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Objective : To present discrete functional analysis tools for proving
the convergence of numerical schemes, mainly for elliptic and
parabolic equations (Stefan problem, incompressible and
compressible Navier-Stokes equations)

Works with many co-authors



Continuous setting, Stationary case

Discrete setting mimics continuous setting.
Q bounded open set of R? (d > 1)

pn — p weakly in L2(Q)
u, — u weakly in L2(Q)

Question : /pnun—>/,ou7

> in general, no.
> vyes if (uy)n is bounded in H}(Q)

Two methods,

» Compactness on (u,), (M1)
» Compactness on (p,)n (M2)



Continuous setting, Stationary case, M1

Q bounded open set of R? (d > 1)

pn — p weakly in L2(Q)
u, — u weakly in L2(Q)
(un)n is bounded in H}(2)

Compact embedding of H}(Q) in L?(2)

Then
u, — uin L2(Q)
pn — p weakly in L2(Q)

and [ ppu, — | pu
Q Q



Continuous setting, Stationary case, M2

Q bounded open set of R? (d > 1)

pn — p weakly in L2(Q)
u, — u weakly in L2(Q)
(un)n is bounded in H}(2)

Identify L2(Q)" with L2(Q)
Compact embedding of L?(Q) in H~1(Q)
Then

u, — u weakly in H}(Q)
pn— pin H1(Q)

and / Pnln = (pn, un>H_1,H3 — (p, U>H—1,H3 - / pu
Q Q



Continuous setting, Stationary case, M2b

Q bounded open set of R? (d > 1)

pn — p weakly in L2(Q)
u, — u weakly in L2(9)
(un)n is bounded in H}(2)

Identify L2(Q)" with L2(Q)

—~ AW, = pn, W, € HO(Q) —Aw = p, w € H}(Q)
Since p, — p in H71(Q), one has

wn, — w in H}(Q)

Then

Vu, — Vu weakly in L2(Q)9
Vw, — Vw in L%(Q)¢

and/p,,un:/an'Vun%/Vw-Vu:/pu
Q Q Q Q



Discrete setting, stationary case

It is possible to adapt the previous methods to a discrete setting
where H}(Q) is replaced by a space H, which depends on n (with
a norm, depending on n, “close” to the Hj-norm).



Space discretization, Finite Volume scheme

Admissible mesh M.

T

/d

K, L=Mi, /Gl

size(M) = sup{diam(K), K € M}

Haq : functions from Q to R, constant on each K, K € M



Discrete norms

Admissible mesh: M.
u € Hyq (that is v is a function constant on each K, K € M).

» 1< g < oco. Discrete Wol’q—norm:

— UL UK
lolfqe= > medo| e Y Mo do|

0€Eint,0=K]|L 0E€Eext,0EEK

» g = oo. Discrete Wol’oo—norm: Hu”;.?,oo,/\/( = max{M;, M, M}
with

M; = max{|uK — vl

T, o€ Eint,o' = K’L},

M, = max{ |ICJIK’, 0 € Eext,0 € Ek},

g

M = max{|uk|, K € M}.



Discrete dual norms

Admissible mesh: M.
For r € [1,00], || - ||=1,r,M is the dual norm of the norm || - [|1,4,m
with g = r/(r — 1). That is, for u € Huy,

Jull 0 = max{ | v . v € Hag, V.0 < 1)
Q

With [2(Q) = [2(Q), WL7(Q) = (W) Y(Q)Y, r > 1
If r €]1, 4], || - |-1.,r.01 mimics the W17 (Q)-norm
l|ul| _1,1.0¢ mimics the Wy H(Q)-norm, Wi () = (W, °(Q))’



Discrete setting, Stationary case, M1

Pn, Un € Hu,, size(Mp) — 0 as n — oo (regularity of the meshes)
pn — p weakly in L2(Q)

u, — u weakly in L2(Q)

(un)n is bounded in Huq,, || - [l1.2,Mm,

“Compact embedding” of (H,, | - l1.2.0m,)n in L2(Q)

Then

u, — uin L2(Q)

pn — p weakly in L2(Q)

and [ ppu, — | pu
Q Q

Compactness follows from

[u(- +n) = ulla < CV/[nll[ullr2.m, if u € Hm,
(admissible meshes)



Discrete setting, Stationary case, M2

Pny Un € Hag,, size(M,) — 0 as n — oo (regularity of the meshes)

pn — p weakly in L2(Q)
u, — u weakly in L2(Q)
(un)n is bounded in Has,, || - [|1,2,04,

