Convergence and error estimates for the compressible Navier-Stokes equations

T. Gallouët, Aix-Marseille University

Jaca, September 2018

Works with
R. Eymard, R. Herbin, J. C. Latché, D. Maltese, A. Novotny

Compressible (Isentropic) Navier-Stokes Equations (CNS)

Ω is a bounded open connected set of \mathbb{R}^{3}, with a Lipschitz continuous boundary, $T>0, \gamma>3 / 2, f \in L^{2}(] 0, T\left[, L^{2}(\Omega)^{3}\right)$

$$
\begin{align*}
& \partial_{t} \rho+\operatorname{div}(\rho u)=0 \tag{mass}\\
& \partial_{t}(\rho u)+\operatorname{div}(\rho u \otimes u)-\Delta u+\nabla p=f \\
& p=\rho^{\gamma}
\end{align*}
$$

Dirichlet boundary condition: $u=0$
Initial condition on ρ and u (or on ρu)

Stationary compressible Navier Stokes equations (SCNS)

Ω is a bounded open set of \mathbb{R}^{3}, with a Lipschitz continuous boundary, $\gamma>3 / 2, f \in L^{2}(\Omega)^{3}$ and $M>0$

$$
\begin{align*}
& \operatorname{div}(\rho u)=0 \tag{mass}\\
& \operatorname{div}(\rho u \otimes u)-\Delta u+\nabla p=f \\
& p=\rho^{\gamma}
\end{align*}
$$

Dirichlet boundary condition : $u=0$
$\rho \geq 0, \int_{\Omega} \rho(x) d x=M$
Functional spaces : $u \in H_{0}^{1}(\Omega)^{3}, p \in L^{\bar{q}}(\Omega), \rho \in L^{\gamma \bar{q}}(\Omega)$
If $\gamma \geq 3$ then $\bar{q}=2$
If $\frac{3}{2}<\gamma<3: \bar{q}=\frac{3(\gamma-1)}{\gamma}$
$\gamma=\frac{3}{2}, p \in L^{1}, \rho \in L^{3 / 2}, \rho u \otimes u \in L^{1}$ since $u \in\left(L^{6}\right)^{3}$

Questions

In both cases (CNS and SCNS), existence of a weak solution is known (but no uniqueness)
We use a space discretization with the MAC scheme and an implicit discretization in time (for the evolution case)
Questions:

1. Is it possible to prove convergence (up to the subsequence) of the approximate solution to the exact (weak) solution as the mesh size goes to 0 (and also the time step in the evolution case) ?
2. In case of uniqueness of the exact solution, is it possible to obtain error estimates ?

Results and open problems

1. For SCNS, we prove convergence (up to the subsequence) of the approximate solution to the exact (weak) solution as the mesh size goes to 0 for $\gamma>3$. Open problem for $3 / 2<\gamma \leq 3$ This convergence proof also gives existence of a weak solution
2. For CNS, the convergence is probably true, but we do not have a complete proof
3. For CNS, if the exact solution is regular, we obtain an error estimate (and this gives uniqueness) for $\gamma>3 / 2$
4. For SCNS (and a regular solution), we are not able to obtain error estimate

Error estimate for CNS

For CNS the proof of error estimate (comparison of an exact "strong" solution and an approximate solution) is very close to the weak-strong uniqueness principle (comparison of a "strong" solution and a weak solution)

Prodi, Serrin for Incompressible NS (~1960)
Germain for Isentropic CNS (2011), Feireisl-Novotny (other EOS)
The proof uses the so-called "relative entropy" (introduced Dafermos for Euler Equations) or "modulated energy"
relative energy

Weak-strong uniqueness principle, simple case

Stokes Equations, $\gamma=2, f=0$
Ω is a bounded open connected set of \mathbb{R}^{3}, with a Lipschitz continuous boundary, $T>0, \gamma=2, f \in L^{2}(] 0, T\left[, L^{2}(\Omega)^{3}\right)$

$$
\begin{aligned}
& \partial_{t} \rho+\operatorname{div}(\rho u)=0, \\
& \partial_{t} u-\Delta u+\nabla p=0, \\
& p=\rho^{2}
\end{aligned}
$$

Dirichlet boundary condition : $u=0$ Initial condition on ρ and u (ρ_{0} and u_{0})

Weak-strong uniqueness, simple case, Energy Equalities

Stokes Equations, $\gamma=2, f=0$
$\bar{u}, \bar{p}, \bar{\rho}$: strong solution
u, p, ρ : "suitable" weak solution
Energy Equalities (formally taking u as test function in the momentum equation for u)

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega}|u|^{2}(T)+\int_{0}^{T} \int_{\Omega}\left(|\nabla u|^{2}-p \operatorname{div} u\right)=\frac{1}{2} \int_{\Omega}\left|u_{0}\right|^{2} \\
& \frac{1}{2} \int_{\Omega}|\bar{u}|^{2}(T)+\int_{0}^{T} \int_{\Omega}\left(|\nabla \bar{u}|^{2}-\bar{p} \operatorname{div} \bar{u}\right)=\frac{1}{2} \int_{\Omega}\left|u_{0}\right|^{2}
\end{aligned}
$$

