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Compressible (Isentropic) Navier-Stokes Equations (CNS)

Ω is a bounded open connected set of R3, with a Lipschitz
continuous boundary, T > 0, γ > 3/2, f ∈ L2(]0,T [, L2(Ω)3)

∂tρ+ div(ρu) = 0 mass

∂t(ρu) + div(ρu ⊗ u)−∆u +∇p = f momentum

p = ργ EOS

Dirichlet boundary condition : u = 0
Initial condition on ρ and u (or on ρu)



Stationary compressible Navier Stokes equations (SCNS)

Ω is a bounded open set of R3, with a Lipschitz continuous
boundary, γ > 3/2, f ∈ L2(Ω)3 and M > 0

div(ρu) = 0 mass

div(ρu ⊗ u)−∆u +∇p = f momentum

p = ργ EOS

Dirichlet boundary condition : u = 0
ρ ≥ 0,

∫
Ω ρ(x)dx = M

Functional spaces : u ∈ H1
0 (Ω)3, p ∈ Lq(Ω), ρ ∈ Lγq(Ω)

If γ ≥ 3 then q = 2
If 3

2 < γ < 3 : q = 3(γ−1)
γ

γ = 3
2 , p ∈ L1, ρ ∈ L3/2, ρu ⊗ u ∈ L1 since u ∈ (L6)3



Questions

In both cases (CNS and SCNS), existence of a weak solution is
known (but no uniqueness)

We use a space discretization with the MAC scheme and an
implicit discretization in time (for the evolution case)
Questions :

1. Is it possible to prove convergence (up to the subsequence) of
the approximate solution to the exact (weak) solution as the
mesh size goes to 0 (and also the time step in the evolution
case) ?

2. In case of uniqueness of the exact solution, is it possible to
obtain error estimates ?



Results and open problems

1. For SCNS, we prove convergence (up to the subsequence) of
the approximate solution to the exact (weak) solution as the
mesh size goes to 0 for γ > 3. Open problem for 3/2 < γ ≤ 3
This convergence proof also gives existence of a weak solution

2. For CNS, the convergence is probably true, but we do not
have a complete proof

3. For CNS, if the exact solution is regular, we obtain an error
estimate (and this gives uniqueness) for γ > 3/2

4. For SCNS (and a regular solution), we are not able to obtain
error estimate



Error estimate for CNS

For CNS the proof of error estimate (comparison of an exact
“strong” solution and an approximate solution) is very close to the
weak-strong uniqueness principle (comparison of a “strong”
solution and a weak solution)

Prodi, Serrin for Incompressible NS (∼ 1960)
Germain for Isentropic CNS (2011), Feireisl-Novotny (other EOS)

The proof uses the so-called “relative entropy” (introduced
Dafermos for Euler Equations) or “modulated energy”

relative energy



Weak-strong uniqueness principle, simple case

Stokes Equations, γ = 2, f = 0

Ω is a bounded open connected set of R3, with a Lipschitz
continuous boundary, T > 0, γ = 2, f ∈ L2(]0,T [, L2(Ω)3)

∂tρ+ div(ρu) = 0, mass

∂tu −∆u +∇p = 0, momentum

p = ρ2. EOS

Dirichlet boundary condition : u = 0
Initial condition on ρ and u (ρ0 and u0)



Weak-strong uniqueness, simple case, Energy Equalities

Stokes Equations, γ = 2, f = 0
ū, p̄, ρ̄ : strong solution
u, p, ρ : “suitable” weak solution
Energy Equalities (formally taking u as test function in the
momentum equation for u)

1

2

∫
Ω
|u|2(T ) +

∫ T

0

∫
Ω

(|∇u|2 − pdivu) =
1

2

∫
Ω
|u0|2

1

2

∫
Ω
|ū|2(T ) +

∫ T

0

∫
Ω

(|∇ū|2 − p̄divū) =
1

2

∫
Ω
|u0|2



Weak-strong uniqueness, simple case, Relative Energy

Stokes Equations, γ = 2, f = 0. Relative Energy
using Energy Equalities gives

ET (ρ, u|ρ̄, ū) =
1

2

∫
Ω
|u(T )− ū(T )|2 +

∫
Ω

(ρ(T )− ρ̄(T ))2 =

−
∫

Ω
u(T ) · ū(T )−

∫ T

0

∫
Ω

(|∇u|2 − pdivu + |∇ū|2 − p̄divū)

