Discrete functional analysis

T. Gallouët

IHP 2016

Objective: To present discrete functional analysis tools for proving the convergence of numerical schemes, mainly for elliptic and parabolic equations (Stefan problem, incompressible and compressible Navier-Stokes equations)

Works with many co-authors

Continuous setting, Stationary case

Discrete setting mimics continuous setting.

 Ω bounded open set of \mathbb{R}^d $(d \geq 1)$

$$\rho_n \to \rho$$
 weakly in $L^2(\Omega)$
 $u_n \to u$ weakly in $L^2(\Omega)$

Question :
$$\int_{\Omega} \rho_n u_n \to \int_{\Omega} \rho u$$
 ?

- ▶ in general, no.
- yes if $(u_n)_n$ is bounded in $H_0^1(\Omega)$

Two methods,

- ▶ Compactness on $(u_n)_n$ (M1)
- ▶ Compactness on $(\rho_n)_n$ (M2)

Continuous setting, Stationary case, M1

 Ω bounded open set of \mathbb{R}^d (d > 1) $\rho_n \to \rho$ weakly in $L^2(\Omega)$ $u_n \to u$ weakly in $L^2(\Omega)$ $(u_n)_n$ is bounded in $H_0^1(\Omega)$ Compact embedding of $H_0^1(\Omega)$ in $L^2(\Omega)$ Then $u_n \to u$ in $L^2(\Omega)$ $\rho_n \to \rho$ weakly in $L^2(\Omega)$ and $\int_{\Omega} \rho_n u_n \to \int_{\Omega} \rho u$

Continuous setting, Stationary case, M2

```
\Omega bounded open set of \mathbb{R}^d (d \geq 1)
\rho_n \to \rho weakly in L^2(\Omega)
u_n \to u weakly in L^2(\Omega)
(u_n)_n is bounded in H_0^1(\Omega)
Identify L^2(\Omega)' with L^2(\Omega)
Compact embedding of L^2(\Omega) in H^{-1}(\Omega)
Then
u_n \to u weakly in H^1_0(\Omega)
\rho_n \to \rho in H^{-1}(\Omega)
and \int_{\Omega} \rho_n u_n = \langle \rho_n, u_n \rangle_{H^{-1}, H_0^1} \rightarrow \langle \rho, u \rangle_{H^{-1}, H_0^1} = \int_{\Omega} \rho u
```

Continuous setting, Stationary case, M2b

 Ω bounded open set of \mathbb{R}^d $(d \geq 1)$ $\rho_n \to \rho$ weakly in $L^2(\Omega)$ $u_n \to u$ weakly in $L^2(\Omega)$ $(u_n)_n$ is bounded in $H_0^1(\Omega)$ Identify $L^2(\Omega)'$ with $L^2(\Omega)$ $-\Delta w_n = \rho_n$, $w_n \in H_0^1(\Omega)$, $-\Delta w = \rho$, $w \in H_0^1(\Omega)$ Since $\rho_n \to \rho$ in $H^{-1}(\Omega)$, one has $w_n \to w$ in $H_0^1(\Omega)$ Then $\nabla u_n \to \nabla u$ weakly in $L^2(\Omega)^d$ $\nabla w_n \to \nabla w$ in $L^2(\Omega)^d$ and $\int_{\Omega} \rho_n u_n = \int_{\Omega} \nabla w_n \cdot \nabla u_n \to \int_{\Omega} \nabla w \cdot \nabla u = \int_{\Omega} \rho u$

Discrete setting, stationary case

It is possible to adapt the previous methods to a discrete setting where $H_0^1(\Omega)$ is replaced by a space H_n which depends on n (with a norm, depending on n, "close" to the H_0^1 -norm).

Space discretization, Finite Volume scheme

Admissible mesh \mathcal{M} .

$$T_{K,L} = m_{K,L} / d_{K,L}$$

$$\operatorname{size}(\mathcal{M}) = \sup\{\operatorname{diam}(K), K \in \mathcal{M}\}\$$

 $H_{\mathcal{M}}$: functions from Ω to \mathbb{R} , constant on each K, $K \in \mathcal{M}$

Discrete norms

Admissible mesh: \mathcal{M} . $u \in \mathcal{H}_{\mathcal{M}}$ (that is u is a function constant on each K, $K \in \mathcal{M}$).