Weak-strong uniqueness, simple case, Relative Energy

Stokes Equations, $\gamma=2, f=0$. Relative Energy using Energy Equalities gives

$$
\begin{array}{r}
E_{T}(\rho, u \mid \bar{\rho}, \bar{u})=\frac{1}{2} \int_{\Omega}|u(T)-\bar{u}(T)|^{2}+\int_{\Omega}(\rho(T)-\bar{\rho}(T))^{2}= \\
-\int_{\Omega} u(T) \cdot \bar{u}(T)-\int_{0}^{T} \int_{\Omega}\left(|\nabla u|^{2}-p \operatorname{div} u+|\nabla \bar{u}|^{2}-\bar{p} \operatorname{div} \bar{u}\right) \\
+\int_{\Omega}\left|u_{0}\right|^{2}+\int_{\Omega}(\rho(T)-\bar{\rho}(T))^{2} \\
\int_{\Omega}(\rho(T)-\bar{\rho}(T))^{2}=\int_{\Omega} \rho^{2}(T)+\int_{\Omega} \bar{\rho}^{2}(T)-2 \int_{\Omega} \rho(T) \bar{\rho}(T)
\end{array}
$$

Weak-strong uniqueness, simple case, $\rho^{2}(T), \bar{\rho}^{2}(T)$
Stokes Equations, $\gamma=2, f=0$
Using Mass Equations (formally ρ as test function in the equation for ρ) gives

$$
\frac{1}{2} \int_{\Omega} \rho^{2}(T)-\frac{1}{2} \int_{\Omega} \rho_{0}^{2}-\int_{0}^{T} \int_{\Omega} \rho u \cdot \nabla \rho=0
$$

But, since $\rho^{2}=p$,

$$
\begin{gathered}
\int_{0}^{T} \int_{\Omega} \rho u \cdot \nabla \rho=\frac{1}{2} \int_{0}^{T} \int_{\Omega} u \cdot \nabla\left(\rho^{2}\right)=-\frac{1}{2} \int_{0}^{T} \int_{\Omega} p \operatorname{div} u \\
\int_{\Omega} \rho^{2}(T)=-\int_{0}^{T} \int_{\Omega} p \operatorname{div} u+\int_{\Omega} \rho_{0}^{2} \\
\int_{\Omega} \bar{\rho}^{2}(T)=-\int_{0}^{T} \int_{\Omega} \bar{p} \operatorname{div} \bar{u}+\int_{\Omega} \rho_{0}^{2}
\end{gathered}
$$

Weak-strong uniqueness, simple case, $\rho(T) \bar{\rho}(T)$

Stokes Equations, $\gamma=2, f=0$
Using Mass Equations (taking ρ as test function in the equation for $\bar{\rho}$ and $\bar{\rho}$ as test function in the equation for ρ) gives

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}\left(\partial_{t} \bar{\rho}\right) \rho+\int_{0}^{T} \int_{\Omega} \operatorname{div}(\bar{\rho} \bar{u}) \rho=0 \\
& \int_{0}^{T} \int_{\Omega}\left(\partial_{t} \rho\right) \bar{\rho}-\int_{0}^{T} \int_{\Omega} \rho u \cdot \nabla \bar{\rho}=0
\end{aligned}
$$

Adding the two equations leads to

$$
\int_{\Omega} \bar{\rho}(T) \rho(T)=\int_{\Omega} \rho_{0}^{2}+\int_{0}^{T} \int_{\Omega} \rho u \cdot \nabla \bar{\rho}-\int_{0}^{T} \int_{\Omega} \operatorname{div}(\bar{\rho} \bar{u}) \rho
$$

Weak-strong uniqueness, simple case, $u(T) \cdot \bar{u}(T)$
Stokes Equations, $\gamma=2, f=0$
Using Momentum Equations (taking \bar{u} as test function in the equation for u and u as test function in the equation for \bar{u}) gives

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}\left(\partial_{t} u\right) \bar{u}+\int_{0}^{T} \int_{\Omega}(\nabla u: \nabla \bar{u}-\operatorname{div}(\bar{u}))=0 \\
& \int_{0}^{T} \int_{\Omega}\left(\partial_{t} \bar{u}\right) u+\int_{0}^{T} \int_{\Omega}(\nabla u: \nabla \bar{u}-\bar{p} \operatorname{div}(u))=0
\end{aligned}
$$

Adding the two equations leads to

$$
\int_{\Omega} \bar{u}(T) \cdot u(T)=\int_{\Omega}\left|u_{0}\right|^{2}+\int_{0}^{T} \int_{\Omega}(-2 \nabla u: \nabla \bar{u}+p \operatorname{div}(\bar{u})+\bar{p} \operatorname{div}(u))
$$

