Time compactness for approximate solutions of evolution problems

T. Gallouët

Lille, Mai 2013

- Parabolic equation with L¹ data Coauthors : Lucio Boccardo (continuous setting, 1989) Robert Eymard, Raphaèle Herbin (discrete setting, 2000) Aurélien Larcher, Jean-Claude Latché (discrete setting, 2011)
- Stefan problem
 Coauthors: R. Eymard, P. Féron, C. Guichard, R. Herbin
- Autres examples : incompressible and compressible Stokes and Navier-Stokes equations
 Coauthors : E. Chénier, R. E., R.H. (2013) and A. Fettah

Example (coming from RANS model for turbulent flows)

```
\begin{array}{l} \partial_t u + \operatorname{div}(vu) - \Delta u = f \text{ in } \Omega \times (0, T), \\ u = 0 \text{ on } \partial\Omega \times (0, T), \\ u(\cdot, 0) = u_0 \text{ in } \Omega. \end{array}
```

- Ω is a bounded open subset of R^d (d = 2 or 3) with a Lipschitz continuous boundary
- $v \in C^1(\overline{\Omega} \times [0, T], \mathbb{R})$
- $u_0 \in L^1(\Omega)$ (or u_0 is a Radon measure on Ω)
- $f \in L^1(\Omega \times (0, T))$ (or f is a Radon measure on $\Omega \times (0, T)$)

with possible generalization to nonlinear problems.

Non smooth solutions.

What is the problem ?

- 1. Existence of weak solution and (strong) convergence of "continuous approximate solutions", that is solutions of the continuous problem with regular data converging to f and u_0 .
- 2. Existence of weak solution and (strong) convergence of the approximate solutions given by a full discretized problem.

In both case, we want to prove strong compactness of a sequence of approximate solutions. This is the main subject of this talk.

Continuous approximation

 $(f_n)_{n\in\mathbb{N}}$ and $(u_{0,n})_{n\in\mathbb{N}}$ are two sequences of regular functions such that

$$\int_{0}^{T} \int_{\Omega} f_{n} \varphi dx dt \rightarrow \int_{0}^{T} \int_{\Omega} f \varphi dx dt, \ \forall \varphi \in C_{c}^{\infty}(\Omega \times (0, T), \mathbb{R}),$$
$$\int_{\Omega} u_{0,n} \varphi dx \rightarrow \int_{\Omega} u_{0} \varphi dx, \ \forall \varphi \in C_{c}^{\infty}(\Omega, \mathbb{R}).$$

For $n \in \mathbb{N}$, it is well known that there exist u_n solution of the regularized problem

$$\begin{array}{l} \partial_t u_n + \operatorname{div}(v u_n) - \Delta u_n = f_n \text{ in } \Omega \times (0, T), \\ u_n = 0 \text{ on } \partial\Omega \times (0, T), \\ u_n(\cdot, 0) = u_{0,n} \text{ in } \Omega. \end{array}$$

One has, at least, $u_n \in L^2((0, T), H_0^1(\Omega)) \cap C([0, T], L^2(\Omega))$ and $\partial_t u_n \in L^2((0, T), H^{-1}(\Omega))$.

Continuous approximation, steps of the proof of convergence

1. Estimate on u_n (not easy). One proves that the sequence $(u_n)_{n\in\mathbb{N}}$ is bounded in

$$L^q((0,T),W^{1,q}_0(\Omega)) ext{ for all } 1\leq q<rac{d+2}{d+1}.$$

(This gives, up to a subsequence, weak convergence in $L^q(\Omega \times (0, T))$ of u_n to some u and then, since the problem is linear, that u is a weak solution of the problem with f and u_0 .)

- 2. Strong compactness of the sequence $(u_n)_{n \in \mathbb{N}}$
- 3. Regularity of the limit of the sequence $(u_n)_{n \in \mathbb{N}}$.
- 4. Passage to the limit in the approximate equation (easy).

