Discrete functional analysis tools for some evolution equations

T. Gallouët

FVCA8, june 2017

Objective : To present discrete functional analysis tools for proving the convergence of numerical schemes, mainly for parabolic equations (Stefan problem, incompressible and compressible Navier-Stokes equations)

Works with many co-authors

First example, compressible Navier-Stokes Equations

Ω: bounded open connected set of \mathbb{R}^3 *T* > 0, γ > 3/2, *f* ∈ *L*²(]0, *T*[, *L*²(Ω))

$$\partial_t \rho + \operatorname{div}(\rho u) = 0,$$

$$\partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) - \Delta u + \nabla p = f,$$

$$p = \rho^{\gamma}.$$

Dirichlet boundary condition : u = 0Initial condition on ρ and u (or on ρu).

First example, compressible Navier-Stokes Equations

Ω: bounded open connected set of \mathbb{R}^3 *T* > 0, γ > 3/2, *f* ∈ *L*²(]0, *T*[, *L*²(Ω))

> $\partial_{n,t}\rho + \operatorname{div}_{n}(\rho_{n}u_{n}) = 0,$ $\partial_{n,t}(\rho_{n}u_{n}) + \operatorname{div}_{n}(\rho_{n}u_{n} \otimes u_{n}) - \Delta_{n}u_{n} + \nabla_{n}p_{n} = f_{n},$ $p_{n} = \rho_{n}^{\gamma}.$

- Estimates on u_n , ρ_n , p_n
- Passing to the limit on $\rho_n u_n$ and $\rho_n u_n \otimes u_n$
- Passing to the limit on $p_n = \rho_n^{\gamma}$.

For nonlinear terms, weak convergences are not sufficient

Second example, Stefan problem

- Ω : bounded open connected set of $\mathbb{R}^3,\ \mathcal{T}>0$
- $\partial_t \rho \Delta u = 0, \ u = \varphi(\rho)$

 $\varphi \in C(\mathbb{R}, \mathbb{R})$ is nondecreasing $\varphi' = 0$ on]a, b[, a < b]

Dirichlet boundary condition : u = 0Initial condition on ρ

Second example, Stefan problem

 Ω : bounded open connected set of $\mathbb{R}^3,\ T>0$

$$\partial_{\mathbf{n},t}\rho_{\mathbf{n}} - \Delta_{\mathbf{n}}u_{\mathbf{n}} = 0, \ u_{\mathbf{n}} = \varphi(\rho_{\mathbf{n}})$$

 $arphi \in \mathcal{C}(\mathbb{R},\mathbb{R})$ is nondecreasing arphi' = 0 on]a,b[, a < b]

- Estimates on u_n, ρ_n
- Passing to the limit on the equation, $\partial_t \rho \Delta u = 0$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• Prove $u = \varphi(\rho)$

First step : Prove that $\int_{]0,T[\times\Omega} \rho_n u_n \to \int_{]0,T[\times\Omega} \rho u$ Second step : Minty trick, $u = \varphi(\rho)$ Common difficulty for this two examples

 Ω : bounded open connected set of $\mathbb{R}^3,\ \mathcal{T}>0,$

$$\rho_n \to \rho \text{ weakly in } L^2(]0, T[, L^q(\Omega))$$

$$u_n \to u \text{ weakly in } L^2(]0, T[, L^p(\Omega))$$

$$1 < p, q < +\infty, \frac{1}{p} + \frac{1}{q} = 1$$
Question :
$$\int_0^T \int_\Omega \rho_n u_n \to \int_0^T \int_\Omega \rho u ?$$

In general, no. We need an additional hypothesis

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Continuous setting, Stationary case

Discrete setting mimics continuous setting.

 Ω bounded open set of \mathbb{R}^3 . $1 < p, q < +\infty$, $\frac{1}{p} + \frac{1}{q} = 1$

 $\rho_n \to \rho \text{ weakly in } L^q(\Omega)$ $u_n \to u \text{ weakly in } L^p(\Omega)$

Question :
$$\int_{\Omega} \rho_n u_n \to \int_{\Omega} \rho u$$
 ?