+

∫
Ω
|u0|2 +

∫
Ω

(ρ(T )− ρ̄(T ))2

∫
Ω

(ρ(T )− ρ̄(T ))2 =

∫
Ω
ρ2(T ) +

∫
Ω
ρ̄2(T )− 2

∫
Ω
ρ(T )ρ̄(T )



Weak-strong uniqueness, simple case, ρ2(T ), ρ̄2(T )
Stokes Equations, γ = 2, f = 0
Using Mass Equations (formally ρ as test function in the equation
for ρ) gives

1

2

∫
Ω
ρ2(T )− 1

2

∫
Ω
ρ2

0 −
∫ T

0

∫
Ω
ρu · ∇ρ = 0

But, since ρ2 = p,∫ T

0

∫
Ω
ρu · ∇ρ =

1

2

∫ T

0

∫
Ω
u · ∇(ρ2) = −1

2

∫ T

0

∫
Ω
pdivu

∫
Ω
ρ2(T ) = −

∫ T

0

∫
Ω
pdivu +

∫
Ω
ρ2

0

∫
Ω
ρ̄2(T ) = −

∫ T

0

∫
Ω
p̄divū +

∫
Ω
ρ2

0



Weak-strong uniqueness, simple case, ρ(T )ρ̄(T )

Stokes Equations, γ = 2, f = 0
Using Mass Equations (taking ρ as test function in the equation
for ρ̄ and ρ̄ as test function in the equation for ρ) gives∫ T

0

∫
Ω

(∂t ρ̄)ρ+

∫ T

0

∫
Ω
div(ρ̄ū)ρ = 0

∫ T

0

∫
Ω

(∂tρ)ρ̄−
∫ T

0

∫
Ω
ρu · ∇ρ̄ = 0

Adding the two equations leads to

∫
Ω
ρ̄(T )ρ(T ) =

∫
Ω
ρ2

0 +

∫ T

0

∫
Ω
ρu · ∇ρ̄−

∫ T

0

∫
Ω
div(ρ̄ū)ρ



Weak-strong uniqueness, simple case, u(T ) · ū(T )

Stokes Equations, γ = 2, f = 0
Using Momentum Equations (taking ū as test function in the
equation for u and u as test function in the equation for ū) gives∫ T

0

∫
Ω

(∂tu)ū +

∫ T

0

∫
Ω

(∇u : ∇ū − pdiv(ū)) = 0

∫ T

0

∫
Ω

(∂t ū)u +

∫ T

0

∫
Ω

(∇u : ∇ū − p̄div(u)) = 0

Adding the two equations leads to

∫
Ω
ū(T )·u(T ) =

∫
Ω
|u0|2+

∫ T

0

∫
Ω

(−2∇u : ∇ū+pdiv(ū)+p̄div(u))



Weak-strong uniqueness, simple case, Relative Energy(2)

Stokes Equations, γ = 2, f = 0. Relative Energy
using Energy Equalities gives

ET (ρ, u|ρ̄, ū) =
1

2

∫
Ω
|u(T )− ū(T )|2 +

∫
Ω

(ρ(T )− ρ̄(T ))2 =

−
∫

Ω
u(T ) · ū(T )−

∫ T

0

∫
Ω

(|∇u|2 − pdivu + |∇ū|2 − p̄divū)

+

∫
Ω
|u0|2 +

∫
Ω

(ρ(T )− ρ̄(T ))2

∫
Ω

(ρ(T )− ρ̄(T ))2 =

∫
Ω
ρ2(T ) +

∫
Ω
ρ̄2(T )− 2

∫
Ω
ρ(T )ρ̄(T )



Weak-strong uniqueness, simple case, Relative Energy(3)
Replacing the red quantities using the previous slides and using the
EOS lead to

ET (ρ, u|ρ̄, ū) =
1

2

∫
Ω
|u(T )− ū(T )|2 +

∫
Ω

(ρ(T )− ρ̄(T ))2 =∫ T

0

∫
Ω

(−|∇u −∇ū|2 − (ρ− ρ̄)2div(ū) + 2(ρ̄− ρ)(ū − u) · ∇ρ̄)

div ū ∈ L∞(]0,T [×Ω), ∇ρ̄ ∈ L∞(]0,T [×Ω)

