Time compactness for approximate solutions of evolution problems

T. Gallouët

Lille, Mai 2013

- Parabolic equation with L^{1} data

Coauthors: Lucio Boccardo (continuous setting, 1989) Robert Eymard, Raphaèle Herbin (discrete setting, 2000) Aurélien Larcher, Jean-Claude Latché (discrete setting, 2011)

- Stefan problem

Coauthors: R. Eymard, P. Féron, C. Guichard, R. Herbin

- Autres examples : incompressible and compressible Stokes and Navier-Stokes equations
Coauthors : E. Chénier, R. E., R.H. (2013) and A. Fettah

Example (coming from RANS model for turbulent flows)

$$
\begin{aligned}
& \partial_{t} u+\operatorname{div}(v u)-\Delta u=f \text { in } \Omega \times(0, T) \\
& u=0 \text { on } \partial \Omega \times(0, T) \\
& u(\cdot, 0)=u_{0} \text { in } \Omega
\end{aligned}
$$

- Ω is a bounded open subset of $\mathbb{R}^{d}(d=2$ or 3$)$ with a Lipschitz continuous boundary
- $v \in C^{1}(\bar{\Omega} \times[0, T], \mathbb{R})$
- $u_{0} \in L^{1}(\Omega)$ (or u_{0} is a Radon measure on Ω)
- $f \in L^{1}(\Omega \times(0, T)$) (or f is a Radon measure on $\Omega \times(0, T)$)
with possible generalization to nonlinear problems.
Non smooth solutions.

What is the problem ?

1. Existence of weak solution and (strong) convergence of "continuous approximate solutions", that is solutions of the continuous problem with regular data converging to f and u_{0}.
2. Existence of weak solution and (strong) convergence of the approximate solutions given by a full discretized problem.

In both case, we want to prove strong compactness of a sequence of approximate solutions. This is the main subject of this talk.

Continuous approximation

$\left(f_{n}\right)_{n \in \mathbb{N}}$ and $\left(u_{0, n}\right)_{n \in \mathbb{N}}$ are two sequences of regular functions such that

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega} f_{n} \varphi d x d t \rightarrow \int_{0}^{T} \int_{\Omega} f \varphi d x d t, \forall \varphi \in C_{c}^{\infty}(\Omega \times(0, T), \mathbb{R}) \\
& \int_{\Omega} u_{0, n} \varphi d x \rightarrow \int_{\Omega} u_{0} \varphi d x, \forall \varphi \in C_{c}^{\infty}(\Omega, \mathbb{R})
\end{aligned}
$$

For $n \in \mathbb{N}$, it is well known that there exist u_{n} solution of the regularized problem

$$
\begin{aligned}
& \partial_{t} u_{n}+\operatorname{div}\left(v u_{n}\right)-\Delta u_{n}=f_{n} \text { in } \Omega \times(0, T), \\
& u_{n}=0 \text { on } \partial \Omega \times(0, T), \\
& u_{n}(\cdot, 0)=u_{0, n} \text { in } \Omega .
\end{aligned}
$$

One has, at least, $u_{n} \in L^{2}\left((0, T), H_{0}^{1}(\Omega)\right) \cap C\left([0, T], L^{2}(\Omega)\right)$ and $\partial_{t} u_{n} \in L^{2}\left((0, T), H^{-1}(\Omega)\right)$.

Continuous approximation, steps of the proof of

 convergence1. Estimate on u_{n} (not easy). One proves that the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in

$$
L^{q}\left((0, T), W_{0}^{1, q}(\Omega)\right) \text { for all } 1 \leq q<\frac{d+2}{d+1}
$$

(This gives, up to a subsequence, weak convergence in $L^{q}(\Omega \times(0, T))$ of u_{n} to some u and then, since the problem is linear, that u is a weak solution of the problem with f and u_{0}.)
2. Strong compactness of the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$
3. Regularity of the limit of the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$.
4. Passage to the limit in the approximate equation (easy).

Aubin-Simon' Compactness Lemma

X, B, Y are three Banach spaces such that

- $X \subset B$ with compact embedding,
- $B \subset Y$ with continuous embedding.

Let $T>0$ and $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence such that

- $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}((0, T), X)$,
- $\left(\partial_{t} u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}((0, T), Y)$.

Then there exists $u \in L^{1}((0, T), B)$ such that, up to a subsequence, $u_{n} \rightarrow u$ in $L^{1}((0, T), B)$.

Example: $X=W_{0}^{1,1}(\Omega), B=L^{1}(\Omega)$,
$Y=W_{\star}^{-1,1}(\Omega)=\left(W_{0}^{1, \infty}(\Omega)\right)^{\prime}$. As usual, we identify an L^{1}-function with the corresponding linear form on $W_{0}^{1, \infty}(\Omega)$.

Classical Lions' lemma

X, B, Y are three Banach spaces such that

- $X \subset B$ with compact embedding,
- $B \subset Y$ with continuous embedding.

Then, for any $\varepsilon>0$, there exists C_{ε} such that, for $w \in X$,

$$
\|w\|_{B} \leq \varepsilon\|w\|_{X}+C_{\varepsilon}\|w\|_{Y} .
$$

Proof: By contradiction
Improvment: " $B \subset Y$ with continuous embedding" can be replaced by the weaker hypothesis
" $\left(w_{n}\right)_{n \in \mathbb{N}}$ bounded in $X, w_{n} \rightarrow w$ in $B, w_{n} \rightarrow 0$ in Y implies
$w=0 "$

Classical Lions' lemma, another formulation

X, B, Y are three Banach spaces such that, $X \subset B \subset Y$,

- If $\left(\left\|w_{n}\right\|_{X}\right)_{n \in \mathbb{N}}$ is bounded, then, up to a subsequence, there exists $w \in B$ such that $w_{n} \rightarrow w$ in B.
- If $w_{n} \rightarrow w$ in B and $\left\|w_{n}\right\|_{Y} \rightarrow 0$, then $w=0$.

Then, for any $\varepsilon>0$, there exists C_{ε} such that, for $w \in X$,

$$
\|w\|_{B} \leq \varepsilon\|w\|_{X}+C_{\varepsilon}\|w\|_{Y} .
$$

The hypothesis $B \subset Y$ is not necessary.