This gives (up)n is bounded in H*(Q2), 0 < s < 1/2
Identify L2(Q)" with L2(Q)

Compact embedding of L?(Q) in H=5(Q)

Then

up — u weakly in H*(Q)
pn— pin H73(Q)

and / Pntn = (Pns Un) Hs Hs = (05 U)Hs Hs = / pu
Q Q



General meshes, Stationary case, M1 or M2b

pn — p weakly in L2(Q)
u, — u weakly in L2(Q)
(un)n is bounded in Haq,, [V M, - |2

M1 : “Compact embedding” of (Haq,, |V, - [[2)n in L2(R)
then u, — v in L2(Q)

M2b :

> Vo, un — Vu weakly in L2(Q)9

> —Ap,Wp = pp, Wy € Ha,o(Q), —Aw = p, w € H}(Q)
Since p, — p weakly in L2(R), one has
VM, Wn — Vw in L2(Q)9

Then

/,Onu,,:/VMHW,,-VM"VU"*)/VW-VU:/pU
Q Q Q Q



Continuous setting, evolution case

pn — p weakly in L2(]0, T, L2(R2))
u, — u weakly in L2(]0, T[, L2(R))

Question : / Pnln — pu?
10, T[xQ[ 10, T[xQ[

> in general, no. Even if (u,), is bounded in L2(]0, T[, H3(Q2))
No compactness of L2(]0, T[, H}(2)) in L2(]0, T, L2(R))

> vyes if (un)n is bounded in H(]0, T[, H3(R2)) since
compactness of H1(]0, T[, H3()) in L2(]0, T[, L3(Q))

» ves if (pn)n is bounded in H(]0, T, L?(R2)) since compactness
of H1(0, T[, L3(Q)) in L2(J0, T[, H~*())

s it possible to use weaker hypotheses on (O:un)n of (Otpn)n ?



Continuous setting, evolution case, compressible NS, M2

pn — p weakly in L2(]0, T[, L2(R2))
u, — u weakly in Lz(]o’ Tl, LZ(Q)d)
(un)n is bounded in L2(]0, T[, H3(Q)?)

Otpn + div(ppup) =0

Then (O¢pn)n is bounded in L1(]0, T[, W—11(Q))

This gives compactness of (p,), in L2(]0, T[, H=1(Q))
(adaptation of the Aubin-Simon compactness Theorem)
u, — u weakly in L2(]0, T[, H}(R)9)

Pn — P in L2(]05 T[7 H_I(Q))

and, for any regular ¢,

/ Prtin =NV = (pn, un V) 2041y 12(H2) = pu-V
10, T[xQ 10, T[xQ

which gives 0;p + div(pu) =0



Continuous setting, evolution case, Stefan, M1

pn — p weakly in L2(]0, T[, L2(Q2))
u, — u weakly in L2(]0, T[, L2(R))
(un)n is bounded in L2(]0, T[, H}(R))
Otpn — Aup = 0, up = p(pn)

¢ € C(R,R) is nondecreasing ¢’ =0 on |a,b[, a < b

one has Oyp — Au =0, but u=¢(p) ?
First step : pass to the limit on [ ppup,

no direct estimate on O;up, but (Alt-Luckaus trick) estimate on the
time-translates of u,
Then compactness of (u,), in L2(]0, T[, L3(Q))

u, — uin L2(]0, T[, L2(Q))
pn — p weakly in L2(]0, T[, L2(R2))

and, f]o,T[xQ Pnln — f]o,T[xQ pu
Second step :Minty trick, u = ¢(p)



Minty trick

pn — p weakly in L2 (L2 = L2(Q) or L2(]0, T[, L2()))
up, — u weakly in L2

[ potin — [ pu

Un = ¢(pn)

¢ € C(R,R) is nondecreasing, |p(s)| < C|s|
Question : u = o(p) ? for any p € L?