ϕ(t) = Et(ρ, u|ρ̄, ū) =
1

2

∫
Ω
|u(t)− ū(t)|2 +

∫
Ω

(ρ(t)− ρ̄(t))2

Then previous equality (for any 0 ≤ t ≤ T ) gives

ϕ(t) ≤ C

∫ t

0
ϕ(s)ds

This gives (Gronwall Inequality) ϕ(t) ≤ ϕ(0)e−Ct and then ϕ = 0



Error estimate for CNS

We mimic the previous proof of uniqueness at the discrete level to
obtain error estimate, (ρ, u) is now the solution of a numerical
scheme

Et(ρ, u|ρ̄, ū) ≤ C (hα + k1/2) for 0 ≤ t ≤ T

h is the mesh size, k is the time step

α = min(
2γ − 3

γ
,

1

2
)

γ > 3/2

For γ = 2 and CNS, α = 1/2, Et is the L2-norm of (ρ− ρ̄) + the
L2-norm of (u − ū) weighted by ρ (and we have ρ > 0)



Error estimate for SCNS

No error estimate for SCNS
No weak-strong uniqueness principle
No Gronwall inequality
Question : What can play the role of Gronwall Inequality for
stationary problems ?



Uniqueness for stationary problems, a simple example

ϕ ∈ C (R,R), Lipschitz continuous, w ∈ L∞(Ω),
f ∈ L2(]0,T [, L2(Ω)), u0 ∈ L2(Ω)
(No hypothesis on div(w))

∂tu + div(wϕ(u))−∆u = f

u(·, t) = 0 on ∂Ω

u(·, 0) = u0

Uniqueness easily follows from Gronwall Inequality



Uniqueness for stationary problems, a simple example

ϕ ∈ C (R,R), Lipschitz continuous, w ∈ L∞(Ω),
f ∈ L2(Ω)
(No hypothesis on div(w), no coercivity)

div(wϕ(u))−∆u = f

u(·, t) = 0 on ∂Ω

Uniqueness can be proven taking Tε(u − ū) (ε > 0) as test
function and letting ε→ 0

Tε(s) = max(−ε,min(s, ε)) for s ∈ R



Convergence for SCNS

For the stationary compressible Navier-Stokes equations discretized
with a MAC scheme, we prove convergence of the approximate
solution (up to a subsequence) to a weak solution, in the case
γ > 3, following the idea of P.L. Lions for proving existence of a
solution.



Steps for proving the convergence result

1. Estimates on the approximate solution (un, pn, ρn)

2. Compactness result (convergence of the approximate solution,
up to a subsequence)

3. Passage to the limit in the approximate equations

Main difficulty: Passage to the limit in the EOS (p = ργ) since the
EOS is a non linear function and Step 2 only leads to weak
convergences of pn and ρn.



Convergence of un, pn, ρn

Thanks to the estimates on un, pn, ρn, it is possible to assume (up
to a subsequence) that, as n→∞:

un → u in L2(Ω)3, u ∈ H1
0 (Ω)3

pn → p weakly in L2(Ω)

ρn → ρ weakly in L2γ(Ω)

Bound on un : ‖un‖Hn ≤ C ,
‖ · ‖Hn is a so-called “discrete H1

0 -norm” (but depending on n)



Passage to the limit in the mass equation

v ∈ C∞c (R3) ∫
Ω
ρnun · ∇v + R = 0

ρn → ρ weakly in L2γ(Ω), with 2γ > 3
2 , un → u in Lq(Ω)3 for all

q < 6. Then ρnun → ρu weakly in L1(Ω)3. This gives∫
Ω ρu · ∇v = 0.

L1-weak convergence of ρn gives positivity of ρ and convergence of
mass:

ρ ≥ 0 in Ω,

∫
Ω
ρ(x)dx = M.