Weak-strong uniqueness, simple case, Relative Energy(2)

Stokes Equations, $\gamma=2, f=0$. Relative Energy using Energy Equalities gives

$$
\begin{array}{r}
E_{T}(\rho, u \mid \bar{\rho}, \bar{u})=\frac{1}{2} \int_{\Omega}|u(T)-\bar{u}(T)|^{2}+\int_{\Omega}(\rho(T)-\bar{\rho}(T))^{2}= \\
-\int_{\Omega} u(T) \cdot \bar{u}(T)-\int_{0}^{T} \int_{\Omega}\left(|\nabla u|^{2}-p \operatorname{div} u+|\nabla \bar{u}|^{2}-\bar{p} \operatorname{div} \bar{u}\right) \\
+\int_{\Omega}\left|u_{0}\right|^{2}+\int_{\Omega}(\rho(T)-\bar{\rho}(T))^{2} \\
\int_{\Omega}(\rho(T)-\bar{\rho}(T))^{2}=\int_{\Omega} \rho^{2}(T)+\int_{\Omega} \bar{\rho}^{2}(T)-2 \int_{\Omega} \rho(T) \bar{\rho}(T)
\end{array}
$$

Weak-strong uniqueness, simple case, Relative Energy(3)
Replacing the red quantities using the previous slides and using the EOS lead to

$$
\begin{aligned}
& E_{T}(\rho, u \mid \bar{\rho}, \bar{u})=\frac{1}{2} \int_{\Omega}|u(T)-\bar{u}(T)|^{2}+\int_{\Omega}(\rho(T)-\bar{\rho}(T))^{2}= \\
& \int_{0}^{T} \int_{\Omega}\left(-|\nabla u-\nabla \bar{u}|^{2}-(\rho-\bar{\rho})^{2} \operatorname{div}(\bar{u})+2(\bar{\rho}-\rho)(\bar{u}-u) \cdot \nabla \bar{\rho}\right) \\
& \operatorname{div} \bar{u} \in L^{\infty}(] 0, T[\times \Omega), \nabla \bar{\rho} \in L^{\infty}(] 0, T[\times \Omega) \\
& \varphi(t)=E_{t}(\rho, u \mid \bar{\rho}, \bar{u})=\frac{1}{2} \int_{\Omega}|u(t)-\bar{u}(t)|^{2}+\int_{\Omega}(\rho(t)-\bar{\rho}(t))^{2}
\end{aligned}
$$

Then previous equality (for any $0 \leq t \leq T$) gives

$$
\varphi(t) \leq C \int_{0}^{t} \varphi(s) d s
$$

This gives (Gronwall Inequality) $\varphi(t) \leq \varphi(0) e^{-C t}$ and then $\varphi=0$

Error estimate for CNS

We mimic the previous proof of uniqueness at the discrete level to obtain error estimate, (ρ, u) is now the solution of a numerical scheme

$$
E_{t}(\rho, u \mid \bar{\rho}, \bar{u}) \leq C\left(h^{\alpha}+k^{1 / 2}\right) \text { for } 0 \leq t \leq T
$$

h is the mesh size, k is the time step
$\alpha=\min \left(\frac{2 \gamma-3}{\gamma}, \frac{1}{2}\right)$
$\gamma>3 / 2$
For $\gamma=2$ and CNS, $\alpha=1 / 2, E_{t}$ is the L^{2}-norm of $(\rho-\bar{\rho})+$ the L^{2}-norm of $(u-\bar{u})$ weighted by ρ (and we have $\rho>0$)

Error estimate for SCNS

No error estimate for SCNS
No weak-strong uniqueness principle
No Gronwall inequality
Question: What can play the role of Gronwall Inequality for stationary problems?

Uniqueness for stationary problems, a simple example

$\varphi \in C(\mathbb{R}, \mathbb{R})$, Lipschitz continuous, $w \in L^{\infty}(\Omega)$,
$f \in L^{2}(] 0, T\left[, L^{2}(\Omega)\right), u_{0} \in L^{2}(\Omega)$
(No hypothesis on $\operatorname{div}(w)$)

$$
\begin{array}{r}
\partial_{t} u+\operatorname{div}(w \varphi(u))-\Delta u=f \\
u(\cdot, t)=0 \text { on } \partial \Omega \\
u(\cdot, 0)=u_{0}
\end{array}
$$

Uniqueness easily follows from Gronwall Inequality

Uniqueness for stationary problems, a simple example

$\varphi \in C(\mathbb{R}, \mathbb{R})$, Lipschitz continuous, $w \in L^{\infty}(\Omega)$,
$f \in L^{2}(\Omega)$
(No hypothesis on $\operatorname{div}(w)$, no coercivity)

$$
\begin{array}{r}
\operatorname{div}(w \varphi(u))-\Delta u=f \\
u(\cdot, t)=0 \text { on } \partial \Omega
\end{array}
$$

Uniqueness can be proven taking $T_{\varepsilon}(u-\bar{u})(\varepsilon>0)$ as test function and letting $\varepsilon \rightarrow 0$
$T_{\varepsilon}(s)=\max (-\varepsilon, \min (s, \varepsilon))$ for $s \in \mathbb{R}$

Convergence for SCNS

For the stationary compressible Navier-Stokes equations discretized with a MAC scheme, we prove convergence of the approximate solution (up to a subsequence) to a weak solution, in the case $\gamma>3$, following the idea of P.L. Lions for proving existence of a solution.