Classical Lions' lemma, improvment

X, B, Y are three Banach spaces such that, $X \subset B$,
If $\left(\left\|w_{n}\right\|_{X}\right)_{n \in \mathbb{N}}$ is bounded, then,

- up to a subsequence, there exists $w \in B$ such that $w_{n} \rightarrow w$ in B.
- if $w_{n} \rightarrow w$ in B and $\left\|w_{n}\right\| Y \rightarrow 0$, then $w=0$.

Then, for any $\varepsilon>0$, there exists C_{ε} such that, for $w \in X$,

$$
\|w\|_{B} \leq \varepsilon\|w\|_{X}+C_{\varepsilon}\|w\|_{Y} .
$$

The hypothesis $B \subset Y$ is not necessary.

Classical Lions' lemma, a particular case, simpler

B is a Hilbert space and X is a Banach space $X \subset B$. We define on X the dual norm of $\|\cdot\|_{X}$, with the scalar product of B, namely

$$
\|u\|_{Y}=\sup \left\{(u / v)_{B}, v \in X,\|v\|_{X} \leq 1\right\} .
$$

Then, for any $\varepsilon>0$ and $w \in X$,

$$
\|w\|_{B} \leq \varepsilon\|w\|_{X}+\frac{1}{\varepsilon}\|w\|_{Y} .
$$

The proof is simple since

$$
\|u\|_{B}=(u / u)_{B}^{\frac{1}{2}} \leq\left(\|u\|_{Y}\|u\|_{X}\right)^{\frac{1}{2}} \leq \varepsilon\|w\|_{X}+\frac{1}{\varepsilon}\|w\|_{Y}
$$

Compactness of X in B is not needed here (but this compactness is needed for Aubin-Simon' Lemma, next slide. . .).

Aubin-Simon' Compactness Lemma

X, B, Y are three Banach spaces such that

- $X \subset B$ with compact embedding,
- $B \subset Y$ with continuous embedding.

Let $T>0$ and $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence such that

- $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}((0, T), X)$,
- $\left(\partial_{t} u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}((0, T), Y)$.

Then there exists $u \in L^{1}((0, T), B)$ such that, up to a subsequence, $u_{n} \rightarrow u$ in $L^{1}((0, T), B)$.

Example: $X=W_{0}^{1,1}(\Omega), B=L^{1}(\Omega), Y=W_{\star}^{-1,1}(\Omega)$.

Aubin-Simon' Compactness Lemma, improvment

X, B, Y are three Banach spaces such that, $X \subset B$,
If $\left(\left\|w_{n}\right\| x\right)_{n \in \mathbb{N}}$ is bounded, then,

- up to a subsequence, there exists $w \in B$ such that $w_{n} \rightarrow w$ in B.
- if $w_{n} \rightarrow w$ in B and $\left\|w_{n}\right\| Y \rightarrow 0$, then $w=0$.

Let $T>0$ and $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence such that

- $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}((0, T), X)$,
- $\left(\partial_{t} u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}((0, T), Y)$.

Then there exists $u \in L^{1}((0, T), B)$ such that, up to a subsequence, $u_{n} \rightarrow u$ in $L^{1}((0, T), B)$.

Example: $X=W_{0}^{1,1}(\Omega), B=L^{1}(\Omega), Y=W_{\star}^{-1,1}(\Omega)$.

Continuous approx., compactness of the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$

u_{n} is solution of he continuous problem with data f_{n} and $u_{0, n}$.
$X=W_{0}^{1,1}(\Omega), B=L^{1}(\Omega), Y=W_{\star}^{-1,1}(\Omega)$.
In order to apply Aubin-Simon' lemma we need

- $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}((0, T), X)$,
- $\left(\partial_{t} u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}((0, T), Y)$.

The sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{q}\left((0, T), W_{0}^{1, q}(\Omega)\right)$ (for $1 \leq q<(d+2) /(d+1))$ and then is bounded in $L^{1}((0, T), X)$, since $W_{0}^{1, q}(\Omega)$ is continuously embedded in $W_{0}^{1,1}(\Omega)$.
$\partial_{t} u_{n}=f_{n}-\operatorname{div}\left(v u_{n}\right)-\Delta u_{n}$. Is $\left(\partial_{t} u_{n}\right)_{n \in \mathbb{N}}$ bounded in $L^{1}((0, T), Y) ?$

Continuous approx., Compactness of the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$

Bound of $\left(\partial_{t} u_{n}\right)_{n \in \mathbb{N}}$ in $L^{1}\left((0, T), W_{\star}^{-1,1}(\Omega)\right)$?
$\partial_{t} u_{n}=f_{n}-\operatorname{div}\left(v u_{n}\right)-\Delta u_{n}$.

- $\left(f_{n}\right)_{n \in \mathbb{N}}$ is bounded in $\left.L^{1}(0, T), L^{1}(\Omega)\right)$ and then in $L^{1}\left((0, T), W_{\star}^{-1,1}(\Omega)\right)$, since $L^{1}(\Omega)$ is continously embedded in $W_{\star}^{-1,1}(\Omega)$,
- $\left(\operatorname{div}\left(v u_{n}\right)\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}\left((0, T), W_{\star}^{-1,1}(\Omega)\right)$ since $\left(v u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}\left((0, T),\left(L^{1}(\Omega)\right)^{d}\right.$ and div is a continuous operator from $\left(L^{1}(\Omega)\right)^{d}$ to $W_{\star}^{-1,1}(\Omega)$,
- $\left(\Delta u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}\left((0, T), W_{\star}^{-1,1}(\Omega)\right)$ since $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}\left((0, T), W_{0}^{1,1}(\Omega)\right)$ and Δ is a continuous operator from $W_{0}^{1,1}(\Omega)$ to $W_{\star}^{-1,1}(\Omega)$.

Finally, $\left(\partial_{t} u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}\left((0, T), W_{\star}^{-1,1}(\Omega)\right)$.
Aubin-Simon' lemma gives (up to a subsequence) $u_{n} \rightarrow u$ in $L^{1}\left((0, T), L^{1}(\Omega)\right)$.