Passage to the limit in the momentum equation
v ∈ C∞c (Ω)3,∫

Ω
∇nun : ∇v dx−

∫
Ω
ρnun⊗un : ∇v dx−

∫
Ω
pndiv(v)dx+R =

∫
Ω
fn·v dx

∇nun → ∇u weakly in L2(Ω)3

ρn → ρ weakly in L2γ(Ω), with 2γ > 3
2 ,

un → u in Lq(Ω)3 for all q < 6 (and 2
3 + 1

6 + 1
6 = 1). Then

ρnun ⊗ un → ρu ⊗ u weakly in L1(Ω)3×3.

pn → p weakly in L2(Ω)

fn → f weakly in L2(Ω)3

Then, as n→∞,∫
Ω
∇u : ∇v dx −

∫
Ω
ρu ⊗ u : ∇v dx −

∫
Ω
pdiv(v) dx =

∫
Ω
f · v dx



First conclusion

(ρ, u, p) is solution of the momentum equation and of the mass
equation ( + positivity of ρ and total mass). It remains to prove
p = ργ .



Passage to the limit in EOS

Question: p = ργ in Ω ?

pn and ρn converge only weakly. . . and γ > 1

Idea :
Prove

∫
Ω pnρn →

∫
Ω pρ (it is sufficient to prove

lim inf
∫

Ω pnρn ≤
∫

Ω pρ) and deduce a.e. convergence (of pn and
ρn) and p = ργ

(For γ ≤ 3, use pnρ
θ
n)

Proof in the continuous setting



∇ : ∇ = divdiv + curl · curl
For all ū, v̄ in H1

0 (Ω)3,∫
Ω
∇ū : ∇v̄ =

∫
Ω
div(ū)div(v̄) +

∫
Ω
curl(ū) · curl(v̄).

Then, for all v̄ in H1
0 (Ω)3, the momentum equation is∫

Ω
div(un)div(v̄) +

∫
Ω
curl(un) · curl(v̄)−

∫
Ω

(ρnun ⊗ un) : ∇v̄dx

−
∫

Ω
pndiv(v̄) =

∫
Ω
fn · v̄ .

Choice of v̄ ? v̄ = v̄n with curl(v̄n) = 0, div(v̄n) = ρn and v̄n
bounded in H1

0 (Ω)3 (unfortunately, 0 is impossible).

Then, up to a subsequence,

v̄n → v in L2(Ω)3 and weakly in H1
0 (Ω)3,

curl(v) = 0, div(v) = ρ.



Proof using v̄n (1)

∫
Ω
div(un)div(v̄n) +

∫
Ω
curl(un) · curl(v̄n)−

∫
Ω
pndiv(v̄n)

=

∫
Ω
ρnun ⊗ un : ∇v̄n +

∫
Ω
fn · v̄n.

But, div(v̄n) = ρn and curl(v̄n) = 0. Then:∫
Ω

(div(un)− pn)ρn =

∫
Ω
ρnun ⊗ un : ∇v̄n +

∫
Ω
fn · v̄n.

If we prove that
∫

Ω ρnun ⊗ un : ∇v̄n →
∫

Ω ρu ⊗ u : ∇v then:

lim
n→∞

∫
Ω

(div(un)− pn)ρn =

∫
Ω
ρu ⊗ u : ∇v +

∫
Ω
f · v .



Proof using v̄n (2)
But, since −∆u + div(ρu ⊗ u) +∇p = f :∫

Ω
div(u)div(v) +

∫
Ω
curl(u) · curl(v)−

∫
Ω
pdiv(v)

=

∫
Ω
ρu ⊗ u : ∇v +

∫
Ω
f · v ,

which gives (using div(v) = ρ and curl(v) = 0):∫
Ω

(div(u)− p)ρ =

∫
Ω
ρu ⊗ u : ∇v +

∫
Ω
f · v . Then:

lim
n→∞

∫
Ω

(pn − div(un))ρn =

∫
Ω

(p − div(u))ρ.

Finally, thanks to the mass equations,
∫

Ω ρndiv(un) = 0 and∫
Ω ρdiv(u) = 0. Then,

lim
n→∞

∫
Ω
pnρn =

∫
Ω
pρ.



Proof using v̄n (3)
It remains to prove

∫
Ω ρnun ⊗ un : ∇v̄n →

∫
Ω ρu ⊗ u : ∇v .

We remark that (since div(ρnun) = 0)∫
Ω
ρnun ⊗ un : ∇v̄n =

∫
Ω

(ρnun · ∇)un · v̄n,

and the sequence ((ρnun · ∇)un)n∈N is bounded in Lr (Ω)3 with
1
r = 1

2 + 1
6 + 1

2γ , and r > 6
5 since γ > 3.