▶ $1 \le q < \infty$. Discrete $W_0^{1,q}$ -norm:

$$\|u\|_{1,q,\mathcal{M}}^{q} = \sum_{\sigma \in \mathcal{E}_{int}, \sigma = K|L} m_{\sigma} d_{\sigma} \left| \frac{u_{K} - u_{L}}{d_{\sigma}} \right|^{q} + \sum_{\sigma \in \mathcal{E}_{ext}, \sigma \in \mathcal{E}_{K}} m_{\sigma} d_{\sigma} \left| \frac{u_{K}}{d_{\sigma}} \right|^{q}$$

▶ $q = \infty$. Discrete $W_0^{1,\infty}$ -norm: $\|u\|_{1,\infty,\mathcal{M}}^q = \max\{M_i,M_e,M\}$ with $M_i = \max\{\frac{|u_K - u_L|}{d_\sigma}, \ \sigma \in \mathcal{E}_{int}, \sigma = K|L\},$ $M_e = \max\{\frac{|u_K|}{d_\sigma}, \ \sigma \in \mathcal{E}_{ext}, \sigma \in \mathcal{E}_K\},$ $M = \max\{|u_K|, \ K \in \mathcal{M}\}.$

Discrete dual norms

Admissible mesh: \mathcal{M} .

For $r \in [1, \infty]$, $\|\cdot\|_{-1,r,\mathcal{M}}$ is the dual norm of the norm $\|\cdot\|_{1,q,\mathcal{M}}$ with q = r/(r-1). That is, for $u \in \mathcal{H}_{\mathcal{M}}$,

$$\|u\|_{-1,r,\mathcal{M}}=\max\{\int_{\Omega}uv\ dx,\ v\in H_{\mathcal{M}},\|v\|_{1,q,\mathcal{M}}\leq 1\}.$$

With
$$L^2(\Omega)' = L^2(\Omega)$$
, $W^{-1,r}(\Omega) = (W_0^{1,q}(\Omega))'$, $r > 1$
If $r \in]1, +\infty]$, $\|\cdot\|_{-1,r,\mathcal{M}}$ mimics the $W^{-1,r}(\Omega)$ -norm $\|u\|_{-1,1,\mathcal{M}}$ mimics the $W_\star^{-1,1}(\Omega)$ -norm, $W_\star^{-1,1}(\Omega) = (W_0^{1,\infty}(\Omega))'$

Discrete setting, Stationary case, M1

```
\rho_n, u_n \in H_{\mathcal{M}_n}, \operatorname{size}(\mathcal{M}_n) \to 0 as n \to \infty (regularity of the meshes)
\rho_n \to \rho weakly in L^2(\Omega)
u_n \to u weakly in L^2(\Omega)
(u_n)_n is bounded in H_{\mathcal{M}_n}, \|\cdot\|_{1,2,\mathcal{M}_n}
"Compact embedding" of (H_{\mathcal{M}_n}, \|\cdot\|_{1,2,\mathcal{M}_n})_n in L^2(\Omega)
Then
u_n \to u in L^2(\Omega)
\rho_n \to \rho weakly in L^2(\Omega)
and \int_{\Omega} \rho_n u_n \to \int_{\Omega} \rho u
Compactness follows from
||u(\cdot + \eta) - u||_2 \le C \sqrt{|\eta|} ||u||_{1,2,\mathcal{M}_n} if u \in \mathcal{H}_{\mathcal{M}_n}
 (admissible meshes)
```

Discrete setting, Stationary case, M2

```
\rho_n, u_n \in H_{\mathcal{M}_n}, \operatorname{size}(\mathcal{M}_n) \to 0 as n \to \infty (regularity of the meshes)
\rho_n \to \rho weakly in L^2(\Omega)
u_n \to u weakly in L^2(\Omega)
(u_n)_n is bounded in H_{\mathcal{M}_n}, \|\cdot\|_{1,2,\mathcal{M}_n}
This gives (u_n)_n is bounded in H^s(\Omega), 0 < s < 1/2
Identify L^2(\Omega)' with L^2(\Omega)
Compact embedding of L^2(\Omega) in H^{-s}(\Omega)
Then
u_n \to u weakly in H^s(\Omega)
\rho_n \to \rho in H^{-s}(\Omega)
and \int_{\Omega} \rho_n u_n = \langle \rho_n, u_n \rangle_{H^{-s}, H^s} \rightarrow \langle \rho, u \rangle_{H^{-s}, H^s} = \int_{\Omega} \rho u
```