Steps for proving the convergence result

1. Estimates on the approximate solution $\left(u_{n}, p_{n}, \rho_{n}\right)$
2. Compactness result (convergence of the approximate solution, up to a subsequence)
3. Passage to the limit in the approximate equations

Main difficulty: Passage to the limit in the EOS $\left(p=\rho^{\gamma}\right)$ since the EOS is a non linear function and Step 2 only leads to weak convergences of p_{n} and ρ_{n}.

Convergence of u_{n}, p_{n}, ρ_{n}

Thanks to the estimates on u_{n}, p_{n}, ρ_{n}, it is possible to assume (up to a subsequence) that, as $n \rightarrow \infty$:

$$
\begin{array}{r}
u_{n} \rightarrow u \text { in } L^{2}(\Omega)^{3}, u \in H_{0}^{1}(\Omega)^{3} \\
\quad p_{n} \rightarrow p \text { weakly in } L^{2}(\Omega) \\
\rho_{n} \rightarrow \rho \text { weakly in } L^{2 \gamma}(\Omega)
\end{array}
$$

Bound on $u_{n}:\left\|u_{n}\right\|_{H_{n}} \leq C$, $\|\cdot\|_{H_{n}}$ is a so-called "discrete H_{0}^{1}-norm" (but depending on n)

Passage to the limit in the mass equation

$v \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$

$$
\int_{\Omega} \rho_{n} u_{n} \cdot \nabla v+R=0
$$

$\rho_{n} \rightarrow \rho$ weakly in $L^{2 \gamma}(\Omega)$, with $2 \gamma>\frac{3}{2}, u_{n} \rightarrow u$ in $L^{q}(\Omega)^{3}$ for all $q<6$. Then $\rho_{n} u_{n} \rightarrow \rho u$ weakly in $L^{1}(\Omega)^{3}$. This gives
$\int_{\Omega} \rho u \cdot \nabla v=0$.
L^{1}-weak convergence of ρ_{n} gives positivity of ρ and convergence of mass:

$$
\rho \geq 0 \text { in } \Omega, \int_{\Omega} \rho(x) d x=M
$$

Passage to the limit in the momentum equation

 $v \in C_{c}^{\infty}(\Omega)^{3}$,$\int_{\Omega} \nabla_{n} u_{n}: \nabla v d x-\int_{\Omega} \rho_{n} u_{n} \otimes u_{n}: \nabla v d x-\int_{\Omega} p_{n} \operatorname{div}(v) d x+R=\int_{\Omega} f_{n} \cdot v d x$
$\nabla_{n} u_{n} \rightarrow \nabla u$ weakly in $L^{2}(\Omega)^{3}$
$\rho_{n} \rightarrow \rho$ weakly in $L^{2 \gamma}(\Omega)$, with $2 \gamma>\frac{3}{2}$,
$u_{n} \rightarrow u$ in $L^{q}(\Omega)^{3}$ for all $q<6$ (and $\frac{2}{3}+\frac{1}{6}+\frac{1}{6}=1$). Then $\rho_{n} u_{n} \otimes u_{n} \rightarrow \rho u \otimes u$ weakly in $L^{1}(\Omega)^{3 \times 3}$.
$p_{n} \rightarrow p$ weakly in $L^{2}(\Omega)$
$f_{n} \rightarrow f$ weakly in $L^{2}(\Omega)^{3}$
Then, as $n \rightarrow \infty$,
$\int_{\Omega} \nabla u: \nabla v d x-\int_{\Omega} \rho u \otimes u: \nabla v d x-\int_{\Omega} p \operatorname{div}(v) d x=\int_{\Omega} f \cdot v d x$

First conclusion

(ρ, u, \boldsymbol{p}) is solution of the momentum equation and of the mass equation (+ positivity of ρ and total mass). It remains to prove $p=\rho^{\gamma}$.