Then, up to a subsequence (ρnun · ∇)un → G weakly in Lr (Ω)3.
and (since v̄n → v̄ in Lr (Ω)3 for all r < 6),∫

Ω
(ρnun · ∇)un · v̄n →

∫
Ω
G · v̄

But, G = (ρu · ∇)u, since for a fixed w ∈ H1
0 (Ω)3,∫

Ω
(ρnun · ∇)un · w =

∫
Ω
ρnun ⊗ un : ∇w →

∫
Ω
ρu ⊗ u : ∇w .



Error in the preceding proof

In the preceding proof, we used v̄n such that curl(v̄n) = 0,
div(v̄n) = ρn and v̄n bounded in H1

0 (Ω)3.

Unfortunately, it is impossible to have v̄n ∈ H1
0 (Ω)3 but only

v̄n ∈ H1(Ω)3.



Curl-free test function
Let wn ∈ H1

0 (Ω), −∆wn = ρn,
One has wn ∈ H2

loc(Ω) since, for ϕ ∈ C∞c (Ω), one has
∆(wnϕ) ∈ L2(Ω) and

3∑
i ,j=1

∫
Ω
∂i∂j(wnϕ) ∂i∂j(wnϕ) =

3∑
i ,j=1

∫
Ω
∂i∂i (wnϕ) ∂j∂j(wnϕ)

=

∫
Ω

(∆(wnϕ))2 = Cϕ <∞

Then, taking vn = ∇wn

I vn ∈ (H1
loc(Ω))3,

I div(vn) = ρn a.e. in Ω,

I curl(vn) = 0 a.e. in Ω,

I H1
loc(Ω)-estimate on vn with respect to ‖ρn‖L2(Ω).

Then, up to a subsequence, as n→∞, vn → v in L2
loc(Ω) and

weakly in H1
loc(Ω), curl(v) = 0, div(v) = ρ.



Proof of
∫

Ω(pn − div(un))ρnϕ→
∫

Ω(p − div(u))ρϕ

Let ϕ ∈ C∞c (Ω) (so that vnϕ ∈ H1
0 (Ω)3)). Taking v̄ = vnϕ:∫

Ω
div(un)div(vnϕ) +

∫
Ω
curl(un) · curl(vnϕ)−

∫
Ω
pndiv(vnϕ)

=

∫
Ω
ρnun ⊗ un : ∇(vnϕ) +

∫
Ω
fn · (vnϕ).

Using a proof similar to that given if ϕ = 1 (with additionnal terms
involving ϕ), we obtain :

lim
n→∞

∫
Ω

(pn − div(un))ρnϕ =

∫
Ω

(p − div(u))ρϕ,



Proof of
∫

Ω(pn − div(un))ρn →
∫

Ω(p − div(u))ρ

Lemma : Fn → F in D ′(Ω), (Fn)n∈N bounded in Lq for some
q > 1. Then Fn → F weakly in L1.

With Fn = (pn − div(un))ρn, F = (p − div(u))ρ and since
pn − div(un) is bounded in L2(Ω) and ρn is bounded in Lr (Ω) with
some r > 2, the lemma gives∫

Ω
(pn − div(un))ρn →

∫
Ω

(p − div(u))ρ.



Proving
∫

Ω pnρn →
∫

Ω pρ

∫
Ω

(pn − div(un))ρn →
∫

Ω
(p − div(u))ρ.

But thanks to the mass equations, the preliminary lemma gives:∫
Ω
div(un)ρn = 0,

∫
Ω
div(u)ρ = 0;

Then:

lim
n→∞

∫
Ω
pnρn =

∫
Ω
pρ.

(Discrete case
∫

Ω div(un)ρn ≤ Chαn , lim supn→∞
∫

Ω pnρn =
∫

Ω pρ)



a.e. convergence of ρn and pn

Let Gn = (ργn − ργ)(ρn − ρ) ∈ L1(Ω) and Gn ≥ 0 a.e. in Ω.
Futhermore Gn = (pn − ργ)(ρn − ρ) = pnρn − pnρ− ργρn + ργρ
and: ∫

Ω
Gn =

∫
Ω
pnρn −

∫
Ω
pnρ−

∫
Ω
ργρn +

∫
Ω
ργρ.