- in general, no.
- yes if $(u_n)_n$ is bounded in $H_0^1(\Omega)$ and p < 6

Two methods,

- ▶ Compactness on $(u_n)_n$ (M1)
- Compactness on $(\rho_n)_n$ (M2)

Continuous setting, Stationary case, M1

 Ω bounded open set of \mathbb{R}^3 , 1 , <math>q = p/(p-1)

 $\rho_n \to \rho \text{ weakly in } L^q(\Omega)$ $u_n \to u \text{ weakly in } L^p(\Omega)$ $(u_n)_n \text{ is bounded in } H^1_0(\Omega)$

Compact embedding of $H_0^1(\Omega)$ in $L^p(\Omega)$

```
Then

u_n \to u \text{ in } L^p(\Omega)

\rho_n \to \rho \text{ weakly in } L^q(\Omega)

and \int_{\Omega} \rho_n u_n \to \int_{\Omega} \rho u
```

Continuous setting, Stationary case, M2

 Ω bounded open set of \mathbb{R}^3 , 1 , <math>q = p/(p-1)

 $\rho_n \to \rho \text{ weakly in } L^q(\Omega)$ $u_n \to u \text{ weakly in } L^p(\Omega)$ $(u_n)_n \text{ is bounded in } H^1_0(\Omega)$ Identify $L^2(\Omega)' \text{ with } L^2(\Omega)$

Compact embedding of $L^q(\Omega)$ in $H^{-1}(\Omega)$

Then $u_n \to u$ weakly in $H_0^1(\Omega)$ $\rho_n \to \rho$ in $H^{-1}(\Omega)$ and $\int_{\Omega} \rho_n u_n = \langle \rho_n, u_n \rangle_{H^{-1}, H_0^1} \to \langle \rho, u \rangle_{H^{-1}, H_0^1} = \int_{\Omega} \rho u$

Discrete setting, stationary case

It is possible to adapt the previous methods to a discrete setting where $H_0^1(\Omega)$ is replaced by a space H_n which depends on n (with a norm, depending on n, "close" to the H_0^1 -norm).

Space discretization, Finite Volume scheme

Mesh \mathcal{M} .

Figure: Here is an example of admissible mesh

size(\mathcal{M}) = sup{diam(\mathcal{K}), $\mathcal{K} \in \mathcal{M}$ } $\mathcal{H}_{\mathcal{M}}$: functions from Ω to \mathbb{R} , constant on each \mathcal{K} , $\mathcal{K} \in \mathcal{M}$

Discrete H_0^1 -norm

Mesh: \mathcal{M} (not necessarily admissible)

 $u \in H_{\mathcal{M}}$ (that is *u* is a function constant on each *K*, $K \in \mathcal{M}$).

$$\|u\|_{1,2,n}^2 = \sum_{\sigma \in \mathcal{E}_{int}, \sigma = K|L} m_{\sigma} d_{\sigma} |\frac{u_K - u_L}{d_{\sigma}}|^2 + \sum_{\sigma \in \mathcal{E}_{ext}, \sigma \in \mathcal{E}_K} m_{\sigma} d_{\sigma} |\frac{u_K}{d_{\sigma}}|^2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Discrete setting, Stationary case, M1

$$\begin{split} \rho_n, u_n &\in H_{\mathcal{M}_n}, \, \operatorname{size}(\mathcal{M}_n) \to 0 \text{ as } n \to \infty \text{ (regularity of the meshes)} \\ \rho &= q = 2 \text{ (for simplicity)} \\ \rho_n &\to \rho \text{ weakly in } L^2(\Omega) \\ u_n &\to u \text{ weakly in } L^2(\Omega) \\ (u_n)_n \text{ is bounded in } H_{\mathcal{M}_n}, \| \cdot \|_{1,2,\mathcal{M}_n} \\ \text{"Compact embedding" of } (H_{\mathcal{M}_n}, \| \cdot \|_{1,2,\mathcal{M}_n})_n \text{ in } L^2(\Omega) \\ \text{Then} \end{split}$$

$$u_n \to u \text{ in } L^2(\Omega)$$

$$\rho_n \to \rho \text{ weakly in } L^2(\Omega)$$

and
$$\int_{\Omega} \rho_n u_n \to \int_{\Omega} \rho u$$

Admissible meshes: Compactness follows from $||u(\cdot + \eta) - u||_2 \le C\sqrt{|\eta|}||u||_{1,2,\mathcal{M}_n}$ if $u \in H_{\mathcal{M}_n}$

