Discrete functional analysis

T. Gallouët

IHP 2016

Objective : To present discrete functional analysis tools for proving the convergence of numerical schemes, mainly for elliptic and parabolic equations (Stefan problem, incompressible and compressible Navier-Stokes equations)

Works with many co-authors

Continuous setting, Stationary case

Discrete setting mimics continuous setting.
Ω bounded open set of $\mathbb{R}^{d}(d \geq 1)$
$\rho_{n} \rightarrow \rho$ weakly in $L^{2}(\Omega)$
$u_{n} \rightarrow u$ weakly in $L^{2}(\Omega)$
Question: $\int_{\Omega} \rho_{n} u_{n} \rightarrow \int_{\Omega} \rho u$?

- in general, no.
- yes if $\left(u_{n}\right)_{n}$ is bounded in $H_{0}^{1}(\Omega)$

Two methods,

- Compactness on $\left(u_{n}\right)_{n}(\mathrm{M} 1)$
- Compactness on $\left(\rho_{n}\right)_{n}$ (M2)

Continuous setting, Stationary case, M1

Ω bounded open set of $\mathbb{R}^{d}(d \geq 1)$
$\rho_{n} \rightarrow \rho$ weakly in $L^{2}(\Omega)$
$u_{n} \rightarrow u$ weakly in $L^{2}(\Omega)$
$\left(u_{n}\right)_{n}$ is bounded in $H_{0}^{1}(\Omega)$
Compact embedding of $H_{0}^{1}(\Omega)$ in $L^{2}(\Omega)$
Then
$u_{n} \rightarrow u$ in $L^{2}(\Omega)$
$\rho_{n} \rightarrow \rho$ weakly in $L^{2}(\Omega)$
and $\int_{\Omega} \rho_{n} u_{n} \rightarrow \int_{\Omega} \rho u$

Continuous setting, Stationary case, M2

Ω bounded open set of $\mathbb{R}^{d}(d \geq 1)$
$\rho_{n} \rightarrow \rho$ weakly in $L^{2}(\Omega)$
$u_{n} \rightarrow u$ weakly in $L^{2}(\Omega)$
$\left(u_{n}\right)_{n}$ is bounded in $H_{0}^{1}(\Omega)$
Identify $L^{2}(\Omega)^{\prime}$ with $L^{2}(\Omega)$
Compact embedding of $L^{2}(\Omega)$ in $H^{-1}(\Omega)$
Then
$u_{n} \rightarrow u$ weakly in $H_{0}^{1}(\Omega)$
$\rho_{n} \rightarrow \rho$ in $H^{-1}(\Omega)$
and $\int_{\Omega} \rho_{n} u_{n}=\left\langle\rho_{n}, u_{n}\right\rangle_{H^{-1}, H_{0}^{1}} \rightarrow\langle\rho, u\rangle_{H^{-1}, H_{0}^{1}}=\int_{\Omega} \rho u$

Continuous setting, Stationary case, M2b

Ω bounded open set of $\mathbb{R}^{d}(d \geq 1)$
$\rho_{n} \rightarrow \rho$ weakly in $L^{2}(\Omega)$
$u_{n} \rightarrow u$ weakly in $L^{2}(\Omega)$
$\left(u_{n}\right)_{n}$ is bounded in $H_{0}^{1}(\Omega)$
Identify $L^{2}(\Omega)^{\prime}$ with $L^{2}(\Omega)$
$-\Delta w_{n}=\rho_{n}, w_{n} \in H_{0}^{1}(\Omega),-\Delta w=\rho, w \in H_{0}^{1}(\Omega)$
Since $\rho_{n} \rightarrow \rho$ in $H^{-1}(\Omega)$, one has
$w_{n} \rightarrow w$ in $H_{0}^{1}(\Omega)$
Then
$\nabla u_{n} \rightarrow \nabla u$ weakly in $L^{2}(\Omega)^{d}$
$\nabla w_{n} \rightarrow \nabla w$ in $L^{2}(\Omega)^{d}$
and $\int_{\Omega} \rho_{n} u_{n}=\int_{\Omega} \nabla w_{n} \cdot \nabla u_{n} \rightarrow \int_{\Omega} \nabla w \cdot \nabla u=\int_{\Omega} \rho u$

Discrete setting, stationary case

It is possible to adapt the previous methods to a discrete setting where $H_{0}^{1}(\Omega)$ is replaced by a space H_{n} which depends on n (with a norm, depending on n, "close" to the H_{0}^{1}-norm).