Using the weak convergence in L2(Ω) of pn and ρn and
limn→∞

∫
Ω pnρn =

∫
Ω pρ:

lim
n→∞

∫
Ω
Gn = 0,

Then (up to a subsequence), Gn → 0 a.e. and then ρn → ρ a.e.
(since y 7→ yγ is an increasing function on R+). Finally:

ρn → ρ in Lq(Ω) for all 1 ≤ q < 2γ,

pn = ργn → ργ in Lq(Ω) for all 1 ≤ q < 2,

and p = ργ .



Passage to the limit in the EOS with the Mac scheme

Miracle with the Mac scheme:

1. There exists a discrete counterpart of∫
Ω
∇u : ∇vdx =

∫
Ω

(div(u)div(v) + curl(u) · curl(v))dx

2. wn ∈ Hn, −∆nwn = ρn,
Estimate on a “discrete local H2-norm” of wn in term of the
L2-norm of ρn.
If γ ≤ 3, we have to work with the Lp-norm, p > 2, of the
second dicrete derivatives of wn



Convergence for SCNS

Open problem : convergence of approximate solutions (given by
the MAC scheme) if 3

2 < γ ≤ 3



Convergence for CNS

Ω : bounded open connected set of R3

T > 0, γ > 3/2, f ∈ L2(]0,T [, L2(Ω))

∂n,tρ+ divn(ρnun) = 0,

∂n,t(ρnun) + divn(ρnun ⊗ un)−∆nun +∇npn = fn,

pn = ργn .

I Estimates on un, ρn, pn
un bounded in L2(]0,T [,Hn) and then in L2(]0,T [, Lq(Ω))
ρn bounded in L2(]0,T [, Lγ(Ω)))

I Passing to the limit on ρnun and ρnun ⊗ un
I Passing to the limit on pn = ργn .

For nonlinear terms, weak convergences are not sufficient



SCNS, Mass equation, other method

un → u in Lq(Ω)3 for some q < 6, ρn → ρ weakly in Lq
′
(Ω)

(q′ = q/(q − 1) > 6/5)
Then ρnun → ρu in L1(Ω)3

Other method :
un → u weakly in H1

0 (Ω)3

ρn → ρ in H−1(Ω) (compact imbedding of Lq
′

in H−1)

∫
Ω
ρnun · ϕ = 〈ρn, un · ϕ〉H−1,H1

0
→ 〈ρ, u · ϕ〉H−1,H1

0
=

∫
Ω
ρu · ϕ

for regular ϕ

For the discrete setting, we also have to replace the H1
0 (Ω)-norm

by the so-called discrete-H1
0 -norm which depends on n



Mass equation, in the evolution case, CNS

∂tρ+ div(ρu) = 0

Estimates on un in L2(H1
0 (Ω)3) and ρn in L2(Lq

′
(Ω)) (q′ > 6/5).

Only weak compactness on un

But ∂tρn is bounded in L2(W−1,1(Ω)). Then
ρn compact in L2(H−1(Ω)) (Aubin-Lions-Simon compactness
results, since Lq

′
compact in H−1)

un → u weakly in L2(H1
0 (Ω)3)

ρn → ρ in L2(H−1(Ω))

∫ T

0

∫
Ω
ρnun · ϕ =

∫ T

0
〈ρn, un · ϕ〉H−1,H1

0
→=

∫ T

0

∫
Ω
ρu · ϕ



SCNS, Momentum equation, other method for ρu ⊗ u

un → u in Lq(Ω)3 for all q < 6
ρnun → ρu weakly in Lq

′
(Ω)3, with q′ > 6

5 ,
Then ρnun ⊗ un → ρu ⊗ u weakly in L1(Ω)d×d .

Other method :
un → u weakly in H1

0 (Ω)3

ρnun → ρu in H−1(Ω)3 (compact imbedding of Lq
′

in H−1)
Then ∫

Ω
ρnun ⊗ un : ∇v dx →

∫
Ω
ρu ⊗ u : ∇v dx

The generalization for the evolution case is possible



Convergence for CNS

It remains to pass to the limit on the EOS (pn = ργn)