Discrete setting, Stationary case, M1

 $\rho_n \rightarrow \rho$ weakly in $L^2(\Omega)$ $u_n \to u$ weakly in $L^2(\Omega)$ $(u_n)_n$ is bounded in $H_{\mathcal{M}_n}$, $\|\cdot\|_{1,2,\mathcal{M}_n}$ "Compact embedding" of $(H_{\mathcal{M}_n}, \|\cdot\|_{1,2,\mathcal{M}_n})_n$ in $L^2(\Omega)$ Then $\int_{\Omega} \rho_n u_n \to \int_{\Omega} \rho u$ Non admissible meshes: Compactness follows from (d=3) $\|u(\cdot + \eta) - u\|_2 \le C \|\eta\|_{\frac{2}{5}}^2 \|u\|_{1,2,\mathcal{M}_n}$ if $u \in H_{\mathcal{M}_n}$ Proof using, for $u \in H_n$, $\|u(\cdot + \eta) - u\|_{L^1(\mathbb{R}^3)} \le |\eta|\sqrt{d}\|u\|_{1,2,n}$ and $\|u\|_{L^6(\mathbb{R}^3)} \leq C \|u\|_{1,2,n}$ if $u \in H_n$ (Discrete Sobolev embedding)

Discrete setting, Stationary case, M2

```
\rho_n, u_n \in H_{\mathcal{M}_n}, \operatorname{size}(\mathcal{M}_n) \to 0 as n \to \infty (regularity of the meshes)
\rho_n \to \rho weakly in L^2(\Omega)
u_n \to u weakly in L^2(\Omega)
(u_n)_n is bounded in H_{\mathcal{M}_n}, \|\cdot\|_{1,2,\mathcal{M}_n}
This gives (u_n)_n is bounded in H^s(\Omega), 0 < s < 2/5
Identify L^2(\Omega)' with L^2(\Omega), since H^s(\Omega) is compact in L^2(\Omega),
Compact embedding of L^{2}(\Omega) in H^{-s}(\Omega)
Then
u_n \to u weakly in H^s(\Omega)
\rho_n \to \rho in H^{-s}(\Omega)
and \int_{\Omega} \rho_n u_n = \langle \rho_n, u_n \rangle_{H^{-s}, H^s} \to \langle \rho, u \rangle_{H^{-s}, H^s} = \int_{\Omega} \rho u
```

Continuous setting, evolution case

$$\rho_n \to \rho \text{ weakly in } L^2(]0, T[, L^2(\Omega))$$

 $u_n \to u \text{ weakly in } L^2(]0, T[, L^2(\Omega))$

Question :
$$\int_{]0,T[\times\Omega[} \rho_n u_n \to \int_{]0,T[\times\Omega[} \rho u$$
 ?

- ▶ in general, no. Even if $(u_n)_n$ is bounded in $L^2(]0, T[, H_0^1(\Omega))$ No compactness of $L^2(]0, T[, H_0^1(\Omega))$ in $L^2(]0, T[, L^2(\Omega))$
- ▶ yes if $(u_n)_n$ is bounded in $H^1(]0, T[, H^1_0(\Omega))$ since compactness of $H^1(]0, T[, H^1_0(\Omega))$ in $L^2(]0, T[, L^2(\Omega))$
- ▶ yes if $(\rho_n)_n$ is bounded in $H^1(]0, T[, L^2(\Omega))$ since compactness of $H^1(]0, T[, L^2(\Omega))$ in $L^2(]0, T[, H^{-1}(\Omega))$

Is it possible to use weaker hypotheses on $(\partial_t u_n)_n$ or $(\partial_t \rho_n)_n$?

Continuous setting, (Generalized) Aubin-Simon Compactness Lemma

X, B, Y are three Banach spaces, $X \subset B$, $X \subset Y$ such that 1. X compactly embedded in B 2. $||w_n||_X \leq C$, $||w_n - w||_B \rightarrow 0$, $||w_n||_Y \rightarrow 0$ implies w = 0Let T > 0 $1 \leq p < +\infty$ and $(u_n)_{n \in \mathbb{N}}$ be a sequence such that

- $(u_n)_{n\in\mathbb{N}}$ is bounded in $L^p(]0, T[, X)$,
- $(\partial_t u_n)_{n \in \mathbb{N}}$ is bounded in $L^1(]0, T[, Y)$.