Regularity of the limit

$u_{n} \rightarrow u$ in $L^{1}(\Omega \times(0, T))$ and $\left(u_{n}\right)_{n \in \mathbb{N}}$ bounded in $L^{q}\left((0, T), W_{0}^{1, q}(\Omega)\right)$ for $1 \leq q<(d+2) /(d+1)$. Then

$$
\begin{gathered}
\left.u_{n} \rightarrow u \text { in } L^{q}(\Omega \times(0, T))\right) \text { for } 1 \leq q<\frac{d+2}{d+1} \\
\nabla u_{n} \rightarrow \nabla u \text { weakly in } L^{q}(\Omega \times(0, T))^{d} \text { for } 1 \leq q<\frac{d+2}{d+1}, \\
u \in L^{q}\left((0, T), W_{0}^{1, q}(\Omega)\right) \text { for } 1 \leq q<(d+2) /(d+1) .
\end{gathered}
$$

Remark: $L^{q}\left((0, T), L^{q}(\Omega)\right)=L^{q}(\Omega \times(0, T))$
An additional work is needed to prove the strong convergence of ∇u_{n} to ∇u.

Full approximation, FV scheme

Space discretization: Admissible mesh \mathcal{M}. Time step: $k(N k=T)$

$$
T_{K, L}=m_{K, L} / d_{K, L}
$$

$\operatorname{size}(\mathcal{M})=\sup \{\operatorname{diam}(K), K \in \mathcal{M}\}$
Unknowns: $u_{K}^{(p)} \in \mathbb{R}, K \in \mathcal{M}, p \in\{1, \ldots, N\}$.
Discretization: Implicit in time, upwind for convection, classical 2-points flux for diffusion. (Well known scheme.)

Full approximation, approximate solution

- $H_{\mathcal{M}}$ the space of functions from Ω to \mathbb{R}, constant on each K, $K \in \mathcal{M}$.
- The discrete solution u is constant on $K \times((p-1) k, p k)$ with $K \in \mathcal{M}$ and $p \in\{1, \ldots, N\}$. $u(\cdot, t)=u^{(p)}$ for $t \in((p-1) k, p k)$ and $u^{(p)} \in H_{\mathcal{M}}$.
- Discrete derivatives in time, $\partial_{t, k} u$, defined by:

$$
\begin{aligned}
& \partial_{t, k} u(\cdot, t)=\partial_{t, k}^{(p)} u=\frac{1}{k}\left(u^{(p)}-u^{(p-1)}\right) \text { for } t \in((p-1) k, p k), \\
& \text { for } \left.p \in\{2, \ldots, N\} \text { (and } \partial_{t, k} u(\cdot, t)=0 \text { for } t \in(0, k)\right)
\end{aligned}
$$

Full approximation, steps of the proof of convergence

Sequence of meshes and time steps, $\left(\mathcal{M}_{n}\right)_{n \in \mathbb{N}}$ and k_{n}. $\operatorname{size}\left(\mathcal{M}_{n}\right) \rightarrow 0, k_{n} \rightarrow 0$, as $n \rightarrow \infty$.
For $n \in \mathbb{N}, u_{n}$ is the solution of the FV scheme.

1. Estimate on u_{n}.
2. Strong compactness of the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$.
3. Regularity of the limit of the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$.
4. Passage to the limit in the approximate equation.

Discrete norms

Admissible mesh: \mathcal{M}.
$u \in H_{\mathcal{M}}$ (that is u is a function constant on each $K, K \in \mathcal{M}$).

- $1 \leq q<\infty$. Discrete $W_{0}^{1, q}$-norm:

$$
\|u\|_{1, q, \mathcal{M}}^{q}=\sum_{\sigma \in \mathcal{E}_{i n t}, \sigma=K \mid L} m_{\sigma} d_{\sigma}\left|\frac{u_{K}-u_{L}}{d_{\sigma}}\right|^{q}+\sum_{\sigma \in \mathcal{E}_{\text {ext }, \sigma \in \mathcal{E}_{K}}} m_{\sigma} d_{\sigma}\left|\frac{u_{K}}{d_{\sigma}}\right|^{q}
$$

- $q=\infty$. Discrete $W_{0}^{1, \infty}$-norm: $\|u\|_{1, \infty, \mathcal{M}}^{q}=\max \left\{M_{i}, M_{e}, M\right\}$ with

$$
\begin{gathered}
M_{i}=\max \left\{\frac{\left|u_{K}-u_{L}\right|}{d_{\sigma}}, \sigma \in \mathcal{E}_{i n t}, \sigma=K \mid L\right\} \\
M_{e}=\max \left\{\frac{\left|u_{K}\right|}{d_{\sigma}}, \sigma \in \mathcal{E}_{e x t}, \sigma \in \mathcal{E}_{K}\right\} \\
M=\max \left\{\left|u_{K}\right|, K \in \mathcal{M}\right\}
\end{gathered}
$$

Discrete dual norms

Admissible mesh: \mathcal{M}.
For $r \in[1, \infty],\|\cdot\|_{-1, r, \mathcal{M}}$ is the dual norm of the norm $\|\cdot\|_{1, q, \mathcal{M}}$ with $q=r /(r-1)$. That is, for $u \in H_{\mathcal{M}}$,

$$
\|u\|_{-1, r, \mathcal{M}}=\max \left\{\int_{\Omega} u v d x, v \in H_{\mathcal{M}},\|v\|_{1, q, \mathcal{M}} \leq 1\right\}
$$

Example: $r=1(q=\infty)$.