General meshes, Stationary case, M1 or M2b

```
\rho_n \to \rho
 weakly in L^2(\Omega)

u_n \to u
 weakly in L^2(\Omega)

(u_n)_n
 is bounded in H_{\mathcal{M}_n}, \|\nabla_{\mathcal{M}_n} \cdot \|_2
```

M1 : "Compact embedding" of $(H_{\mathcal{M}_n}, \|\nabla_{\mathcal{M}_n} \cdot \|_2)_n$ in $L^2(\Omega)$ then $u_n \to u$ in $L^2(\Omega)$

M2b:

- $abla_{\mathcal{M}_n} u_n o
 abla u$ weakly in $L^2(\Omega)^d$
- ► $-\Delta_{\mathcal{M}_n} w_n = \rho_n$, $w_n \in H_{\mathcal{M}_n}(\Omega)$, $-\Delta w = \rho$, $w \in H_0^1(\Omega)$ Since $\rho_n \to \rho$ weakly in $L^2(\Omega)$, one has $\nabla_{\mathcal{M}_n} w_n \to \nabla w$ in $L^2(\Omega)^d$

Then
$$\int_{\Omega} \rho_n u_n = \int_{\Omega} \nabla_{\mathcal{M}_n} w_n \cdot \nabla_{\mathcal{M}_n} \nabla u_n \to \int_{\Omega} \nabla w \cdot \nabla u = \int_{\Omega} \rho u$$

Continuous setting, evolution case

$$\rho_n \to \rho$$
 weakly in $L^2(]0, T[, L^2(\Omega))$
 $u_n \to u$ weakly in $L^2(]0, T[, L^2(\Omega))$

Question :
$$\int_{]0,T[\times\Omega[}\rho_nu_n\to\int_{]0,T[\times\Omega[}\rho u ?$$

- ▶ in general, no. Even if $(u_n)_n$ is bounded in $L^2(]0, T[, H_0^1(\Omega))$ No compactness of $L^2(]0, T[, H_0^1(\Omega))$ in $L^2(]0, T[, L^2(\Omega))$
- ▶ yes if $(u_n)_n$ is bounded in $H^1(]0, T[, H^1_0(\Omega))$ since compactness of $H^1(]0, T[, H^1_0(\Omega))$ in $L^2(]0, T[, L^2(\Omega))$
- ▶ yes if $(\rho_n)_n$ is bounded in $H^1(]0, T[, L^2(\Omega))$ since compactness of $H^1(]0, T[, L^2(\Omega))$ in $L^2(]0, T[, H^{-1}(\Omega))$

Is it possible to use weaker hypotheses on $(\partial_t u_n)_n$ or $(\partial_t \rho_n)_n$?

Continuous setting, evolution case, compressible NS, M2

```
\rho_n \to \rho weakly in L^2(]0, T[, L^2(\Omega))
u_n \to u weakly in L^2(]0, T[, L^2(\Omega)^d)
(u_n)_n is bounded in L^2(]0, T[, H_0^1(\Omega)^d)
\partial_t \rho_n + \operatorname{div}(\rho_n u_n) = 0
Then (\partial_t \rho_n)_n is bounded in L^1(]0, T[, W^{-1,1}(\Omega))
This gives compactness of (\rho_n)_n in L^2(]0, T[, H^{-1}(\Omega))
(adaptation of the Aubin-Simon compactness Theorem)
u_n \to u weakly in L^2(]0, T[, H_0^1(\Omega)^d)
\rho_n \to \rho in L^2(]0, T[, H^{-1}(\Omega))
```

$$\int_{]0,T[\times\Omega}\rho_nu_n\cdot\nabla\varphi=\langle\rho_n,u_n\cdot\nabla\varphi\rangle_{L^2(H^{-1}),L^2(H^1_0)}\to\int_{]0,T[\times\Omega}\rho u\cdot\nabla\varphi$$

