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Example (coming from RANS model for turbulent flows)

∂tu + div(vu)−∆u = f in Ω× (0,T ),
u = 0 on ∂Ω× (0,T ),
u(·, 0) = u0 in Ω.

I Ω is a bounded open subset of Rd (d = 2 or 3) with a
Lipschitz continuous boundary

I v ∈ C 1(Ω× [0,T ],R)

I u0 ∈ L1(Ω) (or u0 is a Radon measure on Ω)

I f ∈ L1(Ω× (0,T )) (or f is a Radon measure on Ω× (0,T ))

with possible generalization to nonlinear problems.

Non smooth solutions.



What is the problem ?

1. Existence of weak solution and (strong) convergence of
“continuous approximate solutions”, that is solutions of the
continuous problem with regular data converging to f and u0.

2. Existence of weak solution and (strong) convergence of the
approximate solutions given by a full discretized problem.

In both case, we want to prove strong compactness of a sequence
of approximate solutions. This is the main subject of this talk.



Continuous approximation

(fn)n∈N and (u0,n)n∈N are two sequences of regular functions such
that∫ T

0

∫
Ω
fnϕdxdt →

∫ T

0

∫
Ω
f ϕdxdt, ∀ϕ ∈ C∞c (Ω× (0,T ),R),∫

Ω
u0,nϕdx →

∫
Ω
u0ϕdx , ∀ϕ ∈ C∞c (Ω,R).

For n ∈ N, it is well known that there exist un solution of the
regularized problem

∂tun + div(vun)−∆un = fn in Ω× (0,T ),
un = 0 on ∂Ω× (0,T ),
un(·, 0) = u0,n in Ω.

One has, at least, un ∈ L2((0,T ),H1
0 (Ω)) ∩ C ([0,T ], L2(Ω)) and

∂tun ∈ L2((0,T ),H−1(Ω)).



Continuous approximation, steps of the proof of
convergence

1. Estimate on un (not easy). One proves that the sequence
(un)n∈N is bounded in

Lq((0,T ),W 1,q
0 (Ω)) for all 1 ≤ q <

d + 2

d + 1
.

(This gives, up to a subsequence, weak convergence in
Lq(Ω× (0,T )) of un to some u and then, since the problem is
linear, that u is a weak solution of the problem with f and u0.)

2. Strong compactness of the sequence (un)n∈N

3. Regularity of the limit of the sequence (un)n∈N.

4. Passage to the limit in the approximate equation (easy).



Aubin-Simon’ Compactness Lemma

X , B, Y are three Banach spaces such that

I X ⊂ B with compact embedding,

I B ⊂ Y with continuous embedding.

Let T > 0 and (un)n∈N be a sequence such that

I (un)n∈N is bounded in L1((0,T ),X ),

I (∂tun)n∈N is bounded in L1((0,T ),Y ).

Then there exists u ∈ L1((0,T ),B) such that, up to a
subsequence, un → u in L1((0,T ),B).

Example: X = W 1,1
0 (Ω), B = L1(Ω),

Y = W−1,1
? (Ω) = (W 1,∞

0 (Ω))′. As usual, we identify an

L1-function with the corresponding linear form on W 1,∞
0 (Ω).



Classical Lions’ lemma

X , B, Y are three Banach spaces such that

I X ⊂ B with compact embedding,

I B ⊂ Y with continuous embedding.

Then, for any ε > 0, there exists Cε such that, for w ∈ X ,

‖w‖B ≤ ε‖w‖X + Cε‖w‖Y .

Proof: By contradiction
Improvment : “B ⊂ Y with continuous embedding” can be
replaced by the weaker hypothesis
“(wn)n∈N bounded in X , wn → w in B, wn → 0 in Y implies
w = 0”



Classical Lions’ lemma, another formulation

X , B, Y are three Banach spaces such that, X ⊂ B ⊂ Y ,

I If (‖wn‖X )n∈N is bounded, then, up to a subsequence, there
exists w ∈ B such that wn → w in B.

I If wn → w in B and ‖wn‖Y → 0, then w = 0.