Aubin-Simon' Compactness Lemma

- X, B, Y are three Banach spaces such that
 - ➤ X ⊂ B with compact embedding,
 - ► *B* ⊂ *Y* with continuous embedding.
- Let T > 0 and $(u_n)_{n \in \mathbb{N}}$ be a sequence such that
 - $(u_n)_{n\in\mathbb{N}}$ is bounded in $L^1((0,T),X)$,
 - $(\partial_t u_n)_{n \in \mathbb{N}}$ is bounded in $L^1((0, T), Y)$.

Then there exists $u \in L^1((0, T), B)$ such that, up to a subsequence, $u_n \to u$ in $L^1((0, T), B)$.

Example: $X = W_0^{1,1}(\Omega)$, $B = L^1(\Omega)$, $Y = W_*^{-1,1}(\Omega) = (W_0^{1,\infty}(\Omega))'$. As usual, we identify an L^1 -function with the corresponding linear form on $W_0^{1,\infty}(\Omega)$.

Classical Lions' lemma

X, B, Y are three Banach spaces such that

- ➤ X ⊂ B with compact embedding,
- ▶ *B* ⊂ *Y* with continuous embedding.

Then, for any $\varepsilon > 0$, there exists C_{ε} such that, for $w \in X$,

 $\|w\|_B \leq \varepsilon \|w\|_X + C_{\varepsilon} \|w\|_Y.$

Proof: By contradiction Improvment : " $B \subset Y$ with continuous embedding" can be replaced by the weaker hypothesis " $(w_n)_{n \in \mathbb{N}}$ bounded in X, $w_n \to w$ in B, $w_n \to 0$ in Y implies w = 0"

Classical Lions' lemma, another formulation

X, B, Y are three Banach spaces such that, $X \subset B \subset Y$,

- If (||w_n||_X)_{n∈N} is bounded, then, up to a subsequence, there exists w ∈ B such that w_n → w in B.
- If $w_n \to w$ in B and $||w_n||_Y \to 0$, then w = 0.

Then, for any $\varepsilon > 0$, there exists C_{ε} such that, for $w \in X$,

 $\|w\|_B \leq \varepsilon \|w\|_X + C_{\varepsilon} \|w\|_Y.$

(日) (同) (三) (三) (三) (○) (○)

The hypothesis $B \subset Y$ is not necessary.

Classical Lions' lemma, improvment

X, B, Y are three Banach spaces such that, $X \subset B$, If $(||w_n||_X)_{n \in \mathbb{N}}$ is bounded, then,

- up to a subsequence, there exists $w \in B$ such that $w_n \to w$ in B.
- if $w_n \to w$ in B and $||w_n||_Y \to 0$, then w = 0.

Then, for any $\varepsilon > 0$, there exists C_{ε} such that, for $w \in X$,

 $\|w\|_B \leq \varepsilon \|w\|_X + C_{\varepsilon} \|w\|_Y.$

The hypothesis $B \subset Y$ is not necessary.

Classical Lions' lemma, a particular case, simpler

B is a Hilbert space and *X* is a Banach space $X \subset B$. We define on *X* the dual norm of $\|\cdot\|_X$, with the scalar product of *B*, namely

 $||u||_Y = \sup\{(u/v)_B, v \in X, ||v||_X \le 1\}.$

Then, for any $\varepsilon > 0$ and $w \in X$,

$$\|w\|_B \leq \varepsilon \|w\|_X + \frac{1}{\varepsilon} \|w\|_Y.$$

The proof is simple since

$$\|u\|_{B} = (u/u)_{B}^{\frac{1}{2}} \leq (\|u\|_{Y}\|u\|_{X})^{\frac{1}{2}} \leq \varepsilon \|w\|_{X} + \frac{1}{\varepsilon} \|w\|_{Y}.$$

Compactness of X in B is not needed here (but this compactness is needed for Aubin-Simon' Lemma, next slide...).

Aubin-Simon' Compactness Lemma

X, B, Y are three Banach spaces such that

- $X \subset B$ with compact embedding,
- ► *B* ⊂ *Y* with continuous embedding.

Let T > 0 and $(u_n)_{n \in \mathbb{N}}$ be a sequence such that

- $(u_n)_{n\in\mathbb{N}}$ is bounded in $L^1((0, T), X)$,
- $(\partial_t u_n)_{n \in \mathbb{N}}$ is bounded in $L^1((0, T), Y)$.