Space discretization, Finite Volume scheme

Admissible mesh \mathcal{M}.

$$
T_{K, L}=m_{K, L} / d_{K, L}
$$

$\operatorname{size}(\mathcal{M})=\sup \{\operatorname{diam}(K), K \in \mathcal{M}\}$
$H_{\mathcal{M}}$: functions from Ω to \mathbb{R}, constant on each $K, K \in \mathcal{M}$

Discrete norms

Admissible mesh: \mathcal{M}.
$u \in H_{\mathcal{M}}$ (that is u is a function constant on each $K, K \in \mathcal{M}$).

- $1 \leq q<\infty$. Discrete $W_{0}^{1, q}$-norm:

$$
\|u\|_{1, q, \mathcal{M}}^{q}=\sum_{\sigma \in \mathcal{E}_{i n t}, \sigma=K \mid L} m_{\sigma} d_{\sigma}\left|\frac{u_{K}-u_{L}}{d_{\sigma}}\right|^{q}+\sum_{\sigma \in \mathcal{E}_{\text {ext }, \sigma \in \mathcal{E}_{K}}} m_{\sigma} d_{\sigma}\left|\frac{u_{K}}{d_{\sigma}}\right|^{q}
$$

- $q=\infty$. Discrete $W_{0}^{1, \infty}{ }_{-}$norm: $\|u\|_{1, \infty, \mathcal{M}}^{q}=\max \left\{M_{i}, M_{e}, M\right\}$ with

$$
\begin{gathered}
M_{i}=\max \left\{\frac{\left|u_{K}-u_{L}\right|}{d_{\sigma}}, \sigma \in \mathcal{E}_{i n t}, \sigma=K \mid L\right\}, \\
M_{e}=\max \left\{\frac{\left|u_{K}\right|}{d_{\sigma}}, \sigma \in \mathcal{E}_{e x t}, \sigma \in \mathcal{E}_{K}\right\} \\
M=\max \left\{\left|u_{K}\right|, K \in \mathcal{M}\right\}
\end{gathered}
$$

Discrete dual norms

Admissible mesh: \mathcal{M}.
For $r \in[1, \infty],\|\cdot\|_{-1, r, \mathcal{M}}$ is the dual norm of the norm $\|\cdot\|_{1, q, \mathcal{M}}$ with $q=r /(r-1)$. That is, for $u \in H_{\mathcal{M}}$,

$$
\|u\|_{-1, r, \mathcal{M}}=\max \left\{\int_{\Omega} u v d x, v \in H_{\mathcal{M}},\|v\|_{1, q, \mathcal{M}} \leq 1\right\}
$$

With $L^{2}(\Omega)^{\prime}=L^{2}(\Omega), W^{-1, r}(\Omega)=\left(W_{0}^{1, q}(\Omega)\right)^{\prime}, r>1$
If $r \in] 1,+\infty],\|\cdot\|_{-1, r, \mathcal{M}}$ mimics the $W^{-1, r}(\Omega)$-norm $\|u\|_{-1,1, \mathcal{M}}$ mimics the $W_{\star}^{-1,1}(\Omega)$-norm, $W_{\star}^{-1,1}(\Omega)=\left(W_{0}^{1, \infty}(\Omega)\right)^{\prime}$

Discrete setting, Stationary case, M1

$\rho_{n}, u_{n} \in H_{\mathcal{M}_{n}}$, $\operatorname{size}\left(\mathcal{M}_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ (regularity of the meshes)
$\rho_{n} \rightarrow \rho$ weakly in $L^{2}(\Omega)$
$u_{n} \rightarrow u$ weakly in $L^{2}(\Omega)$
$\left(u_{n}\right)_{n}$ is bounded in $H_{\mathcal{M}_{n}},\|\cdot\|_{1,2, \mathcal{M}_{n}}$
"Compact embedding" of $\left(H_{\mathcal{M}_{n}},\|\cdot\|_{1,2, \mathcal{M}_{n}}\right)_{n}$ in $L^{2}(\Omega)$
Then
$u_{n} \rightarrow u$ in $L^{2}(\Omega)$
$\rho_{n} \rightarrow \rho$ weakly in $L^{2}(\Omega)$
and $\int_{\Omega} \rho_{n} u_{n} \rightarrow \int_{\Omega} \rho u$
Compactness follows from
$\|u(\cdot+\eta)-u\|_{2} \leq C \sqrt{|\eta|}\|u\|_{1,2, \mathcal{M}_{n}}$ if $u \in H_{\mathcal{M}_{n}}$
(admissible meshes)