Passage to the limit in EOS

Question: $p=\rho^{\gamma}$ in Ω ?
p_{n} and ρ_{n} converge only weakly... and $\gamma>1$
Idea :
Prove $\int_{\Omega} p_{n} \rho_{n} \rightarrow \int_{\Omega} p \rho$ (it is sufficient to prove
$\lim \inf \int_{\Omega} p_{n} \rho_{n} \leq \int_{\Omega} p \rho$) and deduce a.e. convergence (of p_{n} and $\left.\rho_{n}\right)$ and $p=\rho^{\gamma}$
(For $\gamma \leq 3$, use $p_{n} \rho_{n}^{\theta}$)
Proof in the continuous setting

$\nabla: \nabla=\operatorname{divdiv}+\operatorname{curl} \cdot$ curl

For all \bar{u}, \bar{v} in $H_{0}^{1}(\Omega)^{3}$,

$$
\int_{\Omega} \nabla \bar{u}: \nabla \bar{v}=\int_{\Omega} \operatorname{div}(\bar{u}) \operatorname{div}(\bar{v})+\int_{\Omega} \operatorname{curl}(\bar{u}) \cdot \operatorname{curl}(\bar{v}) .
$$

Then, for all \bar{v} in $H_{0}^{1}(\Omega)^{3}$, the momentum equation is

$$
\begin{array}{r}
\int_{\Omega} \operatorname{div}\left(u_{n}\right) \operatorname{div}(\bar{v})+\int_{\Omega} \operatorname{curl}\left(u_{n}\right) \cdot \operatorname{curl}(\bar{v}) \\
-\int_{\Omega}\left(\rho_{n} u_{n} \otimes u_{n}\right): \nabla \bar{v} d x \\
-\int_{\Omega} p_{n} \operatorname{div}(\bar{v})=\int_{\Omega} f_{n} \cdot \bar{v} .
\end{array}
$$

Choice of $\bar{v} ? \bar{v}=\bar{v}_{n}$ with $\operatorname{curl}\left(\bar{v}_{n}\right)=0, \operatorname{div}\left(\bar{v}_{n}\right)=\rho_{n}$ and \bar{v}_{n} bounded in $H_{0}^{1}(\Omega)^{3}$ (unfortunately, 0 is impossible).
Then, up to a subsequence, $\bar{v}_{n} \rightarrow v$ in $L^{2}(\Omega)^{3}$ and weakly in $H_{0}^{1}(\Omega)^{3}$, $\operatorname{curl}(v)=0, \operatorname{div}(v)=\rho$.

Proof using $\bar{v}_{n}(1)$

$$
\begin{aligned}
& \int_{\Omega} \operatorname{div}\left(u_{n}\right) \operatorname{div}\left(\bar{v}_{n}\right)+\int_{\Omega} \operatorname{curl}\left(u_{n}\right) \cdot \operatorname{curl}\left(\bar{v}_{n}\right)-\int_{\Omega} p_{n} \operatorname{div}\left(\bar{v}_{n}\right) \\
&=\int_{\Omega} \rho_{n} u_{n} \otimes u_{n}: \nabla \bar{v}_{n}+\int_{\Omega} f_{n} \cdot \bar{v}_{n} .
\end{aligned}
$$

But, $\operatorname{div}\left(\bar{v}_{n}\right)=\rho_{n}$ and $\operatorname{curl}\left(\bar{v}_{n}\right)=0$. Then:

$$
\int_{\Omega}\left(\operatorname{div}\left(u_{n}\right)-p_{n}\right) \rho_{n}=\int_{\Omega} \rho_{n} u_{n} \otimes u_{n}: \nabla \bar{v}_{n}+\int_{\Omega} f_{n} \cdot \bar{v}_{n} .
$$

If we prove that $\int_{\Omega} \rho_{n} u_{n} \otimes u_{n}: \nabla \bar{v}_{n} \rightarrow \int_{\Omega} \rho u \otimes u: \nabla v$ then:

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left(\operatorname{div}\left(u_{n}\right)-p_{n}\right) \rho_{n}=\int_{\Omega} \rho u \otimes u: \nabla v+\int_{\Omega} f \cdot v
$$

Proof using \bar{v}_{n} (2)

But, since $-\Delta u+\operatorname{div}(\rho u \otimes u)+\nabla p=f:$

$$
\begin{aligned}
\int_{\Omega} \operatorname{div}(u) \operatorname{div}(v)+\int_{\Omega} & \operatorname{curl}(u) \cdot \operatorname{curl}(v)-\int_{\Omega} p \operatorname{div}(v) \\
& =\int_{\Omega} \rho u \otimes u: \nabla v+\int_{\Omega} f \cdot v
\end{aligned}
$$

which gives (using $\operatorname{div}(v)=\rho$ and $\operatorname{curl}(v)=0$):

$$
\begin{aligned}
& \int_{\Omega}(\operatorname{div}(u)-p) \rho=\int_{\Omega} \rho u \otimes u: \nabla v+\int_{\Omega} f \cdot v . \text { Then: } \\
& \lim _{n \rightarrow \infty} \int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n}=\int_{\Omega}(p-\operatorname{div}(u)) \rho .
\end{aligned}
$$

Finally, thanks to the mass equations, $\int_{\Omega} \rho_{n} \operatorname{div}\left(u_{n}\right)=0$ and $\int_{\Omega} \rho \operatorname{div}(u)=0$. Then,

$$
\lim _{n \rightarrow \infty} \int_{\Omega} p_{n} \rho_{n}=\int_{\Omega} p \rho
$$

