈EK

mσdσ|
uK
dσ
|2.



Discrete setting, Stationary case, M1

ρn, un ∈ HMn , size(Mn)→ 0 as n→∞ (regularity of the meshes)

p = q = 2 (for simplicity)

ρn → ρ weakly in L2(Ω)
un → u weakly in L2(Ω)
(un)n is bounded in HMn , ‖ · ‖1,2,Mn

“Compact embedding” of (HMn , ‖ · ‖1,2,Mn)n in L2(Ω)

Then
un → u in L2(Ω)
ρn → ρ weakly in L2(Ω)

and

∫
Ω
ρnun →

∫
Ω
ρu

Admissible meshes: Compactness follows from
‖u(·+ η)− u‖2 ≤ C

√
|η|‖u‖1,2,Mn if u ∈ HMn



Discrete setting, Stationary case, M1

ρn → ρ weakly in L2(Ω)
un → u weakly in L2(Ω)
(un)n is bounded in HMn , ‖ · ‖1,2,Mn

“Compact embedding” of (HMn , ‖ · ‖1,2,Mn)n in L2(Ω)

Then

∫
Ω
ρnun →

∫
Ω
ρu

Non admissible meshes: Compactness follows from (d=3)

‖u(·+ η)− u‖2 ≤ C |η|
2
5 ‖u‖1,2,Mn if u ∈ HMn

Proof using, for u ∈ Hn,

‖u(·+ η)− u‖L1(R3) ≤ |η|
√
d‖u‖1,2,n and

‖u‖L6(R3) ≤ C‖u‖1,2,n if u ∈ Hn (Discrete Sobolev embedding)



Discrete setting, Stationary case, M2

ρn, un ∈ HMn , size(Mn)→ 0 as n→∞ (regularity of the meshes)

ρn → ρ weakly in L2(Ω)
un → u weakly in L2(Ω)
(un)n is bounded in HMn , ‖ · ‖1,2,Mn

This gives (un)n is bounded in Hs(Ω), 0 < s < 2/5
Identify L2(Ω)′ with L2(Ω), since Hs(Ω) is compact in L2(Ω),
Compact embedding of L2(Ω) in H−s(Ω)

Then
un → u weakly in Hs(Ω)
ρn → ρ in H−s(Ω)

and

∫
Ω
ρnun = 〈ρn, un〉H−s ,Hs → 〈ρ, u〉H−s ,Hs =

∫
Ω
ρu



Continuous setting, evolution case

ρn → ρ weakly in L2(]0,T [, L2(Ω))
un → u weakly in L2(]0,T [, L2(Ω))

Question :

∫
]0,T [×Ω[

ρnun →
∫

]0,T [×Ω[
ρu ?

I in general, no. Even if (un)n is bounded in L2(]0,T [,H1
0 (Ω))

No compactness of L2(]0,T [,H1
0 (Ω)) in L2(]0,T [, L2(Ω))

I yes if (un)n is bounded in H1(]0,T [,H1
0 (Ω)) since

compactness of H1(]0,T [,H1
0 (Ω)) in L2(]0,T [, L2(Ω))

I yes if (ρn)n is bounded in H1(]0,T [, L2(Ω)) since compactness
of H1(]0,T [, L2(Ω)) in L2(]0,T [,H−1(Ω))

Is it possible to use weaker hypotheses on (∂tun)n or (∂tρn)n ?



Continuous setting, (Generalized) Aubin-Simon
Compactness Lemma

X , B, Y are three Banach spaces, X ⊂ B, X ⊂ Y such that
1. X compactly embedded in B
2. ‖wn‖X ≤ C , ‖wn − w‖B → 0, ‖wn‖Y → 0 implies w = 0
Let T > 0 1 ≤ p < +∞ and (un)n∈N be a sequence such that

I (un)n∈N is bounded in Lp(]0,T [,X ),

I (∂tun)n∈N is bounded in L1(]0,T [,Y ).