Then there exists $u \in L^{p}(]0, T[, B)$ such that, up to a subsequence, $u_n \rightarrow u$ in $L^{p}(]0, T[, B)$

Particular cases for hypothesis 2:

Easy case : Y = X or B or, more generally, $\|\cdot\|_B \le C \|\cdot\|_Y$ Aubin Simon : B continuously embedded in Y, $\|\cdot\|_Y \le C \|\cdot\|_B$

Generalized Lions lemma (crucial if $\|\cdot\|_B \leq C \|\cdot\|_Y$)

X, B, Y are three Banach spaces, $X \subset B$, $X \subset Y$ such that 1. X compactly embedded in B 2. $||w_n||_X \leq C$, $||w_n - w||_B \rightarrow 0$, $||w_n||_Y \rightarrow 0$ implies w = 0Then, for any $\varepsilon > 0$, there exists C_{ε} such that, for $w \in X$, $||w||_B \leq \varepsilon ||w||_X + C_{\varepsilon} ||w||_Y$.

Proof: By contradiction

Classical Lions lemma, a particular case, simpler

B is a Hilbert space and *X* is a Banach space $X \subset B$. We define on *X* the dual norm of $\|\cdot\|_X$, with the scalar product of *B*, namely

 $||u||_{Y} = \sup\{(u|v)_{B}, v \in X, ||v||_{X} \le 1\}.$

Then, for any $\varepsilon > 0$ and $w \in X$,

$$\|w\|_B \leq \varepsilon \|w\|_X + \frac{1}{\varepsilon} \|w\|_Y.$$

The proof is simple since

$$\|u\|_{B} = (u|u)_{B}^{\frac{1}{2}} \leq (\|u\|_{Y}\|u\|_{X})^{\frac{1}{2}} \leq \varepsilon \|w\|_{X} + \frac{1}{\varepsilon} \|w\|_{Y}.$$

Compactness of X in B is not needed here (but this compactness is needed for Aubin-Simon Compactness Lemma).

Continuous setting, evolution case, compressible NS, M2

$$\rho_n \to \rho$$
 weakly in $L^2(]0, T[, L^2(\Omega))$, if $\gamma \ge 2$
 $u_n \to u$ weakly in $L^2(]0, T[, L^2(\Omega)^3)$
 $(u_n)_n$ is bounded in $L^2(]0, T[, H_0^1(\Omega)^3)$
 $\partial_t \rho_n + \operatorname{div}(\rho_n u_n) = 0$

Then $(\partial_t \rho_n)_n$ is bounded in $L^1(]0, T[, W^{-1,1}(\Omega))$

This gives compactness of $(\rho_n)_n$ in $L^2(]0, T[, H^{-1}(\Omega))$ (Aubin-Simon compactness Theorem with : $X = L^2(\Omega), B = H^{-1}(\Omega), Y = W^{-1,1}(\Omega))$) $u_n \to u$ weakly in $L^2(]0, T[, H^1_0(\Omega)^3)$ $\rho_n \to \rho$ in $L^2(]0, T[, H^{-1}(\Omega))$ and, for any regular φ ,

$$\int_{]0,T[\times\Omega}\rho_n u_n\cdot\nabla\varphi=\langle\rho_n,u_n\cdot\nabla\varphi\rangle_{L^2(H^{-1}),L^2(H^1_0)}\to\int_{]0,T[\times\Omega}\rho u\cdot\nabla\varphi$$

which gives $\partial_t \rho + \operatorname{div}(\rho u) = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Continuous setting, evolution case, compressible NS, M2

 $u_n \rightarrow u$ weakly in $L^2(]0, T[, H_0^1(\Omega)^3)$ $\rho_n u_n \rightarrow \rho u$ weakly in $L^2(]0, T[, L^r(\Omega)^3)$ with $r = 6\gamma/(6 + \gamma) \ge 2$ if $\gamma \ge 3$

 $\partial_t(\rho_n u_n) + \operatorname{div}(\rho_n u_n \otimes u_n) - \Delta u_n + \nabla p_n = f$ Then $(\partial_t(\rho_n u_n))_n$ is bounded in $L^1(]0, T[, W^{-1,1}(\Omega)^3)$

This gives compactness of $(\rho_n u_n)_n$ in $L^2(]0, T[, H^{-1}(\Omega)^3)$ (Aubin-Simon compactness Theorem with : $X = L^2(\Omega), B = H^{-1}(\Omega), Y = W^{-1,1}(\Omega)$))

 $u_n \rightarrow u$ weakly in $L^2(]0, T[, H_0^1(\Omega)^3)$ $\rho_n u_n \rightarrow \rho u$ in $L^2(]0, T[, H^{-1}(\Omega)^3)$

Which gives the convergence (in the distributional sense) of $\rho_n u_n \otimes u_n$ to $\rho u \otimes u$ (and allows passing to the limit in the momentum equation)