which gives $\partial_t \rho + \operatorname{div}(\rho u) = 0$

and, for any regular φ ,

Continuous setting, evolution case, Stefan, M1

```
\rho_n \to \rho weakly in L^2(]0, T[, L^2(\Omega))
u_n \to u weakly in L^2(]0, T[, L^2(\Omega))
(u_n)_n is bounded in L^2(]0, T[, H_0^1(\Omega))
\partial_t \rho_n - \Delta u_n = 0, \ u_n = \varphi(\rho_n)
\varphi \in C(\mathbb{R}, \mathbb{R}) is nondecreasing \varphi' = 0 on ]a, b[, a < b]
one has \partial_t \rho - \Delta u = 0, but u = \varphi(\rho)?
First step: pass to the limit on \int \rho_n u_n
no direct estimate on \partial_t u_n, but (Alt-Luckaus trick) estimate on the
time-translates of u_n
Then compactness of (u_n)_n in L^2(]0, T[, L^2(\Omega))
u_n \to u in L^2(]0, T[, L^2(\Omega))
\rho_n \to \rho weakly in L^2(]0, T[, L^2(\Omega))
and, \int_{[0,T]\times\Omega}\rho_n u_n\to\int_{[0,T]\times\Omega}\rho u
Second step : Minty trick, u = \varphi(\rho)
```

Minty trick

$$ho_n
ightarrow
ho$$
 weakly in L^2 ($L^2 = L^2(\Omega)$ or $L^2(]0, T[, L^2(\Omega))$) $u_n
ightarrow u$ weakly in L^2
$$\int \rho_n u_n
ightarrow \int \rho u$$
 $u_n = \varphi(\rho_n)$
$$\varphi \in C(\mathbb{R}, \mathbb{R}) \text{ is nondecreasing, } |\varphi(s)| \leq C|s|$$
 Question : $u = \varphi(\rho)$? for any $\bar{\rho} \in L^2$
$$0 \leq \int (\rho_n - \bar{\rho})(\varphi(\rho_n) - \varphi(\bar{\rho})) = \int (\rho_n - \bar{\rho})(u_n - \varphi(\bar{\rho}))$$
 as $n \to \infty$, $0 \leq \int (\rho - \bar{\rho})(u - \varphi(\bar{\rho}))$ $\bar{\rho} = \rho - \varepsilon \psi$, $\varepsilon > 0$ and ψ regular function,
$$0 \leq \int \psi(u - \varphi(\rho - \varepsilon \psi))$$
 $\varepsilon \to 0$, ψ and $-\psi$ give $\int \psi(u - \varphi(\rho)) = 0$ and then $u = \varphi(\rho)$

Continuous setting, evolution case, Stefan, M2

```
\rho_n \to \rho weakly in L^2(]0, T[, L^2(\Omega))
u_n \to u weakly in L^2(]0, T[, L^2(\Omega))
(u_n)_n is bounded in L^2(]0, T[, H_0^1(\Omega))
\partial_t \rho_n - \Delta u_n = 0, u_n = \varphi(\rho_n)
Then (\partial_t \rho_n)_n bounded in L^2(]0, T[, H^{-1}(\Omega))
This gives compactness of (\rho_n)_n in L^2(]0, T[, H^{-1}(\Omega))
u_n \to u weakly in L^2(]0, T[, H_0^1(\Omega))
\rho_n \to \rho in L^2(]0, T[, H^{-1}(\Omega))
and, \int_{10.T[\times\Omega]} \rho_n u_n \to \int_{10.T[\times\Omega]} \rho u
which gives (Minty trick) u = \varphi(\rho)
```

M2b is also possible

(Generalized) Aubin-Simon Compactness Lemma

- X, B, Y are three Banach spaces, $X \subset B$, $X \subset Y$ such that
- 1. X compactly embedded in B
- 2. $\|w_n\|_X \le C$, $\|w_n w\|_B \to 0$, $\|w_n\|_Y \to 0$ implies w = 0

Let T>0 $1\leq p<+\infty$ and $(u_n)_{n\in\mathbb{N}}$ be a sequence such that

- ▶ $(u_n)_{n\in\mathbb{N}}$ is bounded in $L^p(]0, T[,X)$,
- ▶ $(\partial_t u_n)_{n \in \mathbb{N}}$ is bounded in $L^1(]0, T[, Y)$.