Then there exists u ∈ Lp(]0,T [,B) such that, up to a
subsequence, un → u in Lp(]0,T [,B)

Particular cases for hypothesis 2:

Easy case : Y = X or B or, more generally, ‖ · ‖B ≤ C‖ · ‖Y
Aubin Simon : B continuously embedded in Y , ‖ · ‖Y ≤ C‖ · ‖B



Generalized Lions lemma (crucial if ‖ · ‖B 6≤ C‖ · ‖Y )

X , B, Y are three Banach spaces, X ⊂ B, X ⊂ Y such that
1. X compactly embedded in B
2. ‖wn‖X ≤ C , ‖wn − w‖B → 0, ‖wn‖Y → 0 implies w = 0

Then, for any ε > 0, there exists Cε such that, for w ∈ X ,

‖w‖B ≤ ε‖w‖X + Cε‖w‖Y .

Proof: By contradiction



Classical Lions lemma, a particular case, simpler

B is a Hilbert space and X is a Banach space X ⊂ B. We define
on X the dual norm of ‖ · ‖X , with the scalar product of B, namely

‖u‖Y = sup{(u|v)B , v ∈ X , ‖v‖X ≤ 1}.

Then, for any ε > 0 and w ∈ X ,

‖w‖B ≤ ε‖w‖X +
1

ε
‖w‖Y .

The proof is simple since

‖u‖B = (u|u)
1
2
B ≤ (‖u‖Y ‖u‖X )

1
2 ≤ ε‖w‖X +

1

ε
‖w‖Y .

Compactness of X in B is not needed here (but this compactness
is needed for Aubin-Simon Compactness Lemma).



Continuous setting, evolution case, compressible NS, M2

ρn → ρ weakly in L2(]0,T [, L2(Ω)), if γ ≥ 2
un → u weakly in L2(]0,T [, L2(Ω)3)
(un)n is bounded in L2(]0,T [,H1

0 (Ω)3)
∂tρn + div(ρnun) = 0

Then (∂tρn)n is bounded in L1(]0,T [,W−1,1(Ω))

This gives compactness of (ρn)n in L2(]0,T [,H−1(Ω))
(Aubin-Simon compactness Theorem with :
X = L2(Ω), B = H−1(Ω), Y = W−1,1(Ω)))

un → u weakly in L2(]0,T [,H1
0 (Ω)3)

ρn → ρ in L2(]0,T [,H−1(Ω))
and, for any regular ϕ,∫

]0,T [×Ω
ρnun · ∇ϕ = 〈ρn, un · ∇ϕ〉L2(H−1),L2(H1

0 ) →
∫

]0,T [×Ω
ρu · ∇ϕ

which gives ∂tρ+ div(ρu) = 0



Continuous setting, evolution case, compressible NS, M2

un → u weakly in L2(]0,T [,H1
0 (Ω)3)

ρnun → ρu weakly in L2(]0,T [, Lr (Ω)3)
with r = 6γ/(6 + γ) ≥ 2 if γ ≥ 3

∂t(ρnun) + div(ρnun ⊗ un)−∆un +∇pn = f
Then (∂t(ρnun))n is bounded in L1(]0,T [,W−1,1(Ω)3)

This gives compactness of (ρnun)n in L2(]0,T [,H−1(Ω)3)
(Aubin-Simon compactness Theorem with :
X = L2(Ω), B = H−1(Ω), Y = W−1,1(Ω)))

un → u weakly in L2(]0,T [,H1
0 (Ω)3)

ρnun → ρu in L2(]0,T [,H−1(Ω)3)

Which gives the convergence (in the distributional sense) of
ρnun ⊗ un to ρu ⊗ u (and allows passing to the limit in the
momentum equation)



Continuous setting, evolution case, Stefan, M1

ρn → ρ weakly in L2(]0,T [, L2(Ω))
un → u weakly in L2(]0,T [, L2(Ω))
(un)n is bounded in L2(]0,T [,H1

0 (Ω))
∂tρn −∆un = 0, un = ϕ(ρn)