Then, for any ε > 0, there exists Cε such that, for w ∈ X ,

‖w‖B ≤ ε‖w‖X + Cε‖w‖Y .

The hypothesis B ⊂ Y is not necessary.



Classical Lions’ lemma, improvment

X , B, Y are three Banach spaces such that, X ⊂ B,
If (‖wn‖X )n∈N is bounded, then,

I up to a subsequence, there exists w ∈ B such that wn → w in
B.

I if wn → w in B and ‖wn‖Y → 0, then w = 0.

Then, for any ε > 0, there exists Cε such that, for w ∈ X ,

‖w‖B ≤ ε‖w‖X + Cε‖w‖Y .

The hypothesis B ⊂ Y is not necessary.



Classical Lions’ lemma, a particular case, simpler

B is a Hilbert space and X is a Banach space X ⊂ B. We define
on X the dual norm of ‖ · ‖X , with the scalar product of B, namely

‖u‖Y = sup{(u/v)B , v ∈ X , ‖v‖X ≤ 1}.

Then, for any ε > 0 and w ∈ X ,

‖w‖B ≤ ε‖w‖X +
1

ε
‖w‖Y .

The proof is simple since

‖u‖B = (u/u)
1
2
B ≤ (‖u‖Y ‖u‖X )

1
2 ≤ ε‖w‖X +

1

ε
‖w‖Y .

Compactness of X in B is not needed here (but this compactness
is needed for Aubin-Simon’ Lemma, next slide. . . ).



Aubin-Simon’ Compactness Lemma

X , B, Y are three Banach spaces such that

I X ⊂ B with compact embedding,

I B ⊂ Y with continuous embedding.

Let T > 0 and (un)n∈N be a sequence such that

I (un)n∈N is bounded in L1((0,T ),X ),

I (∂tun)n∈N is bounded in L1((0,T ),Y ).

Then there exists u ∈ L1((0,T ),B) such that, up to a
subsequence, un → u in L1((0,T ),B).

Example: X = W 1,1
0 (Ω), B = L1(Ω), Y = W−1,1

? (Ω).



Aubin-Simon’ Compactness Lemma, improvment

X , B, Y are three Banach spaces such that, X ⊂ B,
If (‖wn‖X )n∈N is bounded, then,

I up to a subsequence, there exists w ∈ B such that wn → w in
B.

I if wn → w in B and ‖wn‖Y → 0, then w = 0.

Let T > 0 and (un)n∈N be a sequence such that

I (un)n∈N is bounded in L1((0,T ),X ),

I (∂tun)n∈N is bounded in L1((0,T ),Y ).

Then there exists u ∈ L1((0,T ),B) such that, up to a
subsequence, un → u in L1((0,T ),B).

Example: X = W 1,1
0 (Ω), B = L1(Ω), Y = W−1,1

? (Ω).



Continuous approx., compactness of the sequence (un)n∈N

un is solution of he continuous problem with data fn and u0,n.

X = W 1,1
0 (Ω), B = L1(Ω), Y = W−1,1

? (Ω).

In order to apply Aubin-Simon’ lemma we need

I (un)n∈N is bounded in L1((0,T ),X ),

I (∂tun)n∈N is bounded in L1((0,T ),Y ).

The sequence (un)n∈N is bounded in Lq((0,T ),W 1,q
0 (Ω)) (for

1 ≤ q < (d + 2)/(d + 1)) and then is bounded in L1((0,T ),X ),
since W 1,q

0 (Ω) is continuously embedded in W 1,1
0 (Ω).

∂tun = fn − div(vun)−∆un. Is (∂tun)n∈N bounded in
L1((0,T ),Y ) ?



Continuous approx., Compactness of the sequence (un)n∈N

Bound of (∂tun)n∈N in L1((0,T ),W−1,1
? (Ω)) ?

∂tun = fn − div(vun)−∆un.