Proof using \bar{v}_{n} (3)

It remains to prove $\int_{\Omega} \rho_{n} u_{n} \otimes u_{n}: \nabla \bar{v}_{n} \rightarrow \int_{\Omega} \rho u \otimes u: \nabla v$.
We remark that $\left(\operatorname{since} \operatorname{div}\left(\rho_{n} u_{n}\right)=0\right)$

$$
\int_{\Omega} \rho_{n} u_{n} \otimes u_{n}: \nabla \bar{v}_{n}=\int_{\Omega}\left(\rho_{n} u_{n} \cdot \nabla\right) u_{n} \cdot \bar{v}_{n}
$$

and the sequence $\left(\left(\rho_{n} u_{n} \cdot \nabla\right) u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{r}(\Omega)^{3}$ with $\frac{1}{r}=\frac{1}{2}+\frac{1}{6}+\frac{1}{2 \gamma}$, and $r>\frac{6}{5}$ since $\gamma>3$.
Then, up to a subsequence $\left(\rho_{n} u_{n} \cdot \nabla\right) u_{n} \rightarrow G$ weakly in $L^{r}(\Omega)^{3}$. and (since $\bar{v}_{n} \rightarrow \bar{v}$ in $L^{r}(\Omega)^{3}$ for all $r<6$),

$$
\int_{\Omega}\left(\rho_{n} u_{n} \cdot \nabla\right) u_{n} \cdot \bar{v}_{n} \rightarrow \int_{\Omega} G \cdot \bar{v}
$$

But, $G=(\rho u \cdot \nabla) u$, since for a fixed $w \in H_{0}^{1}(\Omega)^{3}$,

$$
\int_{\Omega}\left(\rho_{n} u_{n} \cdot \nabla\right) u_{n} \cdot w=\int_{\Omega} \rho_{n} u_{n} \otimes u_{n}: \nabla w \rightarrow \int_{\Omega} \rho u \otimes u: \nabla w
$$

Error in the preceding proof

In the preceding proof, we used \bar{v}_{n} such that $\operatorname{curl}\left(\bar{v}_{n}\right)=0$, $\operatorname{div}\left(\bar{v}_{n}\right)=\rho_{n}$ and \bar{v}_{n} bounded in $H_{0}^{1}(\Omega)^{3}$.

Unfortunately, it is impossible to have $\bar{v}_{n} \in H_{0}^{1}(\Omega)^{3}$ but only $\bar{v}_{n} \in H^{1}(\Omega)^{3}$.

Curl-free test function

Let $w_{n} \in H_{0}^{1}(\Omega),-\Delta w_{n}=\rho_{n}$,
One has $w_{n} \in H_{l o c}^{2}(\Omega)$ since, for $\varphi \in C_{c}^{\infty}(\Omega)$, one has
$\Delta\left(w_{n} \varphi\right) \in L^{2}(\Omega)$ and

$$
\begin{gathered}
\sum_{i, j=1}^{3} \int_{\Omega} \partial_{i} \partial_{j}\left(w_{n} \varphi\right) \partial_{i} \partial_{j}\left(w_{n} \varphi\right)=\sum_{i, j=1}^{3} \int_{\Omega} \partial_{i} \partial_{i}\left(w_{n} \varphi\right) \partial_{j} \partial_{j}\left(w_{n} \varphi\right) \\
=\int_{\Omega}\left(\Delta\left(w_{n} \varphi\right)\right)^{2}=C_{\varphi}<\infty
\end{gathered}
$$

Then, taking $v_{n}=\nabla w_{n}$

- $v_{n} \in\left(H_{l o c}^{1}(\Omega)\right)^{3}$,
- $\operatorname{div}\left(v_{n}\right)=\rho_{n}$ a.e. in Ω,
- $\operatorname{curl}\left(v_{n}\right)=0$ a.e. in Ω,
- $H_{l o c}^{1}(\Omega)$-estimate on v_{n} with respect to $\left\|\rho_{n}\right\|_{L^{2}(\Omega)}$.

Then, up to a subsequence, as $n \rightarrow \infty, v_{n} \rightarrow v$ in $L_{l o c}^{2}(\Omega)$ and weakly in $H_{l o c}^{1}(\Omega), \operatorname{curl}(v)=0, \operatorname{div}(v)=\rho$.