Discrete setting, Stationary case, M2

$\rho_{n}, u_{n} \in H_{\mathcal{M}_{n}}$, $\operatorname{size}\left(\mathcal{M}_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ (regularity of the meshes)
$\rho_{n} \rightarrow \rho$ weakly in $L^{2}(\Omega)$
$u_{n} \rightarrow u$ weakly in $L^{2}(\Omega)$
$\left(u_{n}\right)_{n}$ is bounded in $H_{\mathcal{M}_{n}},\|\cdot\|_{1,2, \mathcal{M}_{n}}$
This gives $\left(u_{n}\right)_{n}$ is bounded in $H^{s}(\Omega), 0<s<1 / 2$ Identify $L^{2}(\Omega)^{\prime}$ with $L^{2}(\Omega)$
Compact embedding of $L^{2}(\Omega)$ in $H^{-s}(\Omega)$
Then
$u_{n} \rightarrow u$ weakly in $H^{s}(\Omega)$
$\rho_{n} \rightarrow \rho$ in $H^{-s}(\Omega)$
and $\int_{\Omega} \rho_{n} u_{n}=\left\langle\rho_{n}, u_{n}\right\rangle_{H^{-s}, H^{s}} \rightarrow\langle\rho, u\rangle_{H^{-s}, H^{s}}=\int_{\Omega} \rho u$

General meshes, Stationary case, M1 or M2b

$\rho_{n} \rightarrow \rho$ weakly in $L^{2}(\Omega)$
$u_{n} \rightarrow u$ weakly in $L^{2}(\Omega)$
$\left(u_{n}\right)_{n}$ is bounded in $H_{\mathcal{M}_{n}},\left\|\nabla_{\mathcal{M}_{n}} \cdot\right\|_{2}$
M1 : "Compact embedding" of $\left(H_{\mathcal{M}_{n}},\left\|\nabla_{\mathcal{M}_{n}} \cdot\right\|_{2}\right)_{n}$ in $L^{2}(\Omega)$ then $u_{n} \rightarrow u$ in $L^{2}(\Omega)$

M2b :

- $\nabla_{\mathcal{M}_{n}} u_{n} \rightarrow \nabla u$ weakly in $L^{2}(\Omega)^{d}$
- $-\Delta_{\mathcal{M}_{n}} w_{n}=\rho_{n}, w_{n} \in H_{\mathcal{M}_{n}}(\Omega),-\Delta w=\rho, w \in H_{0}^{1}(\Omega)$

Since $\rho_{n} \rightarrow \rho$ weakly in $L^{2}(\Omega)$, one has
$\nabla_{\mathcal{M}_{n}} w_{n} \rightarrow \nabla w$ in $L^{2}(\Omega)^{d}$
Then
$\int_{\Omega} \rho_{n} u_{n}=\int_{\Omega} \nabla_{\mathcal{M}_{n}} w_{n} \cdot \nabla_{\mathcal{M}_{n}} \nabla u_{n} \rightarrow \int_{\Omega} \nabla w \cdot \nabla u=\int_{\Omega} \rho u$

Continuous setting, evolution case

$\rho_{n} \rightarrow \rho$ weakly in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
$u_{n} \rightarrow u$ weakly in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
Question: $\int_{] 0, T[\times \Omega[} \rho_{n} u_{n} \rightarrow \int_{] 0, T[\times \Omega[} \rho u$?

- in general, no. Even if $\left(u_{n}\right)_{n}$ is bounded in $L^{2}(] 0, T\left[, H_{0}^{1}(\Omega)\right)$ No compactness of $L^{2}(] 0, T\left[, H_{0}^{1}(\Omega)\right)$ in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
- yes if $\left(u_{n}\right)_{n}$ is bounded in $H^{1}(] 0, T\left[, H_{0}^{1}(\Omega)\right)$ since compactness of $H^{1}(] 0, T\left[, H_{0}^{1}(\Omega)\right)$ in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
- yes if $\left(\rho_{n}\right)_{n}$ is bounded in $H^{1}(] 0, T\left[, L^{2}(\Omega)\right)$ since compactness of $H^{1}(] 0, T\left[, L^{2}(\Omega)\right)$ in $L^{2}(] 0, T\left[, H^{-1}(\Omega)\right)$

Is it possible to use weaker hypotheses on $\left(\partial_{t} u_{n}\right)_{n}$ or $\left(\partial_{t} \rho_{n}\right)_{n}$?