ϕ ∈ C (R,R) is nondecreasing ϕ′ = 0 on ]a, b[, a < b

one has ∂tρ−∆u = 0, but u = ϕ(ρ) ?
First step : pass to the limit on

∫
ρnun

no direct estimate on ∂tun, but (Alt-Luckaus trick) estimate on the
time-translates of un
Then compactness of (un)n in L2(]0,T [, L2(Ω))

un → u in L2(]0,T [, L2(Ω))
ρn → ρ weakly in L2(]0,T [, L2(Ω))
and,

∫
]0,T [×Ω ρnun →

∫
]0,T [×Ω ρu

Second step :Minty trick, u = ϕ(ρ)



Minty trick

ρn → ρ weakly in L2 (L2 = L2(Ω) or L2(]0,T [, L2(Ω)))
un → u weakly in L2∫
ρnun →

∫
ρu

un = ϕ(ρn)

ϕ ∈ C (R,R) is nondecreasing, |ϕ(s)| ≤ C |s|

Question : u = ϕ(ρ) ? for any ρ̄ ∈ L2

0 ≤
∫

(ρn − ρ̄)(ϕ(ρn)− ϕ(ρ̄)) =
∫

(ρn − ρ̄)(un − ϕ(ρ̄))

as n→∞, 0 ≤
∫

(ρ− ρ̄)(u − ϕ(ρ̄))

ρ̄ = ρ− εψ, ε > 0 and ψ regular function,

0 ≤
∫
ψ(u − ϕ(ρ− εψ))

ε→ 0, ψ and −ψ give
∫
ψ(u − ϕ(ρ)) = 0 and then u = ϕ(ρ)



Continuous setting, evolution case, Stefan, M2

ρn → ρ weakly in L2(]0,T [, L2(Ω))
un → u weakly in L2(]0,T [, L2(Ω))
(un)n is bounded in L2(]0,T [,H1

0 (Ω))
∂tρn −∆un = 0, un = ϕ(ρn)

Then (∂tρn)n bounded in L2(]0,T [,H−1(Ω))
This gives compactness of (ρn)n in L2(]0,T [,H−1(Ω))
(Aubin-Simon Theorem with :
X = L2(Ω), B = Y = H−1(Ω))

un → u weakly in L2(]0,T [,H1
0 (Ω))

ρn → ρ in L2(]0,T [,H−1(Ω))

and,

∫
]0,T [×Ω

ρnun →
∫

]0,T [×Ω
ρu

which gives (Minty trick) u = ϕ(ρ)



Use of the compactness lemma in the previous examples

For compressible Navier Stokes eqs :
B = H−1(Ω), X = L2(Ω), Y = W−1,1(Ω)

For Stefan problem :
X = L2(Ω), B = Y = H−1(Ω)

Is it possible to have discrete versions of these compactness results,
for proving the convergence of numerical schemes ?



Space-Time discretization

T > 0, time step k = T
N

I HM the space of functions from Ω to R, constant on each K ,
K ∈M.

I The function u is constant on K × ((p − 1)k , pk) with
K ∈M and p ∈ {1, . . . ,N}.
u(·, t) = u(p) for t ∈ ((p − 1)k , pk) and u(p) ∈ HM.

I Discrete derivatives in time, ∂t,ku, defined by:

∂t,ku(·, t) = ∂
(p)
t,k u =

1

k
(u(p) − u(p−1)) for t ∈ ((p − 1)k, pk),

for p ∈ {2, . . . ,N} (and ∂t,ku(·, t) = 0 for t ∈ (0, k)).

M can be different for ρ, p and each component of the velocity
(MAC-scheme)



Discrete Lions lemma

B is a Banach space, (Bn)n∈N is a sequence of finite dimensional
subspaces of B. ‖ · ‖Xn and ‖ · ‖Yn are two norms on Bn such that:
If (‖wn‖Xn)n∈N is bounded, then,

I up to a subsequence, there exists w ∈ B s.t. wn → w in B.