Proof of $\int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n} \varphi \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi$

Let $\varphi \in C_{c}^{\infty}(\Omega)$ (so that $\left.v_{n} \varphi \in H_{0}^{1}(\Omega)^{3}\right)$). Taking $\bar{v}=v_{n} \varphi$:

$$
\begin{aligned}
\int_{\Omega} \operatorname{div}\left(u_{n}\right) \operatorname{div}\left(v_{n} \varphi\right)+ & \int_{\Omega} \operatorname{curl}\left(u_{n}\right) \cdot \operatorname{curl}\left(v_{n} \varphi\right)-\int_{\Omega} p_{n} \operatorname{div}\left(v_{n} \varphi\right) \\
& =\int_{\Omega} \rho_{n} u_{n} \otimes u_{n}: \nabla\left(v_{n} \varphi\right)+\int_{\Omega} f_{n} \cdot\left(v_{n} \varphi\right) .
\end{aligned}
$$

Using a proof similar to that given if $\varphi=1$ (with additionnal terms involving φ), we obtain :

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n} \varphi=\int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi
$$

Proof of $\int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n} \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho$

Lemma: $F_{n} \rightarrow F$ in $D^{\prime}(\Omega),\left(F_{n}\right)_{n \in \mathbb{N}}$ bounded in L^{q} for some $q>1$. Then $F_{n} \rightarrow F$ weakly in L^{1}.

With $F_{n}=\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n}, F=(p-\operatorname{div}(u)) \rho$ and since $p_{n}-\operatorname{div}\left(u_{n}\right)$ is bounded in $L^{2}(\Omega)$ and ρ_{n} is bounded in $L^{r}(\Omega)$ with some $r>2$, the lemma gives

$$
\int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n} \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho .
$$

Proving $\int_{\Omega} p_{n} \rho_{n} \rightarrow \int_{\Omega} p \rho$

$$
\int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n} \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho .
$$

But thanks to the mass equations, the preliminary lemma gives:

$$
\int_{\Omega} \operatorname{div}\left(u_{n}\right) \rho_{n}=0, \int_{\Omega} \operatorname{div}(u) \rho=0 ;
$$

Then:

$$
\lim _{n \rightarrow \infty} \int_{\Omega} p_{n} \rho_{n}=\int_{\Omega} p \rho
$$

(Discrete case $\int_{\Omega} \operatorname{div}\left(u_{n}\right) \rho_{n} \leq C h_{n}^{\alpha}, \lim \sup _{n \rightarrow \infty} \int_{\Omega} p_{n} \rho_{n}=\int_{\Omega} p \rho$)
a.e. convergence of ρ_{n} and p_{n}

Let $G_{n}=\left(\rho_{n}^{\gamma}-\rho^{\gamma}\right)\left(\rho_{n}-\rho\right) \in L^{1}(\Omega)$ and $G_{n} \geq 0$ a.e. in Ω.
Futhermore $G_{n}=\left(p_{n}-\rho^{\gamma}\right)\left(\rho_{n}-\rho\right)=p_{n} \rho_{n}-p_{n} \rho-\rho^{\gamma} \rho_{n}+\rho^{\gamma} \rho$ and:

$$
\int_{\Omega} G_{n}=\int_{\Omega} p_{n} \rho_{n}-\int_{\Omega} p_{n} \rho-\int_{\Omega} \rho^{\gamma} \rho_{n}+\int_{\Omega} \rho^{\gamma} \rho .
$$

Using the weak convergence in $L^{2}(\Omega)$ of p_{n} and ρ_{n} and $\lim _{n \rightarrow \infty} \int_{\Omega} p_{n} \rho_{n}=\int_{\Omega} p \rho:$

$$
\lim _{n \rightarrow \infty} \int_{\Omega} G_{n}=0,
$$

Then (up to a subsequence), $G_{n} \rightarrow 0$ a.e. and then $\rho_{n} \rightarrow \rho$ a.e. (since $y \mapsto y^{\gamma}$ is an increasing function on \mathbb{R}_{+}). Finally: $\rho_{n} \rightarrow \rho$ in $L^{q}(\Omega)$ for all $1 \leq q<2 \gamma$, $p_{n}=\rho_{n}^{\gamma} \rightarrow \rho^{\gamma}$ in $L^{q}(\Omega)$ for all $1 \leq q<2$, and $p=\rho^{\gamma}$.

Passage to the limit in the EOS with the Mac scheme

Miracle with the Mac scheme:

1. There exists a discrete counterpart of

$$
\int_{\Omega} \nabla u: \nabla v d x=\int_{\Omega}(\operatorname{div}(u) \operatorname{div}(v)+\operatorname{curl}(u) \cdot \operatorname{curl}(v)) d x
$$

2. $w_{n} \in H_{n},-\Delta_{n} w_{n}=\rho_{n}$,

Estimate on a "discrete local H^{2}-norm" of w_{n} in term of the L^{2}-norm of ρ_{n}.
If $\gamma \leq 3$, we have to work with the L^{p}-norm, $p>2$, of the second dicrete derivatives of w_{n}

Convergence for SCNS

Open problem : convergence of approximate solutions (given by the MAC scheme) if $\frac{3}{2}<\gamma \leq 3$