I (fn)n∈N is bounded in L1(0,T ), L1(Ω)) and then in
L1((0,T ),W−1,1

? (Ω)), since L1(Ω) is continously embedded in
W−1,1
? (Ω),

I (div(vun))n∈N is bounded in L1((0,T ),W−1,1
? (Ω)) since

(vun)n∈N is bounded in L1((0,T ), (L1(Ω))d and div is a
continuous operator from (L1(Ω))d to W−1,1

? (Ω),

I (∆un)n∈N is bounded in L1((0,T ),W−1,1
? (Ω)) since (un)n∈N

is bounded in L1((0,T ),W 1,1
0 (Ω)) and ∆ is a continuous

operator from W 1,1
0 (Ω) to W−1,1

? (Ω).

Finally, (∂tun)n∈N is bounded in L1((0,T ),W−1,1
? (Ω)).

Aubin-Simon’ lemma gives (up to a subsequence) un → u in
L1((0,T ), L1(Ω)).



Regularity of the limit

un → u in L1(Ω× (0,T )) and (un)n∈N bounded in
Lq((0,T ),W 1,q

0 (Ω)) for 1 ≤ q < (d + 2)/(d + 1). Then

un → u in Lq(Ω× (0,T ))) for 1 ≤ q <
d + 2

d + 1
,

∇un → ∇u weakly in Lq(Ω× (0,T ))d for 1 ≤ q <
d + 2

d + 1
,

u ∈ Lq((0,T ),W 1,q
0 (Ω)) for 1 ≤ q < (d + 2)/(d + 1).

Remark: Lq((0,T ), Lq(Ω)) = Lq(Ω× (0,T ))

An additional work is needed to prove the strong convergence of
∇un to ∇u.



Full approximation, FV scheme
Space discretization: Admissible mesh M. Time step: k (Nk = T )

TK,L=mK,L/dK,L

K

L

size(M) = sup{diam(K ),K ∈M}
Unknowns: u

(p)
K ∈ R, K ∈M, p ∈ {1, . . . ,N}.

Discretization: Implicit in time, upwind for convection, classical
2-points flux for diffusion. (Well known scheme.)



Full approximation, approximate solution

I HM the space of functions from Ω to R, constant on each K ,
K ∈M.

I The discrete solution u is constant on K × ((p − 1)k, pk) with
K ∈M and p ∈ {1, . . . ,N}.
u(·, t) = u(p) for t ∈ ((p − 1)k , pk) and u(p) ∈ HM.

I Discrete derivatives in time, ∂t,ku, defined by:

∂t,ku(·, t) = ∂
(p)
t,k u =

1

k
(u(p) − u(p−1)) for t ∈ ((p − 1)k, pk),

for p ∈ {2, . . . ,N} (and ∂t,ku(·, t) = 0 for t ∈ (0, k)).



Full approximation, steps of the proof of convergence

Sequence of meshes and time steps, (Mn)n∈N and kn.
size(Mn)→ 0, kn → 0, as n→∞.
For n ∈ N, un is the solution of the FV scheme.

1. Estimate on un.

2. Strong compactness of the sequence (un)n∈N.

3. Regularity of the limit of the sequence (un)n∈N.

4. Passage to the limit in the approximate equation.



Discrete norms
Admissible mesh: M.
u ∈ HM (that is u is a function constant on each K , K ∈M).

I 1 ≤ q <∞. Discrete W 1,q
0 -norm:

‖u‖q1,q,M =
∑

σ∈Eint ,σ=K |L

mσdσ|
uK − uL

dσ
|q+

∑
σ∈Eext ,σ∈EK

mσdσ|
uK
dσ
|q

I q =∞. Discrete W 1,∞
0 -norm: ‖u‖q1,∞,M = max{Mi ,Me ,M}

with

Mi = max{|uK − uL|
dσ

, σ ∈ Eint , σ = K |L},

Me = max{|uK |
dσ

, σ ∈ Eext , σ ∈ EK},

M = max{|uK |, K ∈M}.



Discrete dual norms

Admissible mesh: M.
For r ∈ [1,∞], ‖ · ‖−1,r ,M is the dual norm of the norm ‖ · ‖1,q,M
with q = r/(r − 1). That is, for u ∈ HM,

‖u‖−1,r ,M = max{
∫

Ω
uv dx , v ∈ HM, ‖v‖1,q,M ≤ 1}.