Full discretization, estimate on the discrete solution

For $1 \leq q<(d+2) /(d+1)$, the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{q}\left((0, T), W_{q, n}\right)$, where $W_{q, n}$ is the space $H_{\mathcal{M}_{n}}$, endowed with the norm $\|\cdot\|_{1, q, \mathcal{M}_{n}}$. That is

$$
\sum_{p=1}^{N_{n}} k\left\|u_{n}^{(p)}\right\|_{1, q, \mathcal{M}_{n}}^{q} \leq C
$$

Discrete Lions' lemma (improved)

B is a Banach space, $\left(B_{n}\right)_{n \in \mathbb{N}}$ is a sequence of finite dimensional subspaces of $B .\|\cdot\|_{X_{n}}$ and $\|\cdot\|_{Y_{n}}$ are two norms on B_{n} such that:
If $\left(\left\|w_{n}\right\| X_{n}\right)_{n \in \mathbb{N}}$ is bounded, then,

- up to a subsequence, there exists $w \in B$ such that $w_{n} \rightarrow w$ in B.
- If $w_{n} \rightarrow w$ in B and $\left\|w_{n}\right\|_{Y_{n}} \rightarrow 0$, then $w=0$.

Then, for any $\varepsilon>0$, there exists C_{ε} such that, for $n \in \mathbb{N}$ and $w \in B_{n}$

$$
\|w\|_{B} \leq \varepsilon\|w\|_{X_{n}}+C_{\varepsilon}\|w\|_{Y_{n}}
$$

Example: $B=L^{1}(\Omega)$. $B_{n}=H_{\mathcal{M}_{n}}$ (the finite dimensional space given by the mesh $\left.\mathcal{M}_{n}\right)$. We have to choose $\|\cdot\|_{X_{n}}$ and $\|\cdot\|_{Y_{n}}$.

Discrete Lions' lemma, proof

Proof by contradiction. There exists $\varepsilon>0$ and $\left(w_{n}\right)_{n \in \mathbb{N}}$ such that, for all $n, w_{n} \in B_{n}$ and

$$
\left\|w_{n}\right\|_{B}>\varepsilon\left\|w_{n}\right\|_{X_{n}}+C_{n}\left\|w_{n}\right\|_{Y_{n}}
$$

with $\lim _{n \rightarrow \infty} C_{n}=+\infty$.
It is possible to assume that $\left\|w_{n}\right\|_{B}=1$. Then $\left(\left\|w_{n}\right\|_{x_{n}}\right)_{n \in \mathbb{N}}$ is bounded and, up to a subsequence, $w_{n} \rightarrow w$ in B (so that $\|w\|_{B}=1$). But $\left\|w_{n}\right\|_{Y_{n}} \rightarrow 0$, so that $w=0$, in contradiction with $\|w\|_{B}=1$.

Discrete Aubin-Simon' Compactness Lemma

B a Banach, $\left(B_{n}\right)_{n \in \mathbb{N}}$ family of finite dimensional subspaces of B.
$\|\cdot\| X_{n}$ and $\|\cdot\|_{Y_{n}}$ two norms on B_{n} such that:
If $\left(\left\|w_{n}\right\|_{X_{n}}\right)_{n \in \mathbb{N}}$ is bounded, then,

- up to a subsequence, there exists $w \in B$ such that $w_{n} \rightarrow w$ in B.
- If $w_{n} \rightarrow w$ in B and $\left\|w_{n}\right\|_{Y_{n}} \rightarrow 0$, then $w=0$.
$X_{n}=B_{n}$ with norm $\|\cdot\|_{x_{n}}, Y_{n}=B_{n}$ with norm $\|\cdot\|_{Y_{n}}$. Let
$T>0, k_{n}>0$ and $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence such that
- for all $n, u_{n}(\cdot, t)=u_{n}^{(p)} \in B_{n}$ for $t \in\left((p-1) k_{n}, p k_{n}\right)$
- $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}\left((0, T), X_{n}\right)$,
- $\left(\partial_{t, k_{n}} u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}\left((0, T), Y_{n}\right)$.

Then there exists $u \in L^{1}((0, T), B)$ such that, up to a subsequence, $u_{n} \rightarrow u$ in $L^{1}((0, T), B)$.

Example: $B=L^{1}(\Omega) . B_{n}=H_{\mathcal{M}_{n}}$. What choice for $\|\cdot\|_{X_{n}},\|\cdot\| Y_{n}$?

Full approx., compactness of the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$

u_{n} is solution of the fully discretized problem with mesh \mathcal{M}_{n} and time step k_{n}.
$B=L^{1}(\Omega), B_{n}=H_{\mathcal{M}_{n}}$,
$\|\cdot\|_{X_{n}}=\|\cdot\|_{1,1, \mathcal{M}_{n}},\|\cdot\|_{Y_{n}}=\|\cdot\|_{-1,1, \mathcal{M}_{n}}$
In order to apply the discrete Aubin-Simon' lemma we need to verify the hypotheses of the discrete Lions' lemma and that

- $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}\left((0, T), X_{n}\right)$,
- $\left(\partial_{t, k_{n}} u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}\left((0, T), Y_{n}\right)$.

The sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{q}\left((0, T), W_{q, n}(\Omega)\right)$ (for $1 \leq q<(d+2) /(d+1))$ and then is bounded in $L^{1}\left((0, T), X_{n}\right)$ since $\|\cdot\|_{1,1, \mathcal{M}_{n}} \leq C_{q}\|\cdot\|_{1, q, \mathcal{M}_{n}}$ for $q>1$.

Using the scheme, it is quite easy to prove (similarly to the continuous approximation) that $\left(\partial_{t, k_{n}} u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}\left((0, T), Y_{n}\right)$.

Full approx., Compactness of the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$

It remains to verify the hypotheses of the discrete Lions' lemma.

- If $w_{n} \in H_{\mathcal{M}_{n}},\left(\left\|w_{n}\right\|_{1,1, \mathcal{M}_{n}}\right)_{n \in \mathbb{N}}$ is bounded, there exists $w \in L^{1}(\Omega)$ such that $w_{n} \rightarrow w$ in $L^{1}(\Omega)$? Yes, this is classical now...
- If $w_{n} \in H_{\mathcal{M}_{n}}, w_{n} \rightarrow w$ in $L^{1}(\Omega)$ and $\left\|w_{n}\right\|_{-1,1, \mathcal{M}_{n}} \rightarrow 0$, then $w=0$? Yes. . Proof:
Let $\varphi \in W_{0}^{1, \infty}(\Omega)$ and its "projection" $\pi_{n} \varphi \in H_{\mathcal{M}_{n}}$. One has $\left\|\pi_{n} \varphi\right\|_{1, \infty, \mathcal{M}_{n}} \leq\|\varphi\|_{W^{1, \infty}(\Omega)}$ and then

$$
\left|\int_{\Omega} w_{n}\left(\pi_{n} \varphi\right) d x\right| \leq\left\|w_{n}\right\|_{-1,1, \mathcal{M}_{n}}\|\varphi\|_{W^{1, \infty}(\Omega)} \rightarrow 0
$$

and, since $w_{n} \rightarrow w$ in $L^{1}(\Omega)$ and $\pi_{n} \varphi \rightarrow \varphi$ uniformly,

$$
\int_{\Omega} w_{n}\left(\pi_{n} \varphi\right) d x \rightarrow \int_{\Omega} w \varphi d x
$$

This gives $\int_{\Omega} w \varphi d x=0$ for all $\varphi \in W_{0}^{1, \infty}(\Omega)$ and then $w=0$ a.e.