I If ‖wn − w‖B → 0 and ‖wn‖Yn → 0, then w = 0.

Then, for any ε > 0, there exists Cε such that, for n ∈ N and
w ∈ Bn

‖w‖B ≤ ε‖w‖Xn + Cε‖w‖Yn .

Example: Bn = HMn (the finite dimensional space given by the
mesh Mn). We have to choose B, ‖ · ‖Xn and ‖ · ‖Yn .



Discrete Lions lemma, proof

Proof by contradiction. There exists ε > 0 and (wn)n∈N such that,
for all n, wn ∈ Bn and

‖wn‖B > ε‖wn‖Xn + Cn‖wn‖Yn ,

with limn→∞ Cn = +∞.

It is possible to assume that ‖wn‖B = 1. Then (‖wn‖Xn)n∈N is
bounded and, up to a subsequence, wn → w in B (so that
‖w‖B = 1). But ‖wn‖Yn → 0, so that w = 0, in contradiction with
‖w‖B = 1.



Discrete Compactness Lemma

B a Banach, 1 ≤ p < +∞, (Bn)n∈N family of finite dimensional
subspaces of B. ‖ · ‖Xn and ‖ · ‖Yn two norms on Bn such that:
If (‖wn‖Xn)n∈N is bounded, then,

I up to a subsequence, there exists w ∈ B s.t. wn → w in B.

I If ‖wn − w‖B → 0 and ‖wn‖Yn → 0, then w = 0.

Xn = Bn with norm ‖ · ‖Xn , Yn = Bn with norm ‖ · ‖Yn . Let
T > 0, kn > 0 and (un)n∈N be a sequence such that

I for all n, un(·, t) = u
(p)
n ∈ Bn for t ∈ ((p − 1)kn, pkn)

I (un)n∈N is bounded in Lp((0,T ),Xn),

I (∂t,knun)n∈N is bounded in L1((0,T ),Yn).

Then there exists u ∈ Lp((0,T ),B) such that, up to a
subsequence, un → u in Lp((0,T ),B).

Example: Bn = HMn . We have to choose B, ‖ · ‖Xn , ‖ · ‖Yn



Discrete setting, evolution case, compressible NS, M2
ρn → ρ weakly in L2(]0,T [, L2(Ω)) (γ ≥ 2)
un → u weakly in L2(]0,T [, L2(Ω)3)
(un)n is bounded in L2(]0,T [,Hn), with ‖ · ‖

1,2,M(i)
n

∂t,knρn + divn(ρnun) = 0

Then (∂t,knρn)n is bounded in L1(]0,T [,Yn)

where Yn = H
(i)
n with :

‖w‖Yn = max{
∫

Ω
wϕ; ϕ ∈ H

(i)
n ; ‖∇nϕ‖L∞(Ω) + ‖ϕ‖L∞(Ω) = 1}.

Compactness Theorem with

B = H−s(Ω) and Xn = H
(i)
n with L2(Ω)-norm

gives compactness of (ρn)n in L2(]0,T [,H−s(Ω)), 0 < s < 1/2

un → u weakly in L2(]0,T [,Hs(Ω)3)
ρn → ρ in L2(]0,T [,H−s(Ω))
and, for any regular ϕ,∫

ρnun · ∇Mnϕ = 〈ρn, un · ∇ϕ〉L2(H−s),L2(Hs) + R →
∫
ρu · ∇ϕ

which gives ∂tρ+ div(ρu) = 0



Discrete setting, evolution case, compressible NS, M2
Similarly it is possible to prove the convergence of divnρnun ⊗ un
to divρu ⊗ u

ρnun → ρu weakly in L2(]0,T [, L2(Ω)3) (if γ ≥ 3)
un → u weakly in L2(]0,T [, L2(Ω)3)
(un)n is bounded in L2(]0,T [,Hn), with ‖ · ‖

1,2,M(i)
n

Using the discrete momentum equation, one has essentially (for
each component of un)
(∂t,kn(ρnun))n is bounded in L1(]0,T [,Yn)

where Yn = H
(i)
n (mesh for a component of un) with :

‖w‖Yn = max{
∫

Ω
wϕ; ϕ ∈ H

(i)
n ; ‖∇nϕ‖L∞(Ω) + ‖ϕ‖L∞(Ω) = 1}.