Example: r = 1 (q =∞).



Full discretization, estimate on the discrete solution

For 1 ≤ q < (d + 2)/(d + 1), the sequence (un)n∈N is bounded in
Lq((0,T ),Wq,n), where Wq,n is the space HMn , endowed with the
norm ‖ · ‖1,q,Mn . That is

Nn∑
p=1

k‖u(p)
n ‖q1,q,Mn

≤ C .



Discrete Lions’ lemma (improved)

B is a Banach space, (Bn)n∈N is a sequence of finite dimensional
subspaces of B. ‖ · ‖Xn and ‖ · ‖Yn are two norms on Bn such that:
If (‖wn‖Xn)n∈N is bounded, then,

I up to a subsequence, there exists w ∈ B such that wn → w in
B.

I If wn → w in B and ‖wn‖Yn → 0, then w = 0.

Then, for any ε > 0, there exists Cε such that, for n ∈ N and
w ∈ Bn

‖w‖B ≤ ε‖w‖Xn + Cε‖w‖Yn .

Example: B = L1(Ω). Bn = HMn (the finite dimensional space
given by the mesh Mn). We have to choose ‖ · ‖Xn and ‖ · ‖Yn .



Discrete Lions’ lemma, proof

Proof by contradiction. There exists ε > 0 and (wn)n∈N such that,
for all n, wn ∈ Bn and

‖wn‖B > ε‖wn‖Xn + Cn‖wn‖Yn ,

with limn→∞ Cn = +∞.

It is possible to assume that ‖wn‖B = 1. Then (‖wn‖Xn)n∈N is
bounded and, up to a subsequence, wn → w in B (so that
‖w‖B = 1). But ‖wn‖Yn → 0, so that w = 0, in contradiction with
‖w‖B = 1.



Discrete Aubin-Simon’ Compactness Lemma

B a Banach, (Bn)n∈N family of finite dimensional subspaces of B.
‖ · ‖Xn and ‖ · ‖Yn two norms on Bn such that:
If (‖wn‖Xn)n∈N is bounded, then,

I up to a subsequence, there exists w ∈ B such that wn → w in
B.

I If wn → w in B and ‖wn‖Yn → 0, then w = 0.

Xn = Bn with norm ‖ · ‖Xn , Yn = Bn with norm ‖ · ‖Yn . Let
T > 0, kn > 0 and (un)n∈N be a sequence such that

I for all n, un(·, t) = u
(p)
n ∈ Bn for t ∈ ((p − 1)kn, pkn)

I (un)n∈N is bounded in L1((0,T ),Xn),

I (∂t,knun)n∈N is bounded in L1((0,T ),Yn).

Then there exists u ∈ L1((0,T ),B) such that, up to a
subsequence, un → u in L1((0,T ),B).

Example: B = L1(Ω). Bn = HMn . What choice for ‖ · ‖Xn , ‖ · ‖Yn ?



Full approx., compactness of the sequence (un)n∈N
un is solution of the fully discretized problem with mesh Mn and
time step kn.

B = L1(Ω), Bn = HMn ,
‖ · ‖Xn = ‖ · ‖1,1,Mn , ‖ · ‖Yn = ‖ · ‖−1,1,Mn

In order to apply the discrete Aubin-Simon’ lemma we need to
verify the hypotheses of the discrete Lions’ lemma and that

I (un)n∈N is bounded in L1((0,T ),Xn),

I (∂t,knun)n∈N is bounded in L1((0,T ),Yn).

The sequence (un)n∈N is bounded in Lq((0,T ),Wq,n(Ω)) (for
1 ≤ q < (d + 2)/(d + 1)) and then is bounded in L1((0,T ),Xn)
since ‖ · ‖1,1,Mn ≤ Cq‖ · ‖1,q,Mn for q > 1.

Using the scheme, it is quite easy to prove (similarly to the
continuous approximation) that (∂t,knun)n∈N is bounded in
L1((0,T ),Yn).



Full approx., Compactness of the sequence (un)n∈N
It remains to verify the hypotheses of the discrete Lions’ lemma.