Regularity of the limit

As in the continuous approximation, $u_{n} \rightarrow u$ in $L^{1}(\Omega \times(0, T))$ and $\left(u_{n}\right)_{n \in \mathbb{N}}$ bounded in $L^{q}\left((0, T), W_{q, n}(\Omega)\right)$ for $1 \leq q<(d+2) /(d+1)$. Then

$$
\begin{gathered}
\left.u_{n} \rightarrow u \text { in } L^{q}(\Omega \times(0, T))\right) \text { for } 1 \leq q<\frac{d+2}{d+1}, \\
u \in L^{q}\left((0, T), W_{0}^{1, q}(\Omega)\right) \text { for } 1 \leq q<(d+2) /(d+1) .
\end{gathered}
$$

Discrete Aubin-Simon' Compactness Lemma

B a Banach, $\left(B_{n}\right)_{n \in \mathbb{N}}$ family of finite dimensional subspaces of B.
$\|\cdot\|_{X_{n}}$ and $\|\cdot\|_{Y_{n}}$ two norms on B_{n} such that:
If $\left(\left\|w_{n}\right\|_{X_{n}}\right)_{n \in \mathbb{N}}$ is bounded, then,

- up to a subsequence, there exists $w \in B$ such that $w_{n} \rightarrow w$ in B.
- If $w_{n} \rightarrow w$ in B and $\left\|w_{n}\right\|_{Y_{n}} \rightarrow 0$, then $w=0$.
$X_{n}=B_{n}$ with norm $\|\cdot\|_{x_{n}}, Y_{n}=B_{n}$ with norm $\|\cdot\|_{Y_{n}}$. Let
$T>0, k_{n}>0$ and $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence such that
- for all $n, u_{n}(\cdot, t)=u_{n}^{(p)} \in B_{n}$ for $t \in\left((p-1) k_{n}, p k_{n}\right)$
- $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}\left((0, T), X_{n}\right)$,
- $\left(\partial_{t, k_{n}} u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{1}\left((0, T), Y_{n}\right)$.

Then there exists $u \in L^{1}((0, T), B)$ such that, up to a subsequence, $u_{n} \rightarrow u$ in $L^{1}((0, T), B)$.

Stefan problem

$$
\begin{aligned}
& \partial_{t} u-\Delta \varphi(u)=f \text { in } \Omega \times(0, T), \\
& u=0 \text { on } \partial \Omega \times(0, T) \\
& u(\cdot, 0)=u_{0} \text { in } \Omega
\end{aligned}
$$

- Ω is a polygonal (for $d=2$) or polyhedral (for $d=3$) open subset of $\mathbb{R}^{d}(d=2$ or 3$), T>0$
- φ is a non decreasing function from \mathbb{R} to \mathbb{R}, Lipschitz continuous and $\lim \inf _{s \rightarrow+\infty} \varphi(s) / s>0$
- $u_{0} \in L^{2}(\Omega)$
- $f \in L^{2}(\Omega \times(0, T))$

Mail difficulty : φ may be constant on some interval of \mathbb{R}
Objective : To present a general framework to prove the convergence of many different schemes (FE, NCFE, FV, HFV...)

Discrete unknown

Discretization parameters, \mathcal{D} : spatial mesh, time step (δt)
Discrete unknown at time $t_{k}=k \delta t: u^{(k)} \in X_{\mathcal{D}, 0}$.

- values at the vertices of the mesh (FE)
- values at the edges of the mesh (NCFE)
- values in the cells (FV)
- values in the cells and in the edges (HFV)

With an element v of $X_{\mathcal{D}, 0}$ (for instance $v=u^{(k)}$ or $v=\varphi\left(u^{(k)}\right)$), one defines two functions

- \bar{v} (reconstruction of the approximate solution)
- $\nabla_{\mathcal{D}} v$ (reconstruction of an approximate gradient) with some natural properties of consistency. A crucial property is $\overline{\varphi(u)}=\varphi(\bar{u})$
N.B. the functions \bar{v} and $\nabla_{\mathcal{D}} v$ are piecewise constant functions, but not necessarily on the same mesh

Numerical scheme (Gradient schemes)

$\bar{u}^{(0)}$ given by the initial condition and for $k \geq 0$, $u^{(k+1)} \in X_{\mathcal{D}, 0}$

$$
\begin{array}{r}
\int_{\Omega} \frac{\bar{u}^{(k+1)}-\bar{u}^{(k)}}{\delta t} \bar{v} d x d t+\int_{\Omega} \nabla_{\mathcal{D} \varphi} \varphi\left(u^{(k+1)}\right) \cdot \nabla_{\mathcal{D}} v d x= \\
\frac{1}{\delta t} \int_{t_{k}}^{t_{k+1}} f \bar{v} d x d t, \forall v \in X_{\mathcal{D}, 0}
\end{array}
$$

Classical examples: FE with mass lumping, FV but also many other schemes. . .