Then there exists $u \in L^p(]0, T[,B)$ such that, up to a subsequence, $u_n \to u$ in $L^p(]0, T[,B)$

Particular cases for hypothesis 2:

Easy case : Y = X or B or, more generally, $\|\cdot\|_B \le C \|\cdot\|_Y$ Aubin Simon : B continuously embedded in Y, $\|\cdot\|_Y \le C \|\cdot\|_B$

Generalized Lions lemma (crucial if $\|\cdot\|_B \not\leq C \|\cdot\|_Y$)

X, B, Y are three Banach spaces, $X \subset B, X \subset Y$ such that

- 1. X compactly embedded in B
- 2. $||w_n||_X \le C$, $||w_n w||_B \to 0$, $||w_n||_Y \to 0$ implies w = 0

Then, for any $\varepsilon > 0$, there exists C_{ε} such that, for $w \in X$,

$$\|w\|_B \leq \varepsilon \|w\|_X + C_{\varepsilon} \|w\|_Y.$$

Proof: By contradiction

Classical Lions lemma, a particular case, simpler

B is a Hilbert space and X is a Banach space $X \subset B$. We define on X the dual norm of $\|\cdot\|_X$, with the scalar product of B, namely

$$||u||_Y = \sup\{(u|v)_B, \ v \in X, ||v||_X \le 1\}.$$

Then, for any $\varepsilon > 0$ and $w \in X$,

$$\|w\|_{B} \leq \varepsilon \|w\|_{X} + \frac{1}{\varepsilon} \|w\|_{Y}.$$

The proof is simple since

$$||u||_B = (u|u)_B^{\frac{1}{2}} \le (||u||_Y ||u||_X)^{\frac{1}{2}} \le \varepsilon ||w||_X + \frac{1}{\varepsilon} ||w||_Y.$$

Compactness of X in B is not needed here (but this compactness is needed for Aubin-Simon Compactness Lemma).

Use of the compactness lemma in the previous examples

For compressible Navier Stokes eqs:

$$B = L^{2}(\Omega), X = H_{0}^{1}(\Omega), Y = W^{-1,1}(\Omega)$$

For Stefan problem:

$$X = L^2(\Omega), B = Y = H^{-1}(\Omega)$$

For incompressible Navier Stokes eqs:

$$H = \{u \in H_0^1(\Omega)^d, \operatorname{div} u = 0\},\ B = L^2(\Omega), X = H, Y = H' \text{ (with } L^2(\Omega)' = L^2(\Omega)\text{)}$$

Is it possible to have discrete versions of these compactness results, for proving the convergence of numerical schemes ?

Space-Time discretization

T > 0, time step $k = \frac{T}{N}$

- ▶ H_M the space of functions from Ω to \mathbb{R} , constant on each K, $K \in \mathcal{M}$.
- ▶ The function u is constant on $K \times ((p-1)k, pk)$ with $K \in \mathcal{M}$ and $p \in \{1, ..., N\}$. $u(\cdot, t) = u^{(p)}$ for $t \in ((p-1)k, pk)$ and $u^{(p)} \in \mathcal{H}_{\mathcal{M}}$.
- ▶ Discrete derivatives in time, $\partial_{t,k}u$, defined by:

$$\begin{split} \partial_{t,k} u(\cdot,t) &= \partial_{t,k}^{(p)} u = \frac{1}{k} (u^{(p)} - u^{(p-1)}) \text{ for } t \in ((p-1)k,pk), \\ \text{for } p &\in \{2,\dots,N\} \text{ (and } \partial_{t,k} u(\cdot,t) = 0 \text{ for } t \in (0,k)). \end{split}$$

Discrete Lions lemma

B is a Banach space, $(B_n)_{n\in\mathbb{N}}$ is a sequence of finite dimensional subspaces of B. $\|\cdot\|_{X_n}$ and $\|\cdot\|_{Y_n}$ are two norms on B_n such that: If $(\|w_n\|_{X_n})_{n\in\mathbb{N}}$ is bounded, then,

- ▶ up to a subsequence, there exists $w \in B$ s.t. $w_n \to w$ in B.
- ▶ If $||w_n w||_B \rightarrow 0$ and $||w_n||_{Y_n} \rightarrow 0$, then w = 0.

Then, for any $\varepsilon > 0$, there exists C_{ε} such that, for $n \in \mathbb{N}$ and $w \in B_n$

$$\|w\|_B \leq \varepsilon \|w\|_{X_n} + C_{\varepsilon} \|w\|_{Y_n}.$$

Example: $B_n = H_{\mathcal{M}_n}$ (the finite dimensional space given by the mesh \mathcal{M}_n). We have to choose B, $\|\cdot\|_{X_n}$ and $\|\cdot\|_{Y_n}$.