I If wn ∈ HMn , (‖wn‖1,1,Mn)n∈N is bounded, there exists
w ∈ L1(Ω) such that wn → w in L1(Ω) ?
Yes, this is classical now. . .

I If wn ∈ HMn , wn → w in L1(Ω) and ‖wn‖−1,1,Mn → 0, then
w = 0 ? Yes. . . Proof :
Let ϕ ∈W 1,∞

0 (Ω) and its “projection” πnϕ ∈ HMn . One has
‖πnϕ‖1,∞,Mn ≤ ‖ϕ‖W 1,∞(Ω) and then

|
∫

Ω
wn(πnϕ)dx | ≤ ‖wn‖−1,1,Mn‖ϕ‖W 1,∞(Ω) → 0,

and, since wn → w in L1(Ω) and πnϕ→ ϕ uniformly,∫
Ω
wn(πnϕ)dx →

∫
Ω
wϕdx .

This gives
∫

Ω wϕdx = 0 for all ϕ ∈W 1,∞
0 (Ω) and then

w = 0 a.e.



Regularity of the limit

As in the continuous approximation,
un → u in L1(Ω× (0,T )) and (un)n∈N bounded in
Lq((0,T ),Wq,n(Ω)) for 1 ≤ q < (d + 2)/(d + 1). Then

un → u in Lq(Ω× (0,T ))) for 1 ≤ q <
d + 2

d + 1
,

u ∈ Lq((0,T ),W 1,q
0 (Ω)) for 1 ≤ q < (d + 2)/(d + 1).



Discrete Aubin-Simon’ Compactness Lemma

B a Banach, (Bn)n∈N family of finite dimensional subspaces of B.
‖ · ‖Xn and ‖ · ‖Yn two norms on Bn such that:
If (‖wn‖Xn)n∈N is bounded, then,

I up to a subsequence, there exists w ∈ B such that wn → w in
B.

I If wn → w in B and ‖wn‖Yn → 0, then w = 0.

Xn = Bn with norm ‖ · ‖Xn , Yn = Bn with norm ‖ · ‖Yn . Let
T > 0, kn > 0 and (un)n∈N be a sequence such that

I for all n, un(·, t) = u
(p)
n ∈ Bn for t ∈ ((p − 1)kn, pkn)

I (un)n∈N is bounded in L1((0,T ),Xn),

I (∂t,knun)n∈N is bounded in L1((0,T ),Yn).

Then there exists u ∈ L1((0,T ),B) such that, up to a
subsequence, un → u in L1((0,T ),B).



Stefan problem

∂tu −∆ϕ(u) = f in Ω× (0,T ),
u = 0 on ∂Ω× (0,T ),
u(·, 0) = u0 in Ω.

I Ω is a polygonal (for d = 2) or polyhedral (for d = 3) open
subset of Rd (d = 2 or 3), T > 0

I ϕ is a non decreasing function from R to R, Lipschitz
continuous and lim infs→+∞ ϕ(s)/s > 0

I u0 ∈ L2(Ω)

I f ∈ L2(Ω× (0,T ))

Mail difficulty : ϕ may be constant on some interval of R
Objective : To present a general framework to prove the
convergence of many different schemes (FE, NCFE, FV, HFV. . . )



Discrete unknown

Discretization parameters, D : spatial mesh, time step (δt)

Discrete unknown at time tk = kδt : u(k) ∈ XD,0.

I values at the vertices of the mesh (FE)

I values at the edges of the mesh (NCFE)

I values in the cells (FV)

I values in the cells and in the edges (HFV)

With an element v of XD,0 (for instance v = u(k) or v = ϕ(u(k))),
one defines two functions

I v̄ (reconstruction of the approximate solution)

I ∇Dv (reconstruction of an approximate gradient)

with some natural properties of consistency.
A crucial property is ϕ(u) = ϕ(ū)
N.B. the functions v̄ and ∇Dv are piecewise constant functions,
but not necessarily on the same mesh



Numerical scheme (Gradient schemes)

ū(0) given by the initial condition and for k ≥ 0,

u(k+1) ∈ XD,0

∫
Ω

ū(k+1) − ū(k)

δt
v̄dxdt +

∫
Ω
∇Dϕ(u(k+1)) · ∇Dvdx =

1

δt

∫ tk+1

tk

f v̄dxdt, ∀v ∈ XD,0

Classical examples : FE with mass lumping, FV
but also many other schemes. . .