Steps of the proof of convergence

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence of approximate solutions (associated to \mathcal{D}_{n} and δt_{n} with $\lim _{n \rightarrow \infty} \operatorname{size}\left(\mathcal{D}_{n}\right)=0$ and $\left.\lim _{n \rightarrow \infty} \delta t_{n}=0\right)$

1. Estimates on the approximate solution
2. Compactness result on the sequence of approximate solutions
3. Passage to the limit in the approximate equation

Steps 2 and 3 are tricky due to the fact that φ may be constant on some interval of \mathbb{R}

Estimates

One mimics the estimates for the continuous equation

$$
\begin{aligned}
& \partial_{t} u-\Delta \varphi(u)=f \text { in } \Omega \times(0, T) \\
& u=0 \text { on } \partial \Omega \times(0, T) \\
& u(\cdot, 0)=u_{0} \text { in } \Omega
\end{aligned}
$$

Taking $\varphi(u)$ as test function one obtains

- an estimate on u in $L^{\infty}\left((0, T), L^{2}(\Omega)\right)$
- an estimate on $\varphi(u)$ in $L^{2}\left((0, T), H_{0}^{1}(\Omega)\right)$
- and therefore an estimate on $\partial_{t} u$ in $L^{2}\left((0, T), H^{-1}(\Omega)\right)$

Estimates with corresponding discrete norms hold for the discrete setting of gradient schemes : $L^{\infty}\left((0, T), L^{2}(\Omega)\right)$-estimate on \bar{u}, $L^{2}\left((0, T), L^{2}(\Omega)\right)$-estimate on $\nabla_{\mathcal{D}} \varphi(u)$ and an estimate on the time discrete derivative for a dual norm

Estimates (2)

These estimates give only weak compactness on the sequences of approximate solutions $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(\varphi\left(u_{n}\right)\right)_{n \in \mathbb{N}}$. Not sufficient to pass to the limit. . .

$$
\lim _{n \rightarrow \infty} \varphi\left(u_{n}\right)=\varphi\left(\lim _{n \rightarrow \infty} u_{n}\right) ?
$$

Lions-Aubin-Simon Compactness Lemma

X, B, Y are three Banach spaces such that

- $X \subset B$ with compact embedding,
- $B \subset Y$ with continuous embedding.

Let $T>0,1 \leq p<+\infty$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ be a sequence such that

- $\left(v_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{p}((0, T), X)$,
- $\left(\partial_{t} v_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{p}((0, T), Y)$.

Then there exists $v \in L^{p}((0, T), B)$ such that, up to a subsequence, $v_{n} \rightarrow v$ in $L^{p}((0, T), B)$.

Example: $p=2, X=H_{0}^{1}(\Omega), B=L^{2}(\Omega), Y=H^{-1}(\Omega)$.
A dicrete version with a family a spaces $\left(X_{n}\right)_{n \in \mathbb{N}}$ and a family a spaces $\left(Y_{n}\right)_{n \in \mathbb{N}}$ is possible.

The Lions-Aubin-Simon lemma is of no use here

- $\left(\partial_{t} u_{n}\right)_{n \in \mathbb{N}}$ bounded in $L^{2}\left((0, T), H^{-1}(\Omega)\right)$
- $\varphi\left(u_{n}\right)_{n \in \mathbb{N}}$ bounded in $L^{2}\left((0, T), H_{0}^{1}(\Omega)\right)$

Unfortunately,

- the estimate on $\left(\varphi\left(u_{n}\right)\right)_{n \in \mathbb{N}}$ does not give an analogue estimate on $\left(u_{n}\right)_{n \in \mathbb{N}}$ (since φ may be constant on some interval). It gives only $\left(u_{n}\right)_{n \in \mathbb{N}}$ bounded in $L^{2}\left((0, T), L^{2}(\Omega)\right)$
- the estimate on $\left(\partial_{t} u_{n}\right)_{n \in \mathbb{N}}$ does not give an analogue estimate on $\left(\partial_{t} \varphi\left(u_{n}\right)\right)_{n \in \mathbb{N}}$ (the product of an $L^{\infty}(\Omega)$ function with a $H^{-1}(\Omega)$ element is not well defined)

One cannot use Lions-Aubin-Simon Compactness lemma on the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ nor on the sequence $\left(\varphi\left(u_{n}\right)\right)_{n \in \mathbb{N}}$

Between Kolmogorov and Aubin-Simon

X, B are two Banach spaces such that

- $X \subset B$ with compact embedding,

Let $T>0,1 \leq p<+\infty$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ be a sequence such that

- $\left(v_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{p}((0, T), X)$,
- $\left\|v_{n}(\cdot+h)-v_{n}\right\|_{L^{p}((0, T-h), B)} \rightarrow 0$, as $h \rightarrow 0_{+}$, unif. w.r.t. n.

Then there exists $v \in L^{p}((0, T), B)$ such that, up to a subsequence, $v_{n} \rightarrow v$ in $L^{p}((0, T), B)$.

Example: $p=2, X=H_{0}^{1}(\Omega), B=L^{2}(\Omega)$
Here also, a dicrete version with a family a spaces $\left(X_{n}\right)_{n \in \mathbb{N}}$ is possible.

Alt-Luckhaus method for the Stefan problem

One knows that $\varphi\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{2}\left((0, T), H_{0}^{1}(\Omega)\right)$. To obtain compactness of $\varphi\left(u_{n}\right)_{n \in \mathbb{N}}$ in $L^{2}\left((0, T), L^{2}(\Omega)\right)$ one has to prove that $\left\|\varphi\left(u_{n}\right)(\cdot+h)-\varphi\left(u_{n}\right)\right\|_{L^{2}\left((0, T-h), L^{2}(\Omega)\right)} \rightarrow 0_{+}$, as $h \rightarrow 0$, uniformly w.r.t. n. (For simplicity, $f=0$.)

$$
\partial_{t} u_{n}(s)-\Delta \varphi\left(u_{n}(s)\right)=0, s \in(t, t+h)
$$

One multiplies by $\varphi\left(u_{n}(t+h)\right)-\varphi\left(u_{n}(t)\right)$ and integrate between t and $t+h$ and on Ω

$$
\begin{aligned}
& \int_{t}^{t+h} \int_{\Omega} \partial_{t} u_{n}(s)\left(\varphi\left(u_{n}(t+h)\right)-\varphi\left(u_{n}(t)\right)\right) d x d s \\
& +\int_{t}^{t+h} \int_{\Omega} \nabla \varphi\left(u_{n}(s)\right) \cdot\left(\nabla \varphi\left(u_{n}(t+h)\right)-\nabla \varphi\left(u_{n}(t)\right)\right) d x d s .
\end{aligned}
$$