Continuous setting, evolution case, Stefan, M1

$$\begin{array}{l} \rho_n \to \rho \text{ weakly in } L^2([0, T[, L^2(\Omega)) \\ u_n \to u \text{ weakly in } L^2([0, T[, L^2(\Omega)) \\ (u_n)_n \text{ is bounded in } L^2(]0, T[, H_0^1(\Omega)) \\ \partial_t \rho_n - \Delta u_n = 0, \ u_n = \varphi(\rho_n) \\ \varphi \in C(\mathbb{R}, \mathbb{R}) \text{ is nondecreasing } \varphi' = 0 \text{ on }]a, b[, a < b \\ \text{ one has } \partial_t \rho - \Delta u = 0, \text{ but } u = \varphi(\rho) ? \\ \text{First step : pass to the limit on } \int \rho_n u_n \end{array}$$

no direct estimate on $\partial_t u_n$, but (Alt-Luckaus trick) estimate on the time-translates of u_n

Then compactness of $(u_n)_n$ in $L^2(]0, T[, L^2(\Omega))$

$$u_n \rightarrow u$$
 in $L^2(]0, T[, L^2(\Omega))$
 $\rho_n \rightarrow \rho$ weakly in $L^2(]0, T[, L^2(\Omega))$
and, $\int_{]0, T[\times\Omega} \rho_n u_n \rightarrow \int_{]0, T[\times\Omega} \rho u$
Second step :Minty trick, $u = \varphi(\rho)$

Minty trick

 $\rho_n \to \rho$ weakly in L^2 $(L^2 = L^2(\Omega) \text{ or } L^2(]0, \mathcal{T}[, L^2(\Omega)))$ $u_n \rightarrow u$ weakly in L^2 $\int \rho_n u_n \to \int \rho u$ $u_n = \varphi(\rho_n)$ $\varphi \in C(\mathbb{R},\mathbb{R})$ is nondecreasing, $|\varphi(s)| \leq C|s|$ Question : $u = \varphi(\rho)$? for any $\bar{\rho} \in L^2$ $0 \leq \int (\rho_n - \bar{\rho})(\varphi(\rho_n) - \varphi(\bar{\rho})) = \int (\rho_n - \bar{\rho})(u_n - \varphi(\bar{\rho}))$ as $n \to \infty$, $0 \le \int (\rho - \bar{\rho})(u - \varphi(\bar{\rho}))$ $\bar{\rho} = \rho - \varepsilon \psi$, $\varepsilon > 0$ and ψ regular function,

$$0 \leq \int \psi(u - \varphi(\rho - \varepsilon \psi))$$

arepsilon o 0, ψ and $-\psi$ give $\int \psi(u-arphi(
ho))=0$ and then u=arphi(
ho)

Continuous setting, evolution case, Stefan, M2

$$\rho_n \to \rho$$
 weakly in $L^2(]0, T[, L^2(\Omega))$
 $u_n \to u$ weakly in $L^2(]0, T[, L^2(\Omega))$
 $(u_n)_n$ is bounded in $L^2(]0, T[, H_0^1(\Omega))$
 $\partial_t \rho_n - \Delta u_n = 0, u_n = \varphi(\rho_n)$

Then $(\partial_t \rho_n)_n$ bounded in $L^2(]0, T[, H^{-1}(\Omega))$ This gives compactness of $(\rho_n)_n$ in $L^2(]0, T[, H^{-1}(\Omega))$ (Aubin-Simon Theorem with : $X = L^2(\Omega), B = Y = H^{-1}(\Omega)$)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

$$u_n \to u \text{ weakly in } L^2(]0, T[, H_0^1(\Omega)]$$

$$\rho_n \to \rho \text{ in } L^2(]0, T[, H^{-1}(\Omega))$$

and,
$$\int_{]0, T[\times\Omega} \rho_n u_n \to \int_{]0, T[\times\Omega} \rho u$$

which gives (Minty trick) $u = \varphi(\rho)$

Use of the compactness lemma in the previous examples

For compressible Navier Stokes eqs : $B = H^{-1}(\Omega), X = L^{2}(\Omega), Y = W^{-1,1}(\Omega)$

For Stefan problem : $X = L^2(\Omega), B = Y = H^{-1}(\Omega)$

Is it possible to have discrete versions of these compactness results, for proving the convergence of numerical schemes ?