Continuous setting, evolution case, compressible NS, M2

$\rho_{n} \rightarrow \rho$ weakly in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
$u_{n} \rightarrow u$ weakly in $L^{2}(] 0, T\left[, L^{2}(\Omega)^{d}\right)$
$\left(u_{n}\right)_{n}$ is bounded in $L^{2}(] 0, T\left[, H_{0}^{1}(\Omega)^{d}\right)$
$\partial_{t} \rho_{n}+\operatorname{div}\left(\rho_{n} u_{n}\right)=0$
Then $\left(\partial_{t} \rho_{n}\right)_{n}$ is bounded in $L^{1}(] 0, T\left[, W^{-1,1}(\Omega)\right)$
This gives compactness of $\left(\rho_{n}\right)_{n}$ in $L^{2}(] 0, T\left[, H^{-1}(\Omega)\right)$
(adaptation of the Aubin-Simon compactness Theorem)
$u_{n} \rightarrow u$ weakly in $L^{2}(] 0, T\left[, H_{0}^{1}(\Omega)^{d}\right)$
$\rho_{n} \rightarrow \rho$ in $L^{2}(] 0, T\left[, H^{-1}(\Omega)\right)$
and, for any regular φ,
$\int_{] 0, T[\times \Omega} \rho_{n} u_{n} \cdot \nabla \varphi=\left\langle\rho_{n}, u_{n} \cdot \nabla \varphi\right\rangle_{L^{2}\left(H^{-1}\right), L^{2}\left(H_{0}^{1}\right)} \rightarrow \int_{] 0, T[\times \Omega} \rho u \cdot \nabla \varphi$
which gives $\partial_{t} \rho+\operatorname{div}(\rho u)=0$

Continuous setting, evolution case, Stefan, M1
$\rho_{n} \rightarrow \rho$ weakly in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
$u_{n} \rightarrow u$ weakly in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
$\left(u_{n}\right)_{n}$ is bounded in $L^{2}(] 0, T\left[, H_{0}^{1}(\Omega)\right)$
$\partial_{t} \rho_{n}-\Delta u_{n}=0, u_{n}=\varphi\left(\rho_{n}\right)$
$\varphi \in C(\mathbb{R}, \mathbb{R})$ is nondecreasing $\varphi^{\prime}=0$ on $] a, b[, a<b$
one has $\partial_{t} \rho-\Delta u=0$, but $u=\varphi(\rho)$?
First step : pass to the limit on $\int \rho_{n} u_{n}$
no direct estimate on $\partial_{t} u_{n}$, but (Alt-Luckaus trick) estimate on the time-translates of u_{n}
Then compactness of $\left(u_{n}\right)_{n}$ in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
$u_{n} \rightarrow u$ in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
$\rho_{n} \rightarrow \rho$ weakly in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
and, $\int_{j 0, T[\times \Omega} \rho_{n} u_{n} \rightarrow \int_{j 0, T[\times \Omega} \rho u$
Second step :Minty trick, $u=\varphi(\rho)$

Minty trick

$\rho_{n} \rightarrow \rho$ weakly in $L^{2}\left(L^{2}=L^{2}(\Omega)\right.$ or $\left.L^{2}(] 0, T\left[, L^{2}(\Omega)\right)\right)$
$u_{n} \rightarrow u$ weakly in L^{2}
$\int \rho_{n} u_{n} \rightarrow \int \rho u$
$u_{n}=\varphi\left(\rho_{n}\right)$
$\varphi \in C(\mathbb{R}, \mathbb{R})$ is nondecreasing, $|\varphi(s)| \leq C|s|$
Question: $u=\varphi(\rho)$? for any $\bar{\rho} \in L^{2}$
$0 \leq \int\left(\rho_{n}-\bar{\rho}\right)\left(\varphi\left(\rho_{n}\right)-\varphi(\bar{\rho})\right)=\int\left(\rho_{n}-\bar{\rho}\right)\left(u_{n}-\varphi(\bar{\rho})\right)$
as $n \rightarrow \infty, 0 \leq \int(\rho-\bar{\rho})(u-\varphi(\bar{\rho}))$
$\bar{\rho}=\rho-\varepsilon \psi, \varepsilon>0$ and ψ regular function,

$$
0 \leq \int \psi(u-\varphi(\rho-\varepsilon \psi))
$$

$\varepsilon \rightarrow 0, \psi$ and $-\psi$ give $\int \psi(u-\varphi(\rho))=0$ and then $u=\varphi(\rho)$