Discrete Lions lemma, proof

Proof by contradiction. There exists $\varepsilon > 0$ and $(w_n)_{n \in \mathbb{N}}$ such that, for all $n, w_n \in B_n$ and

$$||w_n||_B > \varepsilon ||w_n||_{X_n} + C_n ||w_n||_{Y_n},$$

with $\lim_{n\to\infty} C_n = +\infty$.

It is possible to assume that $\|w_n\|_B=1$. Then $(\|w_n\|_{X_n})_{n\in\mathbb{N}}$ is bounded and, up to a subsequence, $w_n\to w$ in B (so that $\|w\|_B=1$). But $\|w_n\|_{Y_n}\to 0$, so that w=0, in contradiction with $\|w\|_B=1$.

Discrete Compactness Lemma

B a Banach, $1 \leq p < +\infty$, $(B_n)_{n \in \mathbb{N}}$ family of finite dimensional subspaces of B. $\|\cdot\|_{X_n}$ and $\|\cdot\|_{Y_n}$ two norms on B_n such that: If $(\|w_n\|_{X_n})_{n \in \mathbb{N}}$ is bounded, then,

- ▶ up to a subsequence, there exists $w \in B$ s.t. $w_n \to w$ in B.
- ▶ If $||w_n w||_B \rightarrow 0$ and $||w_n||_{Y_n} \rightarrow 0$, then w = 0.

 $X_n=B_n$ with norm $\|\cdot\|_{X_n}$, $Y_n=B_n$ with norm $\|\cdot\|_{Y_n}$. Let T>0, $k_n>0$ and $(u_n)_{n\in\mathbb{N}}$ be a sequence such that

- ▶ for all n, $u_n(\cdot,t) = u_n^{(p)} \in B_n$ for $t \in ((p-1)k_n, pk_n)$
- $(u_n)_{n\in\mathbb{N}}$ is bounded in $L^p((0,T),X_n)$,
- $(\partial_{t,k_n}u_n)_{n\in\mathbb{N}}$ is bounded in $L^1((0,T),Y_n)$.

Then there exists $u \in L^p((0,T),B)$ such that, up to a subsequence, $u_n \to u$ in $L^p((0,T),B)$.

Example: $B_n = H_{\mathcal{M}_n}$. We have to choose $B_n \| \cdot \|_{X_n}$, $\| \cdot \|_{Y_n}$

Discrete setting, evolution case, compressible NS, M2

$$\rho_n \to \rho$$
 weakly in $L^2(]0, T[, L^2(\Omega))$
 $u_n \to u$ weakly in $L^2(]0, T[, L^2(\Omega)^d)$
 $(u_n)_n$ is bounded in $L^2(]0, T[, H^{(d)}_{\mathcal{M}_n})$, with $\|\cdot\|_{1,2,\mathcal{M}_n^{(i)}}$
 $\partial_{t,k_n}\rho_n + \operatorname{div}_{\mathcal{M}_n}(\rho_n u_n) = 0$

Then $(\partial_{t,k_n}\rho_n)_n$ is bounded in $L^1(]0, T[, Y_n)$ where $Y_n = H_{\mathcal{M}_n}$ with $\|\cdot\|_{-1,1,\mathcal{M}_n}$

Compactness Theorem with $B = H^{-s}(\Omega)$ and $X_n = H_{M_n}$

 $B = H^{-s}(\Omega)$ and $X_n = H_{\mathcal{M}_n}$ with $L^2(\Omega)$ -norm gives compactness of $(\rho_n)_n$ in $L^2(]0, T[, H^{-s}(\Omega))$, 0 < s < 1/2

 $u_n \to u$ weakly in $L^2(]0, T[, H^s(\Omega)^d)$ $\rho_n \to \rho$ in $L^2(]0, T[, H^{-s}(\Omega))$ and, for any regular φ ,

$$\int \rho_n u_n \cdot \nabla_{\mathcal{M}_n} \varphi = \langle \rho_n, u_n \cdot \nabla \varphi \rangle_{L^2(H^{-s}), L^2(H^s)} + R \to \int \rho u \cdot \nabla \varphi$$