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

Space-Time discretization

- T > 0, time step $k = \frac{T}{N}$
 - *H_M* the space of functions from Ω to ℝ, constant on each *K*, *K* ∈ *M*.
 - ▶ The function *u* is constant on $K \times ((p-1)k, pk)$ with $K \in \mathcal{M}$ and $p \in \{1, ..., N\}$. $u(\cdot, t) = u^{(p)}$ for $t \in ((p-1)k, pk)$ and $u^{(p)} \in H_{\mathcal{M}}$.
 - Discrete derivatives in time, $\partial_{t,k}u$, defined by:

$$\partial_{t,k} u(\cdot, t) = \partial_{t,k}^{(p)} u = \frac{1}{k} (u^{(p)} - u^{(p-1)}) \text{ for } t \in ((p-1)k, pk),$$

for $p \in \{2, ..., N\}$ (and $\partial_{t,k} u(\cdot, t) = 0$ for $t \in (0, k)$).

 \mathcal{M} can be different for ρ , p and each component of the velocity (MAC-scheme)

Discrete Lions lemma

B is a Banach space, $(B_n)_{n \in \mathbb{N}}$ is a sequence of finite dimensional subspaces of *B*. $\|\cdot\|_{X_n}$ and $\|\cdot\|_{Y_n}$ are two norms on B_n such that: If $(\|w_n\|_{X_n})_{n \in \mathbb{N}}$ is bounded, then,

- up to a subsequence, there exists $w \in B$ s.t. $w_n \to w$ in B.
- If $||w_n w||_B \rightarrow 0$ and $||w_n||_{Y_n} \rightarrow 0$, then w = 0.

Then, for any $\varepsilon > 0$, there exists C_{ε} such that, for $n \in \mathbb{N}$ and $w \in B_n$

$$\|w\|_B \leq \varepsilon \|w\|_{X_n} + C_{\varepsilon} \|w\|_{Y_n}.$$

Example: $B_n = H_{\mathcal{M}_n}$ (the finite dimensional space given by the mesh \mathcal{M}_n). We have to choose B, $\|\cdot\|_{X_n}$ and $\|\cdot\|_{Y_n}$.

Discrete Lions lemma, proof

Proof by contradiction. There exists $\varepsilon > 0$ and $(w_n)_{n \in \mathbb{N}}$ such that, for all $n, w_n \in B_n$ and

$$\|w_n\|_B > \varepsilon \|w_n\|_{X_n} + C_n \|w_n\|_{Y_n},$$

with $\lim_{n\to\infty} C_n = +\infty$.

It is possible to assume that $||w_n||_B = 1$. Then $(||w_n||_{X_n})_{n \in \mathbb{N}}$ is bounded and, up to a subsequence, $w_n \to w$ in B (so that $||w||_B = 1$). But $||w_n||_{Y_n} \to 0$, so that w = 0, in contradiction with $||w||_B = 1$.

Discrete Compactness Lemma

B a Banach, $1 \le p < +\infty$, $(B_n)_{n \in \mathbb{N}}$ family of finite dimensional subspaces of *B*. $\|\cdot\|_{X_n}$ and $\|\cdot\|_{Y_n}$ two norms on B_n such that: If $(\|w_n\|_{X_n})_{n \in \mathbb{N}}$ is bounded, then,

- up to a subsequence, there exists $w \in B$ s.t. $w_n \to w$ in B.
- If $||w_n w||_B \rightarrow 0$ and $||w_n||_{Y_n} \rightarrow 0$, then w = 0.

 $X_n = B_n$ with norm $\|\cdot\|_{X_n}$, $Y_n = B_n$ with norm $\|\cdot\|_{Y_n}$. Let T > 0, $k_n > 0$ and $(u_n)_{n \in \mathbb{N}}$ be a sequence such that

- ▶ for all n, $u_n(\cdot, t) = u_n^{(p)} \in B_n$ for $t \in ((p-1)k_n, pk_n)$
- $(u_n)_{n\in\mathbb{N}}$ is bounded in $L^p((0, T), X_n)$,
- $(\partial_{t,k_n} u_n)_{n\in\mathbb{N}}$ is bounded in $L^1((0,T), Y_n)$.

Then there exists $u \in L^p((0, T), B)$ such that, up to a subsequence, $u_n \to u$ in $L^p((0, T), B)$.