0 < [(pn — P)(0(pn) — 0(P)) = [(pn — P)(un — ()
as n— 00, 0< f(p—ﬁ)(u—sO(ﬁ))
p=p—ep, € >0 and 1 regular function,

0< /«b(u—w(p—ew))

e — 0, ¢ and —¢ give [¢(u— ¢(p)) =0 and then u = ¢(p)



Continuous setting, evolution case, Stefan, M2

pn — p weakly in L2(]0, T[, L?(2))

u, — u weakly in L2(]0, T[, L2())

(un)n is bounded in L2(]0, T[, H}(Q))

0tpPn — Aup =0, up = ©(pn)

Then (9¢pn)n bounded in L2(]0, T[, H=1(Q))

This gives compactness of (p,), in L2(]0, T[, H"1(Q))
u, — u weakly in L2(]0, T[, H3(Q))

pn = pin L2(J0, T[, H1(Q))

and, f]o,T[xQ Ll f]O,T[xQ 2
which gives (Minty trick) u = ¢(p)

M2b is also possible



(Generalized) Aubin-Simon Compactness Lemma

X, B, Y are three Banach spaces, X C B, X C Y such that
1. X compactly embedded in B
2. |lwallx < C, ||wp — wllg =0, ||wp|ly — 0 implies w = 0
Let T>01< p< +oo and (up)nen be a sequence such that
» (un)nen is bounded in LP(]O, T|, X),
> (Otun)nen is bounded in L1(]0, T[, Y).
Then there exists u € LP(]0, T|, B) such that, up to a
subsequence, u, — u in LP(]0, T[, B)

Particular cases for hypothesis 2:

Easy case : Y = X or B or, more generally, || - |5 < C|| - ||y
Aubin Simon : B continuously embedded in Y, || - ||y < C|| - |5



Generalized Lions lemma (crucial if || - ||z £ C|| - ||v)

X, B, Y are three Banach spaces, X C B, X C Y such that
1. X compactly embedded in B
2. [[whllx < C, ||wh— wl|lg =0, ||wa||ly — 0 implies w =0

Then, for any € > 0, there exists C; such that, for w € X,

Iwlls <ellwllx + Cllwlly-

Proof: By contradiction



Classical Lions lemma, a particular case, simpler

B is a Hilbert space and X is a Banach space X C B. We define
on X the dual norm of || - || x, with the scalar product of B, namely

lully = sup{(ulv)g, v € X, [lv]x <1}.

Then, for any € > 0 and w € X,

1
Iwlle < ellwlix + Zliwlly.

The proof is simple since

1 1 1
lulls = (ulu)g < (llullylullx)z < elwllx + =lwlly-

Compactness of X in B is not needed here (but this compactness
is needed for Aubin-Simon Compactness Lemma).



Use of the compactness lemma in the previous examples

For compressible Navier Stokes eqs :
B =1%(Q), X = H}(Q), Y = w=1(Q)

For Stefan problem :
X=1%(Q),B=Y=H1Q)

For incompressible Navier Stokes egs :
H = {u e H}(Q)4, divu = 0},
B=1%(Q), X =H, Y =H (with L2(Q) = L?(Q))

Is it possible to have discrete versions of these compactness results,
for proving the convergence of numerical schemes ?



Space-Time discretization

T > 0, time step k = %
» Hpq the space of functions from €2 to R, constant on each K,
K e M.

» The function u is constant on K x ((p — 1)k, pk) with
KeMand pe{l,...,N}.
u(-,t) = ulP for t € ((p — 1)k, pk) and ulP) € Hp.

> Discrete derivatives in time, O; xu, defined by:

1
Oru(-, ) = OF)u = 7 (uP) — uP™) for t € ((p — 1)k, pk),

for pe{2,..., N} (and O ku(-, t) = 0 for t € (0, k)).



Discrete Lions lemma

B is a Banach space, (Bp)nen is a sequence of finite dimensional
subspaces of B. || - ||x, and || - ||y, are two norms on B, such that:
If (||wnlx,)nen is bounded, then,

> up to a subsequence, there exists w € B s.t. w,, — w in B.

» If ||w, — w||g — 0 and ||w,]ly, — 0, then w = 0.
Then, for any € > 0, there exists C. such that, for n € N and
w E B,

Iwlls <ellwllx, + Cllwlly,

Example: B, = H4, (the finite dimensional space given by the
mesh M,). We have to choose B, || - ||x, and | - ||v,.



Discrete Lions lemma, proof

Proof by contradiction. There exists £ > 0 and (wj)nen such that,
for all n, w, € B,, and

Iwnllg > ellwanllx, + Callwallv,,

with lim,_ . C, = +o0.

It is possible to assume that ||w,||g = 1. Then (||wn||x,)nen is
bounded and, up to a subsequence, w, — w in B (so that

|lw|lg = 1). But ||wal||y, — 0, so that w = 0, in contradiction with
[wllg =1.