Then there exists $u \in L^1((0, T), B)$ such that, up to a subsequence, $u_n \to u$ in $L^1((0, T), B)$.

Example: $X = W_0^{1,1}(\Omega)$, $B = L^1(\Omega)$, $Y = W_*^{-1,1}(\Omega)$.

Aubin-Simon' Compactness Lemma, improvment

X, B, Y are three Banach spaces such that, $X \subset B$, If $(||w_n||_X)_{n \in \mathbb{N}}$ is bounded, then,

• up to a subsequence, there exists $w \in B$ such that $w_n \to w$ in B.

• if $w_n \to w$ in B and $||w_n||_Y \to 0$, then w = 0.

Let T > 0 and $(u_n)_{n \in \mathbb{N}}$ be a sequence such that

- $(u_n)_{n\in\mathbb{N}}$ is bounded in $L^1((0,T),X)$,
- $(\partial_t u_n)_{n \in \mathbb{N}}$ is bounded in $L^1((0, T), Y)$.

Then there exists $u \in L^1((0, T), B)$ such that, up to a subsequence, $u_n \to u$ in $L^1((0, T), B)$.

Example: $X = W_0^{1,1}(\Omega)$, $B = L^1(\Omega)$, $Y = W_{\star}^{-1,1}(\Omega)$.

Continuous approx., compactness of the sequence $(u_n)_{n \in \mathbb{N}}$

 u_n is solution of he continuous problem with data f_n and $u_{0,n}$. $X = W_0^{1,1}(\Omega), B = L^1(\Omega), Y = W_*^{-1,1}(\Omega).$

In order to apply Aubin-Simon' lemma we need

- $(u_n)_{n\in\mathbb{N}}$ is bounded in $L^1((0, T), X)$,
- $(\partial_t u_n)_{n \in \mathbb{N}}$ is bounded in $L^1((0, T), Y)$.

The sequence $(u_n)_{n\in\mathbb{N}}$ is bounded in $L^q((0, T), W_0^{1,q}(\Omega))$ (for $1 \leq q < (d+2)/(d+1)$) and then is bounded in $L^1((0, T), X)$, since $W_0^{1,q}(\Omega)$ is continuously embedded in $W_0^{1,1}(\Omega)$.

 $\partial_t u_n = f_n - \operatorname{div}(vu_n) - \Delta u_n$. Is $(\partial_t u_n)_{n \in \mathbb{N}}$ bounded in $L^1((0, T), Y)$?

◆□ → ◆□ → ◆三 → ◆三 → ● ◆ ● ◆ ●

Continuous approx., Compactness of the sequence $(u_n)_{n \in \mathbb{N}}$

Bound of $(\partial_t u_n)_{n \in \mathbb{N}}$ in $L^1((0, T), W^{-1,1}_{\star}(\Omega))$? $\partial_t u_n = f_n - \operatorname{div}(vu_n) - \Delta u_n$.

- $(f_n)_{n\in\mathbb{N}}$ is bounded in $L^1(0, T), L^1(\Omega)$) and then in $L^1((0, T), W^{-1,1}_*(\Omega))$, since $L^1(\Omega)$ is continously embedded in $W^{-1,1}_*(\Omega)$,
- ► $(\operatorname{div}(vu_n))_{n\in\mathbb{N}}$ is bounded in $L^1((0, T), W_*^{-1,1}(\Omega))$ since $(vu_n)_{n\in\mathbb{N}}$ is bounded in $L^1((0, T), (L^1(\Omega))^d$ and div is a continuous operator from $(L^1(\Omega))^d$ to $W_*^{-1,1}(\Omega)$,
- $(\Delta u_n)_{n \in \mathbb{N}}$ is bounded in $L^1((0, T), W_{\star}^{-1,1}(\Omega))$ since $(u_n)_{n \in \mathbb{N}}$ is bounded in $L^1((0, T), W_0^{1,1}(\Omega))$ and Δ is a continuous operator from $W_0^{1,1}(\Omega)$ to $W_{\star}^{-1,1}(\Omega)$.