Continuous setting, evolution case, Stefan, M2
$\rho_{n} \rightarrow \rho$ weakly in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
$u_{n} \rightarrow u$ weakly in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
$\left(u_{n}\right)_{n}$ is bounded in $L^{2}(] 0, T\left[, H_{0}^{1}(\Omega)\right)$
$\partial_{t} \rho_{n}-\Delta u_{n}=0, u_{n}=\varphi\left(\rho_{n}\right)$
Then $\left(\partial_{t} \rho_{n}\right)_{n}$ bounded in $L^{2}(] 0, T\left[, H^{-1}(\Omega)\right)$
This gives compactness of $\left(\rho_{n}\right)_{n}$ in $L^{2}(] 0, T\left[, H^{-1}(\Omega)\right)$
$u_{n} \rightarrow u$ weakly in $L^{2}(] 0, T\left[, H_{0}^{1}(\Omega)\right)$
$\rho_{n} \rightarrow \rho$ in $L^{2}(] 0, T\left[, H^{-1}(\Omega)\right)$
and, $\int_{] 0, T[\times \Omega} \rho_{n} u_{n} \rightarrow \int_{] 0, T[\times \Omega} \rho u$
which gives (Minty trick) $u=\varphi(\rho)$
M2b is also possible

(Generalized) Aubin-Simon Compactness Lemma

X, B, Y are three Banach spaces, $X \subset B, X \subset Y$ such that

1. X compactly embedded in B
2. $\left\|w_{n}\right\|_{X} \leq C,\left\|w_{n}-w\right\|_{B} \rightarrow 0,\left\|w_{n}\right\|_{Y} \rightarrow 0$ implies $w=0$

Let $T>01 \leq p<+\infty$ and $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence such that

- $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{P}(] 0, T[, X)$,
- $\left(\partial_{t} u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}(] 0, T[, Y)$.

Then there exists $u \in L^{p}(] 0, T[, B)$ such that, up to a subsequence, $u_{n} \rightarrow u$ in $L^{P}(] 0, T[, B)$

Particular cases for hypothesis 2 :
Easy case : $Y=X$ or B or, more generally, $\|\cdot\|_{B} \leq C\|\cdot\|_{Y}$
Aubin Simon : B continuously embedded in $Y,\|\cdot\|_{Y} \leq C\|\cdot\|_{B}$

Generalized Lions lemma (crucial if $\|\cdot\|_{B} \not \leq C\|\cdot\|_{Y}$)

X, B, Y are three Banach spaces, $X \subset B, X \subset Y$ such that

1. X compactly embedded in B
2. $\left\|w_{n}\right\| X \leq C,\left\|w_{n}-w\right\|_{B} \rightarrow 0,\left\|w_{n}\right\|_{Y} \rightarrow 0$ implies $w=0$

Then, for any $\varepsilon>0$, there exists C_{ε} such that, for $w \in X$,

$$
\|w\|_{B} \leq \varepsilon\|w\|_{X}+C_{\varepsilon}\|w\|_{Y} .
$$

Proof: By contradiction

Classical Lions lemma, a particular case, simpler

B is a Hilbert space and X is a Banach space $X \subset B$. We define on X the dual norm of $\|\cdot\|_{X}$, with the scalar product of B, namely

$$
\|u\|_{Y}=\sup \left\{(u \mid v)_{B}, v \in X,\|v\|_{X} \leq 1\right\} .
$$

Then, for any $\varepsilon>0$ and $w \in X$,

$$
\|w\|_{B} \leq \varepsilon\|w\|_{X}+\frac{1}{\varepsilon}\|w\|_{Y} .
$$

The proof is simple since

$$
\|u\|_{B}=(u \mid u)_{B}^{\frac{1}{2}} \leq\left(\|u\|_{Y}\|u\|_{X}\right)^{\frac{1}{2}} \leq \varepsilon\|w\|_{X}+\frac{1}{\varepsilon}\|w\|_{Y} .
$$

Compactness of X in B is not needed here (but this compactness is needed for Aubin-Simon Compactness Lemma).