AL method for the Stefan problem (2)

$$
\begin{aligned}
& \int_{t}^{t+h} \int_{\Omega} \partial_{t} u_{n}(s)\left(\varphi\left(u_{n}(t+h)\right)-\varphi\left(u_{n}(t)\right)\right) d x d s \\
& +\int_{t}^{t+h} \int_{\Omega} \nabla \varphi\left(u_{n}(s)\right) \cdot\left(\nabla \varphi\left(u_{n}(t+h)\right)-\nabla \varphi\left(u_{n}(t)\right)\right) d x d s=0 . \\
& \left.\int_{\Omega}\left(u_{n}(t+h)\right)-u_{n}(t)\right)\left(\varphi\left(u_{n}(t+h)\right)-\varphi\left(u_{n}(t)\right)\right) d x \leq \\
& \int_{t}^{t+h} \int_{\Omega}\left|\nabla \varphi\left(u_{n}(s)\right)\right|\left|\nabla \varphi\left(u_{n}(t+h)\right)\right|+\left|\nabla \varphi\left(u_{n}(s)\right)\right|\left|\nabla \varphi\left(u_{n}(t)\right)\right| d x d s .
\end{aligned}
$$

One now integrates on $t \in(0, T-h)$, uses a Lipschitz constant for $\varphi\left(\right.$ denoted L) and $a b \leq\left(a^{2}+b^{2}\right) / 2$

$$
\begin{aligned}
& \int_{0}^{T-h} \int_{\Omega}\left(\varphi\left(u_{n}(t+h)\right)-\varphi\left(u_{n}(t)\right)\right)^{2} d x \leq \\
& \left.L \int_{0}^{T-h} \int_{\Omega}\left(u_{n}(t+h)\right)-u_{n}(t)\right)\left(\varphi\left(u_{n}(t+h)\right)-\varphi\left(u_{n}(t)\right)\right) d x \leq \\
& L \sum_{i=1}^{3} T_{i}
\end{aligned}
$$

AL method for the Stefan problem (3)

$$
\begin{aligned}
& \quad \int_{0}^{T-h} \int_{\Omega}\left(\varphi\left(u_{n}(t+h)\right)-\varphi\left(u_{n}(t)\right)\right)^{2} d x \leq L\left(T_{1}+T_{2}+T_{3}\right) \\
& T_{1}=\int_{0}^{T-h} \int_{t}^{t+h} \int_{\Omega}\left|\nabla \varphi\left(u_{n}(s)\right)\right|^{2} d x d s d t \leq h\left\|\mid \nabla \varphi\left(u_{n}\right)\right\|_{L^{2}(Q)}^{2} \\
& T_{2}=\int_{0}^{T-h} \int_{t}^{t+h} \int_{\Omega}\left|\nabla \varphi\left(u_{n}(t+h)\right)\right|^{2} d x d s d t \leq h\|\mid\| \varphi\left(u_{n}\right) \|_{L^{2}(Q)}^{2} \\
& T_{3}=\int_{0}^{T-h} \int_{t}^{t+h} \int_{\Omega}\left|\nabla \varphi\left(u_{n}(t)\right)\right|^{2} d x d s d t \leq h\left\|\mid \nabla \varphi\left(u_{n}\right)\right\|_{L^{2}(Q)}^{2} \\
& \text { where } Q=\Omega \times(0, T) .
\end{aligned}
$$

Thanks to the $L^{2}\left((0, T), H_{0}^{1}(\Omega)\right)$ estimate on $\left(\varphi\left(u_{n}\right)\right)_{n \in \mathbb{N}}$, one obtains the relative compactness of this sequence in $L^{2}(Q)$.

Translation (in time) of $\varphi\left(u_{n}\right)$, at the discrete level

At the discrete level, let u_{n} be the approximate solution associated to mesh \mathcal{D}_{n} and time step δt_{n}. A very similar proof gives

$$
\int_{0}^{T-h} \int_{\Omega}\left(\varphi\left(\bar{u}_{n}(t+h)\right)-\varphi\left(\bar{u}_{n}(t)\right)\right)^{2} d x \leq h\left\|\mid \nabla_{\mathcal{D}} \varphi\left(u_{n}\right)\right\|_{L^{2}(Q)}^{2}
$$

The only difference is due to the fact that $\partial_{t} u$ is replaced by a differential quotient.
For this proof, the crucial property $\overline{\varphi(u)}=\varphi(\bar{u})$ is used

Compactness, for a sequence of approximate solutions

X, B are two Banach spaces such that

- $X \subset B$ with compact embedding,

Let $T>0,1 \leq p<+\infty$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ be a sequence such that

- $\left(v_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{P}((0, T), X)$,
- $\left\|v_{n}(\cdot+h)-v_{n}\right\|_{L^{p}((0, T-h), B)} \rightarrow 0$, as $h \rightarrow 0_{+}$, unif. w.r.t. n.

Then there exists $v \in L^{p}((0, T), B)$ such that, up to a subsequence, $v_{n} \rightarrow v$ in $L^{P}((0, T), B)$.

Example: $p=2, X=H_{0}^{1}(\Omega), B=L^{2}(\Omega)$
One wants to take $v_{n}=\varphi\left(\bar{u}_{n}\right)$.

Compactness, for a sequence of approximate solutions

X, B are two Banach spaces such that

- $X \subset B$ with compact embedding,

Let $T>0,1 \leq p<+\infty$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ be a sequence such that

- $\left(v_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{P}((0, T), X)$,
- $\left\|v_{n}(\cdot+h)-v_{n}\right\|_{L^{p}((0, T-h), B)} \rightarrow 0$, as $h \rightarrow 0_{+}$, unif. w.r.t. n.

Then there exists $v \in L^{p}((0, T), B)$ such that, up to a subsequence, $v_{n} \rightarrow v$ in $L^{P}((0, T), B)$.