Finally, $(\partial_t u_n)_{n \in \mathbb{N}}$ is bounded in $L^1((0, T), W^{-1,1}_{\star}(\Omega))$. Aubin-Simon' lemma gives (up to a subsequence) $u_n \to u$ in $L^1((0, T), L^1(\Omega))$.

Regularity of the limit

 $u_n
ightarrow u$ in $L^1(\Omega \times (0, T))$ and $(u_n)_{n \in \mathbb{N}}$ bounded in $L^q((0, T), W_0^{1,q}(\Omega))$ for $1 \le q < (d+2)/(d+1)$. Then $u_n
ightarrow u$ in $L^q(\Omega \times (0, T)))$ for $1 \le q < \frac{d+2}{d+1}$, $\nabla u_n
ightarrow \nabla u$ weakly in $L^q(\Omega \times (0, T))^d$ for $1 \le q < \frac{d+2}{d+1}$, $u \in L^q((0, T), W_0^{1,q}(\Omega))$ for $1 \le q < (d+2)/(d+1)$.

Remark: $L^q((0, T), L^q(\Omega)) = L^q(\Omega \times (0, T))$

An additional work is needed to prove the strong convergence of ∇u_n to ∇u .

Full approximation, FV scheme

Space discretization: Admissible mesh \mathcal{M} . Time step: k (Nk = T)

 $T_{K,L} = m_{K,L} / d_{K,L}$

size(\mathcal{M}) = sup{diam(K), $K \in \mathcal{M}$ } Unknowns: $u_{K}^{(p)} \in \mathbb{R}$, $K \in \mathcal{M}$, $p \in \{1, ..., N\}$. Discretization: Implicit in time, upwind for convection, classical 2-points flux for diffusion. (Well known scheme.) Full approximation, approximate solution

- *H_M* the space of functions from Ω to ℝ, constant on each *K*, *K* ∈ *M*.
- ▶ The discrete solution *u* is constant on $K \times ((p-1)k, pk)$ with $K \in \mathcal{M}$ and $p \in \{1, ..., N\}$. $u(\cdot, t) = u^{(p)}$ for $t \in ((p-1)k, pk)$ and $u^{(p)} \in H_{\mathcal{M}}$.
- Discrete derivatives in time, $\partial_{t,k} u$, defined by:

$$\partial_{t,k} u(\cdot, t) = \partial_{t,k}^{(p)} u = \frac{1}{k} (u^{(p)} - u^{(p-1)}) \text{ for } t \in ((p-1)k, pk),$$

for $p \in \{2, ..., N\}$ (and $\partial_{t,k} u(\cdot, t) = 0$ for $t \in (0, k)$).

Full approximation, steps of the proof of convergence

Sequence of meshes and time steps, $(\mathcal{M}_n)_{n \in \mathbb{N}}$ and k_n . size $(\mathcal{M}_n) \to 0$, $k_n \to 0$, as $n \to \infty$. For $n \in \mathbb{N}$, u_n is the solution of the FV scheme.

- 1. Estimate on *u_n*.
- 2. Strong compactness of the sequence $(u_n)_{n \in \mathbb{N}}$.
- 3. Regularity of the limit of the sequence $(u_n)_{n \in \mathbb{N}}$.
- 4. Passage to the limit in the approximate equation.

Discrete norms

Admissible mesh: \mathcal{M} .

 $u \in H_{\mathcal{M}}$ (that is u is a function constant on each $K, K \in \mathcal{M}$).

•
$$1 \le q < \infty$$
. Discrete $W_0^{1,q}$ -norm:

$$\|u\|_{1,q,\mathcal{M}}^{q} = \sum_{\sigma \in \mathcal{E}_{int}, \sigma = K|L} m_{\sigma} d_{\sigma} |\frac{u_{K} - u_{L}}{d_{\sigma}}|^{q} + \sum_{\sigma \in \mathcal{E}_{ext}, \sigma \in \mathcal{E}_{K}} m_{\sigma} d_{\sigma} |\frac{u_{K}}{d_{\sigma}}|^{q}$$