Use of the compactness lemma in the previous examples

For compressible Navier Stokes eqs:
$B=L^{2}(\Omega), X=H_{0}^{1}(\Omega), Y=W^{-1,1}(\Omega)$
For Stefan problem :
$X=L^{2}(\Omega), B=Y=H^{-1}(\Omega)$
For incompressible Navier Stokes eqs :
$H=\left\{u \in H_{0}^{1}(\Omega)^{d}\right.$, $\left.\operatorname{div} u=0\right\}$,
$B=L^{2}(\Omega), X=H, Y=H^{\prime}\left(\right.$ with $\left.L^{2}(\Omega)^{\prime}=L^{2}(\Omega)\right)$
Is it possible to have discrete versions of these compactness results, for proving the convergence of numerical schemes ?

Space-Time discretization

$T>0$, time step $k=\frac{T}{N}$

- $H_{\mathcal{M}}$ the space of functions from Ω to \mathbb{R}, constant on each K, $K \in \mathcal{M}$.
- The function u is constant on $K \times((p-1) k, p k)$ with $K \in \mathcal{M}$ and $p \in\{1, \ldots, N\}$. $u(\cdot, t)=u^{(p)}$ for $t \in((p-1) k, p k)$ and $u^{(p)} \in H_{\mathcal{M}}$.
- Discrete derivatives in time, $\partial_{t, k} u$, defined by:

$$
\begin{aligned}
& \partial_{t, k} u(\cdot, t)=\partial_{t, k}^{(p)} u=\frac{1}{k}\left(u^{(p)}-u^{(p-1)}\right) \text { for } t \in((p-1) k, p k), \\
& \text { for } \left.p \in\{2, \ldots, N\} \text { (and } \partial_{t, k} u(\cdot, t)=0 \text { for } t \in(0, k)\right)
\end{aligned}
$$

Discrete Lions lemma

B is a Banach space, $\left(B_{n}\right)_{n \in \mathbb{N}}$ is a sequence of finite dimensional subspaces of $B .\|\cdot\|_{X_{n}}$ and $\|\cdot\|_{Y_{n}}$ are two norms on B_{n} such that: If $\left(\left\|w_{n}\right\|_{x_{n}}\right)_{n \in \mathbb{N}}$ is bounded, then,

- up to a subsequence, there exists $w \in B$ s.t. $w_{n} \rightarrow w$ in B.
- If $\left\|w_{n}-w\right\|_{B} \rightarrow 0$ and $\left\|w_{n}\right\|_{Y_{n}} \rightarrow 0$, then $w=0$.

Then, for any $\varepsilon>0$, there exists C_{ε} such that, for $n \in \mathbb{N}$ and $w \in B_{n}$

$$
\|w\|_{B} \leq \varepsilon\|w\|_{X_{n}}+C_{\varepsilon}\|w\|_{Y_{n}}
$$

Example: $B_{n}=H_{\mathcal{M}_{n}}$ (the finite dimensional space given by the mesh \mathcal{M}_{n}). We have to choose $B,\|\cdot\|_{X_{n}}$ and $\|\cdot\|_{Y_{n}}$.

Discrete Lions lemma, proof

Proof by contradiction. There exists $\varepsilon>0$ and $\left(w_{n}\right)_{n \in \mathbb{N}}$ such that, for all $n, w_{n} \in B_{n}$ and

$$
\left\|w_{n}\right\|_{B}>\varepsilon\left\|w_{n}\right\|_{X_{n}}+C_{n}\left\|w_{n}\right\|_{Y_{n}}
$$

with $\lim _{n \rightarrow \infty} C_{n}=+\infty$.
It is possible to assume that $\left\|w_{n}\right\|_{B}=1$. Then $\left(\left\|w_{n}\right\|_{x_{n}}\right)_{n \in \mathbb{N}}$ is bounded and, up to a subsequence, $w_{n} \rightarrow w$ in B (so that $\|w\|_{B}=1$). But $\left\|w_{n}\right\|_{Y_{n}} \rightarrow 0$, so that $w=0$, in contradiction with $\|w\|_{B}=1$.