Discrete Compactness Lemma

B a Banach, 1 < p < 400, (Bn)nen family of finite dimensional
subspaces of B. || - ||x, and || - ||y, two norms on B, such that:
If (||wn|lx,)nen is bounded, then,

> up to a subsequence, there exists w € B s.t. w, — w in B.
> If ||w, — wl|lg — 0 and ||w,]ly, — 0, then w = 0.
Xn = Bp with norm || - ||x,, Y = B, with norm || - ||y,. Let
T >0, kn > 0 and (up)nen be a sequence such that
» for all n, u,(-,t) = ulP) € B, for t € ((p — 1)kn, pkn)
» (un)nen is bounded in LP((0, T), Xy),
> (Dt.k,Un)nen is bounded in L1((0, T), Ya).
Then there exists u € LP((0, T), B) such that, up to a
subsequence, u, — v in LP((0, T), B).

Example: B, = Hp,. We have to choose B, || - ||x,, || - ||y,



Discrete setting, evolution case, compressible NS, M2
pn — p weakly in L2(]0, T[, L2(Q2))
u, — u weakly in L2(]0, TJ, LZ(Q)d)
(n)n is bounded in L2(]0, T[, H'%), with || - |
8t,knpn + diVMn(ann) =0
Then (0 x,pn)n is bounded in L1(]0, T, Y,)
where Y, = H, with || - [|21,1,0m,

1,2,M{

Compactness Theorem with
B = H=5(Q) and X,, = H, with L?(£2)-norm
gives compactness of (p,), in L2(]0, T[, H5(RQ)), 0 < s < 1/2

u, — u weakly in L2(]0, T[, H5(Q)9)
pn = pin L2(]0, T[, H==(Q))
and, for any regular ¢,

/pnun VMo = (Pns tn - V@) 12(H-5) 12(Hs) + R = /pu Vo

which gives d;p + div(pu) =0



Discrete setting, evolution case, Stefan, M1

pn — p weakly in L2(]0, T[, L2(Q2))

u, — u weakly in L2(]0, T[, L2(R))

(un)n is bounded in L2(]0, T[, Ha, () with || - |l1.2.0,
O t.knPn — B, un = 0, up = ©(pn)

¢ € C(R,R) is nondecreasing ¢’ =0 on |a,b[, a< b

one has Oyp — Au =0, but u=¢(p) ?
First step: pass to the limit on [ ppup,

no direct estimate on O x,un,, but a discrete version of Alt-Luckaus
trick gives an estimate on the time-translates of u,
Then compactness of (u,), in L2(]0, T[, L3(Q))

u, — uin L2(]0, T[, L2(Q))
pn — p weakly in L2(]0, T[, L2(R2))

and, f]o,T[xQ Pnln — f]o,T[xQ pu
Second step: Minty trick, u = ¢(p)



Discrete setting, evolution case, Stefan, M2

pn — p weakly in L2(]0, T[, L?(2))

u, — u weakly in L2(]0, T[, L2())

(un)n is bounded in L2(]0, T, Haq,) with || - [|1.2.m,
Ot knPn — Br,utn = 0, Un = @(pp)

First step: pass to the limit on [ ppup,

(Ot k,Pn)n bounded in L2(]0, T[, Hat,) with || - [|—1.2.0,
This gives compactness of (p,), in L2(]0, T[, H=5(2))
B=H"(Q), Bn = Hum, Il x, = |- @) - v = 11 [-1.2.m,

pn— pin L2(]0, T[, H=5(Q)) (0 < s < 1/2)
u, — u weakly in L2(]0, T[, H5(Q))

and, f]o,T[xQ Pnln — f]o,T[xQ pu

Second step: Minty trick, u = ¢(p)

M2b is also possible



Spaces B, X,, Y, for compressible NS
B=H"5(Q),0<s<1/2
Yo = Hu, with || - [l -11.0m,
Xy = H, with L2(Q)-norm
» Compact embedding of L2(Q) in H=5(Q)
> If w, € Hry,, Wy — w weakly in L?(Q) and
|Wnll-1,1,Mm, — 0, then w =0 ? Yes. .. Proof :
Let ¢ € WOI’OO(Q) and its “projection” mpp € Hag,. One has
[mnpll1,00M, < H‘PHWLOO(Q) and then

| /Q wn(Tp)dx| < [Wall—11 0ol wroeqy = 0.
and, since w, — w weakly in L1(Q) and 7,9 — ¢ uniformly,

/Wn(wngo)dx—>/ wpdx.
Q Q

This gives [ wpdx = 0 for all ¢ € Wol’OO(Q) and then
w=20a.e.