Compactness Theorem with

B = H−s(Ω) and Xn = H
(i)
n with L2(Ω)-norm

gives compactness of (ρnun)n in L2(]0,T [,H−s(Ω)3), 0 < s < 1/2
which allows to prove ∂tρu + div(ρu ⊗ u)−∆u +∇p = f



Discrete setting, evolution case, Stefan, M1

ρn → ρ weakly in L2(]0,T [, L2(Ω))
un → u weakly in L2(]0,T [, L2(Ω))
(un)n is bounded in L2(]0,T [,HMn(Ω)) with ‖ · ‖1,2,Mn

∂,t,knρn −∆nun = 0, un = ϕ(ρn)

ϕ ∈ C (R,R) is nondecreasing ϕ′ = 0 on ]a, b[, a < b

one has ∂tρ−∆u = 0, but u = ϕ(ρ) ?
First step: pass to the limit on

∫
ρnun

no direct estimate on ∂t,knun, but a discrete version of Alt-Luckaus
trick gives an estimate on the time-translates of un
Then compactness of (un)n in L2(]0,T [, L2(Ω))

un → u in L2(]0,T [, L2(Ω))
ρn → ρ weakly in L2(]0,T [, L2(Ω))
and,

∫
]0,T [×Ω ρnun →

∫
]0,T [×Ω ρu

Second step: Minty trick, u = ϕ(ρ)



Discrete setting, evolution case, Stefan, M2

ρn → ρ weakly in L2(]0,T [, L2(Ω))
un → u weakly in L2(]0,T [, L2(Ω))
(un)n is bounded in L2(]0,T [,HMn) with ‖ · ‖1,2,Mn

∂,t,knρn −∆Mnun = 0, un = ϕ(ρn)
First step: pass to the limit on

∫
ρnun

(∂t,knρn)n bounded in L2(]0,T [,HMn) with ‖ · ‖−1,2,Mn

This gives compactness of (ρn)n in L2(]0,T [,H−s(Ω))

B = H−s(Ω), Bn = HMn , ‖ · ‖Xn = ‖ · ‖L2(Ω),
‖ · ‖Yn = ‖ · ‖−1,2,Mn (the dual norm of the norm ‖ · ‖1,2,Mn)

ρn → ρ in L2(]0,T [,H−s(Ω)) (0 < s < 1/2)
un → u weakly in L2(]0,T [,Hs(Ω))
and,

∫
]0,T [×Ω ρnun →

∫
]0,T [×Ω ρu

Second step: Minty trick, u = ϕ(ρ)



Spaces B , Xn, Yn for compressible NS
B = H−s(Ω), 0 < s < 1/2
Yn = HMn with ‖ · ‖−1,1,Mn

Xn = HMn with L2(Ω)-norm

I Compact embedding of L2(Ω) in H−s(Ω)
I If wn ∈ HMn , wn → w weakly in L2(Ω) and
‖wn‖−1,1,Mn → 0, then w = 0 ? Yes. . . Proof :

Let ϕ ∈W 1,∞
0 (Ω) and its “projection” πnϕ ∈ HMn . One has

‖πnϕ‖1,∞,Mn ≤ ‖ϕ‖W 1,∞(Ω) and then

|
∫

Ω
wn(πnϕ)dx | ≤ ‖wn‖−1,1,Mn‖ϕ‖W 1,∞(Ω) → 0,

and, since wn → w weakly in L1(Ω) and πnϕ→ ϕ uniformly,∫
Ω
wn(πnϕ)dx →

∫
Ω
wϕdx .

This gives
∫

Ω wϕdx = 0 for all ϕ ∈W 1,∞
0 (Ω) and then

w = 0 a.e.