► $q = \infty$. Discrete $W_0^{1,\infty}$ -norm: $||u||_{1,\infty,\mathcal{M}}^q = \max\{M_i, M_e, M\}$ with

$$M_i = \max\{\frac{|u_{\mathcal{K}} - u_{\mathcal{L}}|}{d_{\sigma}}, \ \sigma \in \mathcal{E}_{int}, \sigma = \mathcal{K}|\mathcal{L}\},\$$

$$M_e = \max\{\frac{|u_{\mathcal{K}}|}{d_{\sigma}}, \ \sigma \in \mathcal{E}_{ext}, \sigma \in \mathcal{E}_{\mathcal{K}}\},\$$

 $M=\max\{|u_{\mathcal{K}}|,\ \mathcal{K}\in\mathcal{M}\}.$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Discrete dual norms

Admissible mesh: \mathcal{M} . For $r \in [1, \infty]$, $\|\cdot\|_{-1,r,\mathcal{M}}$ is the dual norm of the norm $\|\cdot\|_{1,q,\mathcal{M}}$ with q = r/(r-1). That is, for $u \in H_{\mathcal{M}}$,

$$||u||_{-1,r,\mathcal{M}} = \max\{\int_{\Omega} uv \, dx, v \in H_{\mathcal{M}}, ||v||_{1,q,\mathcal{M}} \le 1\}.$$

Example: r = 1 ($q = \infty$).

Full discretization, estimate on the discrete solution

For $1 \le q < (d+2)/(d+1)$, the sequence $(u_n)_{n \in \mathbb{N}}$ is bounded in $L^q((0, T), W_{q,n})$, where $W_{q,n}$ is the space $H_{\mathcal{M}_n}$, endowed with the norm $\|\cdot\|_{1,q,\mathcal{M}_n}$. That is

$$\sum_{p=1}^{N_n} k \|u_n^{(p)}\|_{1,q,\mathcal{M}_n}^q \leq C.$$

Discrete Lions' lemma (improved)

B is a Banach space, $(B_n)_{n \in \mathbb{N}}$ is a sequence of finite dimensional subspaces of *B*. $\|\cdot\|_{X_n}$ and $\|\cdot\|_{Y_n}$ are two norms on B_n such that: If $(\|w_n\|_{X_n})_{n \in \mathbb{N}}$ is bounded, then,

- up to a subsequence, there exists $w \in B$ such that $w_n \to w$ in B.
- If $w_n \to w$ in B and $||w_n||_{Y_n} \to 0$, then w = 0.

Then, for any $\varepsilon > 0$, there exists C_{ε} such that, for $n \in \mathbb{N}$ and $w \in B_n$

$$\|w\|_B \leq \varepsilon \|w\|_{X_n} + C_{\varepsilon} \|w\|_{Y_n}.$$

Example: $B = L^1(\Omega)$. $B_n = H_{\mathcal{M}_n}$ (the finite dimensional space given by the mesh \mathcal{M}_n). We have to choose $\|\cdot\|_{X_n}$ and $\|\cdot\|_{Y_n}$.

Discrete Lions' lemma, proof

Proof by contradiction. There exists $\varepsilon > 0$ and $(w_n)_{n \in \mathbb{N}}$ such that, for all $n, w_n \in B_n$ and

$$\|w_n\|_B > \varepsilon \|w_n\|_{X_n} + C_n \|w_n\|_{Y_n},$$

with $\lim_{n\to\infty} C_n = +\infty$.

It is possible to assume that $||w_n||_B = 1$. Then $(||w_n||_{X_n})_{n \in \mathbb{N}}$ is bounded and, up to a subsequence, $w_n \to w$ in B (so that $||w||_B = 1$). But $||w_n||_{Y_n} \to 0$, so that w = 0, in contradiction with $||w||_B = 1$.

Discrete Aubin-Simon' Compactness Lemma

B a Banach, $(B_n)_{n \in \mathbb{N}}$ family of finite dimensional subspaces of *B*. $\|\cdot\|_{X_n}$ and $\|\cdot\|_{Y_n}$ two norms on B_n such that: If $(\|w_n\|_{X_n})_{n \in \mathbb{N}}$ is bounded, then,

- up to a subsequence, there exists $w \in B$ such that $w_n \to w$ in B.
- If $w_n \to w$ in B and $||w_n||_{Y_n} \to 0$, then w = 0.