Example: $p=2, X=H_{0}^{1}(\Omega), B=L^{2}(\Omega)$
One wants to take $v_{n}=\varphi\left(\bar{u}_{n}\right)$.
Everything is ok, except that there is no X-space...

Modified Compactness Lemma

B is a banach space $\left(B=L^{2}(Q)\right)$
X_{n} normed vector spaces $\left(X_{n}=X_{\mathcal{D}_{n}, 0},\|u\|_{X_{n}}=\left\|\mid \nabla_{\mathcal{D}_{n}} u\right\|_{L^{2}}\right)$
T_{n} a linear operator from X_{n} to $B\left(T_{n}(u)=\bar{u}\right)$
The hypothesis $X \subset B$ with compact embedding is replaced by " $u_{n} \in X_{n}$, if the sequence $\left(\left\|u_{n}\right\|_{X_{n}}\right)_{n \in \mathbb{N}}$ is bounded, then the sequence $\left(T_{n}\left(u_{n}\right)\right)_{n \in \mathbb{N}}$ is relatively compact in $B^{\prime \prime}$.
With this hypothesis, let $T>0,1 \leq p<+\infty$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ be a sequence such that $v_{n} \in L^{p}\left((0, T), X_{n}\right)$ for all n. Assume that

- There exists C such that $\left\|v_{n}\right\|_{L^{p}\left((0, T), X_{n}\right)} \leq C$ for all $n \in \mathbb{N}$
- $\left\|T_{n}\left(v_{n}\right)(\cdot+h)-T_{n}\left(v_{n}\right)\right\|_{L^{p}((0, T-h), B)} \rightarrow 0$, as $h \rightarrow 0_{+}$, uniformly w.r.t. n.
Then there exists $g \in L^{P}((0, T), B)$ such that, up to a subsequence, $T_{n}\left(v_{n}\right) \rightarrow g$ in $L^{p}((0, T), B)$.
$p=2, v_{n}=\varphi\left(u_{n}\right)$. With this Compactness Lemma, one obtains that $\varphi\left(\bar{u}_{n}\right) \rightarrow g$ in $L^{2}(Q)$

Minty trick (simple version)

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence of approximate solutions. One has, as $n \rightarrow \infty$,

$$
\begin{gathered}
\bar{u}_{n} \rightarrow u \text { weakly in } L^{2}(Q), \\
\varphi\left(\bar{u}_{n}\right) \rightarrow g \text { in } L^{2}(Q) .
\end{gathered}
$$

Then, the Minty trick (since φ is nondecreasing) gives $g=\varphi(u)$: Let $w \in L^{2}(\Omega), 0 \leq \int_{Q}\left(\varphi\left(\bar{u}_{n}\right)-\varphi(w)\right)\left(\bar{u}_{n}-w\right) d x d t$ gives, as $n \rightarrow \infty$,

$$
0 \leq \int_{Q}(g-\varphi(w))(u-w) d x d t
$$

Taking $w=u+\varepsilon \psi$, with $\psi \in C_{c}^{\infty}(Q)$ and letting $\varepsilon \rightarrow 0^{ \pm}$leads to

$$
\int_{Q}(g-\varphi(u)) \psi d x d t=0
$$

Then $g=\varphi(u)$ a.e.

Passing to the limit in the equation

It remains to pass to the limit in the approximate equation. This is possible thanks to some natural properties of consistency. That is to say, for any regular function ψ, as $\operatorname{size}(\mathcal{D}) \rightarrow 0$,

1. $\min _{v \in X_{\mathcal{D}, 0}}\|\bar{v}-\psi\|_{L^{2}(\Omega)} \rightarrow 0$
2. $\min _{v \in X_{\mathcal{D}, 0}}\left\|\mid \nabla_{\mathcal{D}} v-\nabla \psi\right\|_{L^{2}(\Omega)} \rightarrow 0$
3. $\max _{u \in X_{\mathcal{D}, 0} \backslash\{0\}} \frac{1}{\left\|\nabla_{D} u\right\|_{L^{2}(\Omega)}}\left|\int_{\Omega}\left(\nabla_{\mathcal{D} u} u \cdot \psi+\bar{u} \operatorname{div} \psi\right) d x\right| \rightarrow 0$

Modified Compactness Lemma

B is a banach space
X_{n} normed vector spaces
T_{n} a linear operator from X_{n} to B
The hypothesis $X \subset B$ with compact embedding is replaced by " $u_{n} \in X_{n}$, if the sequence $\left(\left\|u_{n}\right\|_{X_{n}}\right)_{n \in \mathbb{N}}$ is bounded, then the sequence $\left(T_{n}\left(u_{n}\right)\right)_{n \in \mathbb{N}}$ is relatively compact in $B^{\prime \prime}$.
With this hypothesis, let $T>0,1 \leq p<+\infty$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ be a sequence such that $v_{n} \in L^{p}\left((0, T), X_{n}\right)$ for all n. Assume that

- There exists C such that $\left\|v_{n}\right\|_{L^{p}\left((0, T), X_{n}\right)} \leq C$ for all $n \in \mathbb{N}$
- $\left\|T_{n}\left(v_{n}\right)(\cdot+h)-T_{n}\left(v_{n}\right)\right\|_{L^{p}((0, T-h), B)} \rightarrow 0$, as $h \rightarrow 0$, uniformly w.r.t. n.
Then there exists $g \in L^{p}((0, T), B)$ such that, up to a subsequence, $T_{n}\left(v_{n}\right) \rightarrow g$ in $L^{p}((0, T), B)$.

Compactness Lemma, simple case

B is a banach space
X_{n} normed vector spaces
The sequence X_{n} is compactly embeded in $B^{\prime \prime}$
$T>0,1 \leq p<+\infty$

- $\left(v_{n}\right)_{n \in \mathbb{N}}$ bounded in $L^{p}\left((0, T), X_{n}\right)$
- $\left\|v_{n}(\cdot+h)-v_{n}\right\|_{L^{p}((0, T-h), B)} \rightarrow 0$, as $h \rightarrow 0$, unif. w.r.t. n.

Then there exists $v \in L^{p}((0, T), B)$ such that, up to a subsequence, $v_{n} \rightarrow v$ in $L^{p}((0, T), B)$.