Discrete Compactness Lemma

B a Banach, $1 \leq p<+\infty,\left(B_{n}\right)_{n \in \mathbb{N}}$ family of finite dimensional subspaces of $B .\|\cdot\|_{X_{n}}$ and $\|\cdot\|_{Y_{n}}$ two norms on B_{n} such that: If $\left(\left\|w_{n}\right\| X_{n}\right)_{n \in \mathbb{N}}$ is bounded, then,

- up to a subsequence, there exists $w \in B$ s.t. $w_{n} \rightarrow w$ in B.
- If $\left\|w_{n}-w\right\|_{B} \rightarrow 0$ and $\left\|w_{n}\right\|_{Y_{n}} \rightarrow 0$, then $w=0$. $X_{n}=B_{n}$ with norm $\|\cdot\|_{x_{n}}, Y_{n}=B_{n}$ with norm $\|\cdot\|_{Y_{n}}$. Let $T>0, k_{n}>0$ and $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence such that
- for all $n, u_{n}(\cdot, t)=u_{n}^{(p)} \in B_{n}$ for $t \in\left((p-1) k_{n}, p k_{n}\right)$
- $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{p}\left((0, T), X_{n}\right)$,
- $\left(\partial_{t, k_{n}} u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}\left((0, T), Y_{n}\right)$.

Then there exists $u \in L^{p}((0, T), B)$ such that, up to a subsequence, $u_{n} \rightarrow u$ in $L^{P}((0, T), B)$.

Example: $B_{n}=H_{\mathcal{M}_{n}}$. We have to choose $B,\|\cdot\| x_{n},\|\cdot\| Y_{n}$

Discrete setting, evolution case, compressible NS, M2
$\rho_{n} \rightarrow \rho$ weakly in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
$u_{n} \rightarrow u$ weakly in $L^{2}(] 0, T\left[, L^{2}(\Omega)^{d}\right)$
$\left(u_{n}\right)_{n}$ is bounded in $L^{2}(] 0, T\left[, H_{\mathcal{M}_{n}}^{(d)}\right)$, with $\|\cdot\|_{1,2, \mathcal{M}_{n}^{(i)}}$
$\partial_{t, k_{n}} \rho_{n}+\operatorname{div}_{\mathcal{M}_{n}}\left(\rho_{n} u_{n}\right)=0$
Then $\left(\partial_{t, k_{n}} \rho_{n}\right)_{n}$ is bounded in $L^{1}(] 0, T\left[, Y_{n}\right)$
where $Y_{n}=H_{\mathcal{M}_{n}}$ with $\|\cdot\|_{-1,1, \mathcal{M}_{n}}$
Compactness Theorem with
$B=H^{-s}(\Omega)$ and $X_{n}=H_{\mathcal{M}_{n}}$ with $L^{2}(\Omega)$-norm gives compactness of $\left(\rho_{n}\right)_{n}$ in $L^{2}(] 0, T\left[, H^{-s}(\Omega)\right), 0<s<1 / 2$
$u_{n} \rightarrow u$ weakly in $L^{2}(] 0, T\left[, H^{s}(\Omega)^{d}\right)$
$\rho_{n} \rightarrow \rho$ in $L^{2}(] 0, T\left[, H^{-s}(\Omega)\right)$
and, for any regular φ,

$$
\int \rho_{n} u_{n} \cdot \nabla_{\mathcal{M}_{n}} \varphi=\left\langle\rho_{n}, u_{n} \cdot \nabla \varphi\right\rangle_{L^{2}\left(H^{-s}\right), L^{2}\left(H^{s}\right)}+R \rightarrow \int \rho u \cdot \nabla \varphi
$$

which gives $\partial_{t} \rho+\operatorname{div}(\rho u)=0$

Discrete setting, evolution case, Stefan, M1

$\rho_{n} \rightarrow \rho$ weakly in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
$u_{n} \rightarrow u$ weakly in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
$\left(u_{n}\right)_{n}$ is bounded in $L^{2}(] 0, T\left[, H_{\mathcal{M}_{n}}(\Omega)\right)$ with $\|\cdot\|_{1,2, \mathcal{M}_{n}}$
$\partial_{, t, k_{n}} \rho_{n}-\Delta_{\mathcal{M}_{n}} u_{n}=0, u_{n}=\varphi\left(\rho_{n}\right)$
$\varphi \in C(\mathbb{R}, \mathbb{R})$ is nondecreasing $\varphi^{\prime}=0$ on $] a, b[, a<b$
one has $\partial_{t} \rho-\Delta u=0$, but $u=\varphi(\rho)$?
First step: pass to the limit on $\int \rho_{n} u_{n}$
no direct estimate on $\partial_{t, k_{n}} u_{n}$, but a discrete version of Alt-Luckaus trick gives an estimate on the time-translates of u_{n}
Then compactness of $\left(u_{n}\right)_{n}$ in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
$u_{n} \rightarrow u$ in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
$\rho_{n} \rightarrow \rho$ weakly in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
and, $\int_{j 0, T[\times \Omega} \rho_{n} u_{n} \rightarrow \int_{j 0, T[\times \Omega} \rho u$
Second step: Minty trick, $u=\varphi(\rho)$