Discrete setting, evolution case, Stefan, M1

```
\rho_n \to \rho weakly in L^2(]0, T[, L^2(\Omega))
u_n \to u weakly in L^2(]0, T[, L^2(\Omega))
(u_n)_n is bounded in L^2(]0, T[, H_{\mathcal{M}_n}(\Omega)) with \|\cdot\|_{1,2,\mathcal{M}_n}
\partial_{\mathcal{A}_n k_n} \rho_n - \Delta_{\mathcal{M}_n} u_n = 0, \ u_n = \varphi(\rho_n)
\varphi \in C(\mathbb{R}, \mathbb{R}) is nondecreasing \varphi' = 0 on ]a, b[, a < b]
one has \partial_t \rho - \Delta u = 0, but u = \varphi(\rho)?
First step: pass to the limit on \int \rho_n u_n
no direct estimate on \partial_{t,k_n}u_n, but a discrete version of Alt-Luckaus
trick gives an estimate on the time-translates of u_n
Then compactness of (u_n)_n in L^2(]0, T[, L^2(\Omega))
u_n \to u in L^2(]0, T[, L^2(\Omega))
\rho_n \to \rho weakly in L^2(]0, T[, L^2(\Omega))
and, \int_{[0,T]\times\Omega}\rho_n u_n\to\int_{[0,T]\times\Omega}\rho u
Second step: Minty trick, u = \varphi(\rho)
```

Discrete setting, evolution case, Stefan, M2

```
\rho_n \to \rho weakly in L^2(]0, T[, L^2(\Omega))
u_n \to u weakly in L^2(]0, T[, L^2(\Omega))
(u_n)_n is bounded in L^2(]0, T[, H_{\mathcal{M}_n}) with \|\cdot\|_{1,2,\mathcal{M}_n}
\partial_{t,t,k_n}\rho_n - \Delta_{\mathcal{M}_n}u_n = 0, \ u_n = \varphi(\rho_n)
First step: pass to the limit on \int \rho_n u_n
(\partial_{t,k_n}\rho_n)_n bounded in L^2(]0,T[,H_{\mathcal{M}_n}) with \|\cdot\|_{-1,2,\mathcal{M}_n}
This gives compactness of (\rho_n)_n in L^2(]0, T[, H^{-s}(\Omega))
B = H^{-s}(\Omega), B_n = H_{\mathcal{M}_n}, \|\cdot\|_{X_n} = \|\cdot\|_{L^2(\Omega)}, \|\cdot\|_{Y_n} = \|\cdot\|_{-1,2,\mathcal{M}_n}
\rho_n \to \rho \text{ in } L^2(]0, T[, H^{-s}(\Omega)) \ (0 < s < 1/2)
u_n \to u weakly in L^2(]0, T[, H^s(\Omega))
and, \int_{10.T[\times\Omega]} \rho_n u_n \to \int_{10.T[\times\Omega]} \rho u
Second step: Minty trick, u = \varphi(\rho)
M2b is also possible
```

Spaces B, X_n , Y_n for compressible NS

$$B = H^{-s}(\Omega), \ 0 < s < 1/2$$

 $Y_n = H_{\mathcal{M}_n} \text{ with } \| \cdot \|_{-1,1,\mathcal{M}_n}$
 $X_n = H_{\mathcal{M}_n} \text{ with } L^2(\Omega)\text{-norm}$

- ▶ Compact embedding of $L^2(\Omega)$ in $H^{-s}(\Omega)$
- ▶ If $w_n \in H_{\mathcal{M}_n}$, $w_n \to w$ weakly in $L^2(\Omega)$ and $\|w_n\|_{-1,1,\mathcal{M}_n} \to 0$, then w = 0 ? Yes... Proof: Let $\varphi \in W_0^{1,\infty}(\Omega)$ and its "projection" $\pi_n \varphi \in H_{\mathcal{M}_n}$. One has $\|\pi_n \varphi\|_{1,\infty,\mathcal{M}_n} \leq \|\varphi\|_{W^{1,\infty}(\Omega)}$ and then

$$|\int_{\Omega} w_n(\pi_n\varphi)dx| \leq ||w_n||_{-1,1,\mathcal{M}_n} ||\varphi||_{W^{1,\infty}(\Omega)} \to 0,$$

and, since $w_n \to w$ weakly in $L^1(\Omega)$ and $\pi_n \varphi \to \varphi$ uniformly,

$$\int_{\Omega} w_n(\pi_n\varphi)dx \to \int_{\Omega} w\varphi dx.$$

This gives $\int_{\Omega} w \varphi dx = 0$ for all $\varphi \in W_0^{1,\infty}(\Omega)$ and then w = 0 a.e.