Convergence for CNS

Ω : bounded open connected set of \mathbb{R}^{3}
$T>0, \gamma>3 / 2, f \in L^{2}(] 0, T\left[, L^{2}(\Omega)\right)$

$$
\begin{array}{r}
\partial_{n, t} \rho+\operatorname{div}_{n}\left(\rho_{n} u_{n}\right)=0, \\
\partial_{n, t}\left(\rho_{n} u_{n}\right)+\operatorname{div}_{n}\left(\rho_{n} u_{n} \otimes u_{n}\right)-\Delta_{n} u_{n}+\nabla_{n} p_{n}=f_{n}, \\
p_{n}=\rho_{n}^{\gamma} .
\end{array}
$$

- Estimates on u_{n}, ρ_{n}, p_{n} u_{n} bounded in $L^{2}(] 0, T\left[, H_{n}\right)$ and then in $L^{2}(] 0, T\left[, L^{q}(\Omega)\right)$ ρ_{n} bounded in $\left.L^{2}(] 0, T\left[, L^{\gamma}(\Omega)\right)\right)$
- Passing to the limit on $\rho_{n} \boldsymbol{u}_{n}$ and $\rho_{n} u_{n} \otimes \boldsymbol{u}_{n}$
- Passing to the limit on $p_{n}=\rho_{n}^{\gamma}$.

For nonlinear terms, weak convergences are not sufficient

SCNS, Mass equation, other method

$u_{n} \rightarrow u$ in $L^{q}(\Omega)^{3}$ for some $q<6, \rho_{n} \rightarrow \rho$ weakly in $L^{q^{\prime}}(\Omega)$
$\left(q^{\prime}=q /(q-1)>6 / 5\right)$
Then $\rho_{n} u_{n} \rightarrow \rho u$ in $L^{1}(\Omega)^{3}$
Other method:
$u_{n} \rightarrow u$ weakly in $H_{0}^{1}(\Omega)^{3}$
$\rho_{n} \rightarrow \rho$ in $H^{-1}(\Omega)$ (compact imbedding of $L^{q^{\prime}}$ in H^{-1})

$$
\int_{\Omega} \rho_{n} u_{n} \cdot \varphi=\left\langle\rho_{n}, u_{n} \cdot \varphi\right\rangle_{H^{-1}, H_{0}^{1}} \rightarrow\langle\rho, u \cdot \varphi\rangle_{H^{-1}, H_{0}^{1}}=\int_{\Omega} \rho u \cdot \varphi
$$

for regular φ
For the discrete setting, we also have to replace the $H_{0}^{1}(\Omega)$-norm by the so-called discrete- H_{0}^{1}-norm which depends on n

Mass equation, in the evolution case, CNS

$$
\partial_{t} \rho+\operatorname{div}(\rho u)=0
$$

Estimates on u_{n} in $L^{2}\left(H_{0}^{1}(\Omega)^{3}\right)$ and ρ_{n} in $L^{2}\left(L^{q^{\prime}}(\Omega)\right)\left(q^{\prime}>6 / 5\right)$. Only weak compactness on u_{n}
But $\partial_{t} \rho_{n}$ is bounded in $L^{2}\left(W^{-1,1}(\Omega)\right)$. Then ρ_{n} compact in $L^{2}\left(H^{-1}(\Omega)\right)$ (Aubin-Lions-Simon compactness results, since $L^{q^{\prime}}$ compact in H^{-1})
$u_{n} \rightarrow u$ weakly in $L^{2}\left(H_{0}^{1}(\Omega)^{3}\right)$
$\rho_{n} \rightarrow \rho$ in $L^{2}\left(H^{-1}(\Omega)\right)$

$$
\int_{0}^{T} \int_{\Omega} \rho_{n} u_{n} \cdot \varphi=\int_{0}^{T}\left\langle\rho_{n}, u_{n} \cdot \varphi\right\rangle_{H^{-1}, H_{0}^{1}} \rightarrow=\int_{0}^{T} \int_{\Omega} \rho u \cdot \varphi
$$

SCNS, Momentum equation, other method for $\rho u \otimes u$

$u_{n} \rightarrow u$ in $L^{q}(\Omega)^{3}$ for all $q<6$
$\rho_{n} u_{n} \rightarrow \rho u$ weakly in $L^{q^{\prime}}(\Omega)^{3}$, with $q^{\prime}>\frac{6}{5}$,
Then $\rho_{n} u_{n} \otimes u_{n} \rightarrow \rho u \otimes u$ weakly in $L^{1}(\Omega)^{d \times d}$.
Other method:
$u_{n} \rightarrow u$ weakly in $H_{0}^{1}(\Omega)^{3}$
$\rho_{n} u_{n} \rightarrow \rho u$ in $H^{-1}(\Omega)^{3}$ (compact imbedding of $L^{q^{\prime}}$ in H^{-1})
Then

$$
\int_{\Omega} \rho_{n} u_{n} \otimes u_{n}: \nabla v d x \rightarrow \int_{\Omega} \rho u \otimes u: \nabla v d x
$$

The generalization for the evolution case is possible

Convergence for CNS

It remains to pass to the limit on the $\operatorname{EOS}\left(p_{n}=\rho_{n}^{\gamma}\right)$