Example: $B_n = H_{\mathcal{M}_n}$. We have to choose B, $\|\cdot\|_{X_n}$, $\|\cdot\|_{Y_n}$

Discrete setting, evolution case, compressible NS, M2

$$\begin{split} \rho_n &\to \rho \text{ weakly in } L^2(]0, \mathcal{T}[, L^2(\Omega)) \ (\gamma \geq 2) \\ u_n &\to u \text{ weakly in } L^2(]0, \mathcal{T}[, L^2(\Omega)^3) \\ (u_n)_n \text{ is bounded in } L^2(]0, \mathcal{T}[, H_n), \text{ with } \|\cdot\|_{1,2,\mathcal{M}_n^{(i)}} \\ \partial_{t,k_n}\rho_n + \operatorname{div}_n(\rho_n u_n) = 0 \end{split}$$

Then $(\partial_{t,k_n}\rho_n)_n$ is bounded in $L^1(]0, T[, Y_n)$ where $Y_n = H_n^{(i)}$ with :

$$\|w\|_{Y_n} = \max\{\int_{\Omega} w\varphi; \varphi \in H_n^{(i)}; \|\nabla_n \varphi\|_{L^{\infty}(\Omega)} + \|\varphi\|_{L^{\infty}(\Omega)} = 1\}.$$

Compactness Theorem with $B = H^{-s}(\Omega)$ and $X_n = H_n^{(i)}$ with $L^2(\Omega)$ -norm gives compactness of $(\rho_n)_n$ in $L^2(]0, T[, H^{-s}(\Omega)), 0 < s < 1/2$ $u_n \to u$ weakly in $L^2(]0, T[, H^s(\Omega)^3)$ $\rho_n \to \rho$ in $L^2(]0, T[, H^{-s}(\Omega))$ and, for any regular φ ,

$$\int \rho_n u_n \cdot \nabla_{\mathcal{M}_n} \varphi = \langle \rho_n, u_n \cdot \nabla \varphi \rangle_{L^2(H^{-s}), L^2(H^s)} + \underset{\mathfrak{s} \to \mathfrak{s}}{R} \xrightarrow{} \int \rho u \cdot \nabla \varphi_{\mathbb{R}^{-s}} \varphi_{\mathbb{R}^{-s}} + \underset{\mathfrak{s} \to \mathfrak{s}}{P} \varphi_{\mathbb{R}^{-s}} = \varphi_{\mathbb{R}^{-s}} + \underset{\mathfrak{s} \to \mathfrak{s}}{P} \varphi_{\mathbb{R}^{-s}} + \underset{\mathfrak{s} \to \mathfrak{s}}{+}$$

Discrete setting, evolution case, compressible NS, M2

Similarly it is possible to prove the convergence of $\operatorname{div}_n \rho_n u_n \otimes u_n$ to $\operatorname{div} \rho u \otimes u$

 $\rho_n u_n \to \rho u$ weakly in $L^2(]0, T[, L^2(\Omega)^3)$ (if $\gamma \ge 3$) $u_n \to u$ weakly in $L^2(]0, T[, L^2(\Omega)^3)$ $(u_n)_n$ is bounded in $L^2(]0, T[, H_n)$, with $\|\cdot\|_{1,2,\mathcal{M}_n^{(i)}}$

Using the discrete momentum equation, one has essentially (for each component of u_n) $(\partial_{t,k_n}(\rho_n u_n))_n$ is bounded in $L^1(]0, T[, Y_n)$ where $Y_n = H_n^{(i)}$ (mesh for a component of u_n) with :

$$\|w\|_{Y_n} = \max\{\int_{\Omega} w\varphi; \varphi \in H_n^{(i)}; \|\nabla_n \varphi\|_{L^{\infty}(\Omega)} + \|\varphi\|_{L^{\infty}(\Omega)} = 1\}.$$

Compactness Theorem with $B = H^{-s}(\Omega)$ and $X_n = H_n^{(i)}$ with $L^2(\Omega)$ -norm gives compactness of $(\rho_n u_n)_n$ in $L^2(]0, T[, H^{-s}(\Omega)^3), 0 < s < 1/2$ which allows to prove $\partial_t \rho u + \operatorname{div}(\rho u \otimes u) - \Delta u + \nabla p = f$