Discrete setting, evolution case, Stefan, M2

$\rho_{n} \rightarrow \rho$ weakly in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
$u_{n} \rightarrow u$ weakly in $L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$
$\left(u_{n}\right)_{n}$ is bounded in $L^{2}(] 0, T\left[, H_{\mathcal{M}_{n}}\right)$ with $\|\cdot\|_{1,2, \mathcal{M}_{n}}$
$\partial_{, t, k_{n}} \rho_{n}-\Delta_{\mathcal{M}_{n}} u_{n}=0, u_{n}=\varphi\left(\rho_{n}\right)$
First step: pass to the limit on $\int \rho_{n} u_{n}$
$\left(\partial_{t, k_{n}} \rho_{n}\right)_{n}$ bounded in $L^{2}(] 0, T\left[, H_{\mathcal{M}_{n}}\right)$ with $\|\cdot\|_{-1,2, \mathcal{M}_{n}}$
This gives compactness of $\left(\rho_{n}\right)_{n}$ in $L^{2}(] 0, T\left[, H^{-s}(\Omega)\right)$
$B=H^{-s}(\Omega), B_{n}=H_{\mathcal{M}_{n}},\|\cdot\|_{X_{n}}=\|\cdot\|_{L^{2}(\Omega)},\|\cdot\|_{Y_{n}}=\|\cdot\|_{-1,2, \mathcal{M}_{n}}$
$\rho_{n} \rightarrow \rho$ in $L^{2}(] 0, T\left[, H^{-s}(\Omega)\right)(0<s<1 / 2)$
$u_{n} \rightarrow u$ weakly in $L^{2}(] 0, T\left[, H^{s}(\Omega)\right)$
and, $\int_{j 0, T[\times \Omega} \rho_{n} u_{n} \rightarrow \int_{j 0, T[\times \Omega} \rho u$
Second step: Minty trick, $u=\varphi(\rho)$
M2b is also possible

Spaces B, X_{n}, Y_{n} for compressible NS

$B=H^{-s}(\Omega), 0<s<1 / 2$
$Y_{n}=H_{\mathcal{M}_{n}}$ with $\|\cdot\|_{-1,1, \mathcal{M}_{n}}$
$X_{n}=H_{\mathcal{M}_{n}}$ with $L^{2}(\Omega)$-norm

- Compact embedding of $L^{2}(\Omega)$ in $H^{-s}(\Omega)$
- If $w_{n} \in H_{\mathcal{M}_{n}}, w_{n} \rightarrow w$ weakly in $L^{2}(\Omega)$ and $\left\|w_{n}\right\|_{-1,1, \mathcal{M}_{n}} \rightarrow 0$, then $w=0$? Yes. . Proof :
Let $\varphi \in W_{0}^{1, \infty}(\Omega)$ and its "projection" $\pi_{n} \varphi \in H_{\mathcal{M}_{n}}$. One has $\left\|\pi_{n} \varphi\right\|_{1, \infty, \mathcal{M}_{n}} \leq\|\varphi\|_{W^{1, \infty}(\Omega)}$ and then

$$
\left|\int_{\Omega} w_{n}\left(\pi_{n} \varphi\right) d x\right| \leq\left\|w_{n}\right\|_{-1,1, \mathcal{M}_{n}}\|\varphi\|_{W^{1, \infty}(\Omega)} \rightarrow 0
$$

and, since $w_{n} \rightarrow w$ weakly in $L^{1}(\Omega)$ and $\pi_{n} \varphi \rightarrow \varphi$ uniformly,

$$
\int_{\Omega} w_{n}\left(\pi_{n} \varphi\right) d x \rightarrow \int_{\Omega} w \varphi d x
$$

This gives $\int_{\Omega} w \varphi d x=0$ for all $\varphi \in W_{0}^{1, \infty}(\Omega)$ and then $w=0$ a.e.