Steps of the proof of convergence

Let (un)n∈N be a sequence of approximate solutions (associated to
Dn and δtn with limn→∞ size(Dn) = 0 and limn→∞ δtn = 0)

1. Estimates on the approximate solution

2. Compactness result on the sequence of approximate solutions

3. Passage to the limit in the approximate equation

Steps 2 and 3 are tricky due to the fact that ϕ may be constant on
some interval of R



Estimates

One mimics the estimates for the continuous equation

∂tu −∆ϕ(u) = f in Ω× (0,T ),
u = 0 on ∂Ω× (0,T ),
u(·, 0) = u0 in Ω.

Taking ϕ(u) as test function one obtains

I an estimate on u in L∞((0,T ), L2(Ω))

I an estimate on ϕ(u) in L2((0,T ),H1
0 (Ω))

I and therefore an estimate on ∂tu in L2((0,T ),H−1(Ω))

Estimates with corresponding discrete norms hold for the discrete
setting of gradient schemes : L∞((0,T ), L2(Ω))-estimate on ū,
L2((0,T ), L2(Ω))-estimate on ∇Dϕ(u) and an estimate on the
time discrete derivative for a dual norm



Estimates (2)

These estimates give only weak compactness on the sequences of
approximate solutions (un)n∈N and (ϕ(un))n∈N. Not sufficient to
pass to the limit. . .

lim
n→∞

ϕ(un) = ϕ( lim
n→∞

un)?



Lions-Aubin-Simon Compactness Lemma

X , B, Y are three Banach spaces such that

I X ⊂ B with compact embedding,

I B ⊂ Y with continuous embedding.

Let T > 0, 1 ≤ p < +∞ and (vn)n∈N be a sequence such that

I (vn)n∈N is bounded in Lp((0,T ),X ),

I (∂tvn)n∈N is bounded in Lp((0,T ),Y ).

Then there exists v ∈ Lp((0,T ),B) such that, up to a
subsequence, vn → v in Lp((0,T ),B).

Example: p = 2, X = H1
0 (Ω), B = L2(Ω), Y = H−1(Ω).

A dicrete version with a family a spaces (Xn)n∈N and a family a
spaces (Yn)n∈N is possible.



The Lions-Aubin-Simon lemma is of no use here

I (∂tun)n∈N bounded in L2((0,T ),H−1(Ω))

I ϕ(un)n∈N bounded in L2((0,T ),H1
0 (Ω))

Unfortunately,

I the estimate on (ϕ(un))n∈N does not give an analogue
estimate on (un)n∈N (since ϕ may be constant on some
interval). It gives only (un)n∈N bounded in L2((0,T ), L2(Ω))

I the estimate on (∂tun)n∈N does not give an analogue estimate
on (∂tϕ(un))n∈N (the product of an L∞(Ω) function with a
H−1(Ω) element is not well defined)

One cannot use Lions-Aubin-Simon Compactness lemma on the
sequence (un)n∈N nor on the sequence (ϕ(un))n∈N



Between Kolmogorov and Aubin-Simon

X , B are two Banach spaces such that

I X ⊂ B with compact embedding,

Let T > 0, 1 ≤ p < +∞ and (vn)n∈N be a sequence such that

I (vn)n∈N is bounded in Lp((0,T ),X ),

I ‖vn(·+ h)− vn‖Lp((0,T−h),B) → 0, as h→ 0+, unif. w.r.t. n.

Then there exists v ∈ Lp((0,T ),B) such that, up to a
subsequence, vn → v in Lp((0,T ),B).

Example: p = 2, X = H1
0 (Ω), B = L2(Ω)

Here also, a dicrete version with a family a spaces (Xn)n∈N is
possible.