Discrete setting, evolution case, Stefan, M1

$$\begin{split} \rho_n &\to \rho \text{ weakly in } L^2(]0, T[, L^2(\Omega)) \\ u_n &\to u \text{ weakly in } L^2(]0, T[, L^2(\Omega)) \\ (u_n)_n \text{ is bounded in } L^2(]0, T[, \mathcal{H}_{\mathcal{M}_n}(\Omega)) \text{ with } \|\cdot\|_{1,2,\mathcal{M}_n} \\ \partial_{,t,k_n}\rho_n &- \Delta_n u_n = 0, \ u_n = \varphi(\rho_n) \\ \varphi &\in C(\mathbb{R}, \mathbb{R}) \text{ is nondecreasing } \varphi' = 0 \text{ on }]a, b[, a < b \\ \text{ one has } \partial_t \rho - \Delta u = 0, \text{ but } u = \varphi(\rho) ? \\ \text{First step: pass to the limit on } \int \rho_n u_n \end{split}$$

no direct estimate on $\partial_{t,k_n} u_n$, but a discrete version of Alt-Luckaus trick gives an estimate on the time-translates of u_n Then compactness of $(u_n)_n$ in $L^2(]0, T[, L^2(\Omega))$

$$u_n \rightarrow u$$
 in $L^2(]0, T[, L^2(\Omega))$
 $\rho_n \rightarrow \rho$ weakly in $L^2(]0, T[, L^2(\Omega))$
and, $\int_{]0, T[\times\Omega} \rho_n u_n \rightarrow \int_{]0, T[\times\Omega} \rho u$
Second step: Minty trick, $u = \varphi(\rho)$

Discrete setting, evolution case, Stefan, M2

 $\rho_n \to \rho$ weakly in $L^2([0, T[, L^2(\Omega))]$ $u_n \rightarrow u$ weakly in $L^2([0, T[, L^2(\Omega))]$ $(u_n)_n$ is bounded in $L^2([0, T[, H_{\mathcal{M}_n})$ with $\|\cdot\|_{1,2,\mathcal{M}_n}$ $\partial_{t,k_n}\rho_n - \Delta_{\mathcal{M}_n}u_n = 0, \ u_n = \varphi(\rho_n)$ First step: pass to the limit on $\int \rho_n u_n$ $(\partial_{t,k_n}\rho_n)_n$ bounded in $L^2([0,T[,H_{\mathcal{M}_n})$ with $\|\cdot\|_{-1,2,\mathcal{M}_n}$ This gives compactness of $(\rho_n)_n$ in $L^2([0, T[, H^{-s}(\Omega))$ $B = H^{-s}(\Omega), B_n = H_{\mathcal{M}_n}, \|\cdot\|_{X_n} = \|\cdot\|_{L^2(\Omega)},$ $\|\cdot\|_{Y_p} = \|\cdot\|_{-1,2,\mathcal{M}_p}$ (the dual norm of the norm $\|\cdot\|_{1,2,\mathcal{M}_p}$) $\rho_n \to \rho \text{ in } L^2([0, T[, H^{-s}(\Omega))) \ (0 < s < 1/2))$ $u_n \rightarrow u$ weakly in $L^2([0, T[, H^s(\Omega))]$ and, $\int_{10,T[\times\Omega]} \rho_n u_n \to \int_{10,T[\times\Omega]} \rho u$ Second step: Minty trick, $u = \varphi(\rho)$

Spaces B, X_n , Y_n for compressible NS $B = H^{-s}(\Omega), \ 0 < s < 1/2$ $Y_n = H_{\mathcal{M}_n}$ with $\|\cdot\|_{-1,1,\mathcal{M}_n}$ $X_n = H_{M_n}$ with $L^2(\Omega)$ -norm

• Compact embedding of $L^{2}(\Omega)$ in $H^{-s}(\Omega)$

• If
$$w_n \in H_{\mathcal{M}_n}$$
, $w_n \to w$ weakly in $L^2(\Omega)$ and
 $\|w_n\|_{-1,1,\mathcal{M}_n} \to 0$, then $w = 0$? Yes... Proof :
Let $\varphi \in W_0^{1,\infty}(\Omega)$ and its "projection" $\pi_n \varphi \in H_{\mathcal{M}_n}$. One has
 $\|\pi_n \varphi\|_{1,\infty,\mathcal{M}_n} \leq \|\varphi\|_{W^{1,\infty}(\Omega)}$ and then

$$|\int_{\Omega} w_n(\pi_n \varphi) dx| \leq ||w_n||_{-1,1,\mathcal{M}_n} ||\varphi||_{W^{1,\infty}(\Omega)} \to 0,$$

and, since $w_n \to w$ weakly in $L^1(\Omega)$ and $\pi_n \varphi \to \varphi$ uniformly,

$$\int_{\Omega} w_n(\pi_n \varphi) dx \to \int_{\Omega} w \varphi dx.$$

This gives $\int_{\Omega} w\varphi dx = 0$ for all $\varphi \in W^{1,\infty}_{0}(\Omega)$ and then w = 0 a.e.