Alt-Luckhaus method for the Stefan problem

One knows that ϕ(un)n∈N is bounded in L2((0,T ),H1
0 (Ω)). To

obtain compactness of ϕ(un)n∈N in L2((0,T ), L2(Ω)) one has to
prove that ‖ϕ(un)(·+ h)−ϕ(un)‖L2((0,T−h),L2(Ω)) → 0+, as h→ 0,
uniformly w.r.t. n. (For simplicity, f = 0.)

∂tun(s)−∆ϕ(un(s)) = 0, s ∈ (t, t + h).

One multiplies by ϕ(un(t + h))− ϕ(un(t)) and integrate between t
and t + h and on Ω

∫ t+h

t

∫
Ω
∂tun(s)(ϕ(un(t + h))− ϕ(un(t)))dxds

+

∫ t+h

t

∫
Ω
∇ϕ(un(s)) · (∇ϕ(un(t + h))−∇ϕ(un(t)))dxds.



AL method for the Stefan problem (2)∫ t+h

t

∫
Ω
∂tun(s)(ϕ(un(t + h))− ϕ(un(t)))dxds

+

∫ t+h

t

∫
Ω
∇ϕ(un(s)) · (∇ϕ(un(t + h))−∇ϕ(un(t)))dxds = 0.∫

Ω
(un(t + h))− un(t))(ϕ(un(t + h))− ϕ(un(t)))dx ≤∫ t+h

t

∫
Ω
|∇ϕ(un(s))||∇ϕ(un(t + h))|+ |∇ϕ(un(s))||∇ϕ(un(t))|dxds.

One now integrates on t ∈ (0,T − h), uses a Lipschitz constant for
ϕ (denoted L) and ab ≤ (a2 + b2)/2∫ T−h

0

∫
Ω

(ϕ(un(t + h))− ϕ(un(t)))2dx ≤

L

∫ T−h

0

∫
Ω

(un(t + h))− un(t))(ϕ(un(t + h))− ϕ(un(t)))dx ≤

L
∑3

i=1 Ti



AL method for the Stefan problem (3)

∫ T−h

0

∫
Ω

(ϕ(un(t + h))− ϕ(un(t)))2dx ≤ L(T1 + T2 + T3)

T1 =

∫ T−h

0

∫ t+h

t

∫
Ω
|∇ϕ(un(s))|2dxdsdt ≤ h‖|∇ϕ(un)|‖2

L2(Q)

T2 =

∫ T−h

0

∫ t+h

t

∫
Ω
|∇ϕ(un(t + h))|2dxdsdt ≤ h‖|∇ϕ(un)|‖2

L2(Q)

T3 =

∫ T−h

0

∫ t+h

t

∫
Ω
|∇ϕ(un(t))|2dxdsdt ≤ h‖|∇ϕ(un)|‖2

L2(Q)

where Q = Ω× (0,T ).

Thanks to the L2((0,T ),H1
0 (Ω)) estimate on (ϕ(un))n∈N, one

obtains the relative compactness of this sequence in L2(Q).



Translation (in time) of ϕ(un), at the discrete level

At the discrete level, let un be the approximate solution associated
to mesh Dn and time step δtn. A very similar proof gives∫ T−h

0

∫
Ω

(ϕ(ūn(t + h))− ϕ(ūn(t)))2dx ≤ h‖|∇Dϕ(un)|‖2
L2(Q)

The only difference is due to the fact that ∂tu is replaced by a
differential quotient.
For this proof, the crucial property ϕ(u) = ϕ(ū) is used



Compactness, for a sequence of approximate solutions

X , B are two Banach spaces such that

I X ⊂ B with compact embedding,

Let T > 0, 1 ≤ p < +∞ and (vn)n∈N be a sequence such that

I (vn)n∈N is bounded in Lp((0,T ),X ),

I ‖vn(·+ h)− vn‖Lp((0,T−h),B) → 0, as h→ 0+, unif. w.r.t. n.

Then there exists v ∈ Lp((0,T ),B) such that, up to a
subsequence, vn → v in Lp((0,T ),B).

Example: p = 2, X = H1
0 (Ω), B = L2(Ω)

One wants to take vn = ϕ(ūn).

Everything is ok, except that there is no X -space...
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Modified Compactness Lemma

B is a banach space (B = L2(Q))
Xn normed vector spaces (Xn = XDn,0, ‖u‖Xn = ‖|∇Dnu|‖L2)
Tn a linear operator from Xn to B (Tn(u) = ū)
The hypothesis X ⊂ B with compact embedding is replaced by
“un ∈ Xn, if the sequence (‖un‖Xn)n∈N is bounded, then the
sequence (Tn(un))n∈N is relatively compact in B”.
With this hypothesis, let T > 0, 1 ≤ p < +∞ and (vn)n∈N be a
sequence such that vn ∈ Lp((0,T ),Xn) for all n. Assume that

I There exists C such that ‖vn‖Lp((0,T ),Xn) ≤ C for all n ∈ N
I ‖Tn(vn)(·+ h)− Tn(vn)‖Lp((0,T−h),B) → 0, as h→ 0+,

uniformly w.r.t. n.

Then there exists g ∈ Lp((0,T ),B) such that, up to a
subsequence, Tn(vn)→ g in Lp((0,T ),B).

p = 2, vn = ϕ(un). With this Compactness Lemma, one obtains
that ϕ(ūn)→ g in L2(Q)



Minty trick (simple version)

Let (un)n∈N be a sequence of approximate solutions. One has, as
n→∞,

ūn → u weakly in L2(Q),

ϕ(ūn)→ g in L2(Q).

Then, the Minty trick (since ϕ is nondecreasing) gives g = ϕ(u):
Let w ∈ L2(Ω), 0 ≤

∫
Q(ϕ(ūn)− ϕ(w))(ūn − w)dxdt gives, as

n→∞,

0 ≤
∫
Q

(g − ϕ(w))(u − w)dxdt.

Taking w = u + εψ, with ψ ∈ C∞c (Q) and letting ε→ 0± leads to∫
Q

(g − ϕ(u))ψdxdt = 0.

Then g = ϕ(u) a.e.



Passing to the limit in the equation

It remains to pass to the limit in the approximate equation. This is
possible thanks to some natural properties of consistency. That is
to say, for any regular function ψ, as size(D)→ 0,

1. minv∈XD,0
‖v̄ − ψ‖L2(Ω) → 0

2. minv∈XD,0
‖|∇Dv −∇ψ|‖L2(Ω) → 0

3. maxu∈XD,0\{0}
1

‖|∇Du|‖L2(Ω)

∣∣∫
Ω (∇Du · ψ + ūdivψ) dx

∣∣→ 0



Modified Compactness Lemma

B is a banach space
Xn normed vector spaces
Tn a linear operator from Xn to B
The hypothesis X ⊂ B with compact embedding is replaced by
“un ∈ Xn, if the sequence (‖un‖Xn)n∈N is bounded, then the
sequence (Tn(un))n∈N is relatively compact in B”.
With this hypothesis, let T > 0, 1 ≤ p < +∞ and (vn)n∈N be a
sequence such that vn ∈ Lp((0,T ),Xn) for all n. Assume that

I There exists C such that ‖vn‖Lp((0,T ),Xn) ≤ C for all n ∈ N
I ‖Tn(vn)(·+ h)− Tn(vn)‖Lp((0,T−h),B) → 0, as h→ 0,

uniformly w.r.t. n.

Then there exists g ∈ Lp((0,T ),B) such that, up to a
subsequence, Tn(vn)→ g in Lp((0,T ),B).



Compactness Lemma, simple case

B is a banach space
Xn normed vector spaces
The sequence Xn is compactly embeded in B”
T > 0, 1 ≤ p < +∞

I (vn)n∈N bounded in Lp((0,T ),Xn)

I ‖vn(·+ h)− vn‖Lp((0,T−h),B) → 0, as h→ 0, unif. w.r.t. n.

Then there exists v ∈ Lp((0,T ),B) such that, up to a
subsequence, vn → v in Lp((0,T ),B).