 $X_n = B_n$ with norm $\|\cdot\|_{X_n}$, $Y_n = B_n$ with norm $\|\cdot\|_{Y_n}$. Let T > 0, $k_n > 0$ and $(u_n)_{n \in \mathbb{N}}$ be a sequence such that

- ▶ for all *n*, $u_n(\cdot, t) = u_n^{(p)} \in B_n$ for $t \in ((p-1)k_n, pk_n)$
- $(u_n)_{n\in\mathbb{N}}$ is bounded in $L^1((0, T), X_n)$,
- $(\partial_{t,k_n}u_n)_{n\in\mathbb{N}}$ is bounded in $L^1((0,T),Y_n)$.

Then there exists $u \in L^1((0, T), B)$ such that, up to a subsequence, $u_n \to u$ in $L^1((0, T), B)$.

Example: $B = L^1(\Omega)$. $B_n = H_{\mathcal{M}_n}$. What choice for $\|\cdot\|_{X_n}$, $\|\cdot\|_{Y_n}$?

Full approx., compactness of the sequence $(u_n)_{n \in \mathbb{N}}$

 u_n is solution of the fully discretized problem with mesh \mathcal{M}_n and time step k_n .

$$B = L^{1}(\Omega), B_{n} = H_{\mathcal{M}_{n}}, \\ \| \cdot \|_{X_{n}} = \| \cdot \|_{1,1,\mathcal{M}_{n}}, \| \cdot \|_{Y_{n}} = \| \cdot \|_{-1,1,\mathcal{M}}$$

In order to apply the discrete Aubin-Simon' lemma we need to verify the hypotheses of the discrete Lions' lemma and that

- $(u_n)_{n\in\mathbb{N}}$ is bounded in $L^1((0, T), X_n)$,
- $(\partial_{t,k_n} u_n)_{n \in \mathbb{N}}$ is bounded in $L^1((0, T), Y_n)$.

The sequence $(u_n)_{n\in\mathbb{N}}$ is bounded in $L^q((0, T), W_{q,n}(\Omega))$ (for $1 \leq q < (d+2)/(d+1)$) and then is bounded in $L^1((0, T), X_n)$ since $\|\cdot\|_{1,1,\mathcal{M}_n} \leq C_q \|\cdot\|_{1,q,\mathcal{M}_n}$ for q > 1.

Using the scheme, it is quite easy to prove (similarly to the continuous approximation) that $(\partial_{t,k_n}u_n)_{n\in\mathbb{N}}$ is bounded in $L^1((0,T), Y_n)$.

Full approx., Compactness of the sequence $(u_n)_{n \in \mathbb{N}}$

It remains to verify the hypotheses of the discrete Lions' lemma.

- If $w_n \in H_{\mathcal{M}_n}$, $(||w_n||_{1,1,\mathcal{M}_n})_{n \in \mathbb{N}}$ is bounded, there exists $w \in L^1(\Omega)$ such that $w_n \to w$ in $L^1(\Omega)$? Yes, this is classical now...
- ► If $w_n \in H_{\mathcal{M}_n}$, $w_n \to w$ in $L^1(\Omega)$ and $||w_n||_{-1,1,\mathcal{M}_n} \to 0$, then w = 0 ? Yes... Proof : Let $\varphi \in W_0^{1,\infty}(\Omega)$ and its "projection" $\pi_n \varphi \in H_{\mathcal{M}_n}$. One has $||\pi_n \varphi||_{1,\infty,\mathcal{M}_n} \leq ||\varphi||_{W^{1,\infty}(\Omega)}$ and then

$$|\int_{\Omega} w_n(\pi_n \varphi) dx| \leq ||w_n||_{-1,1,\mathcal{M}_n} ||\varphi||_{W^{1,\infty}(\Omega)} \to 0,$$

and, since $w_n \to w$ in $L^1(\Omega)$ and $\pi_n \varphi \to \varphi$ uniformly,

$$\int_{\Omega} w_n(\pi_n \varphi) d\mathsf{x} \to \int_{\Omega} w \varphi d\mathsf{x}.$$

This gives $\int_{\Omega} w \varphi dx = 0$ for all $\varphi \in W_0^{1,\infty}(\Omega)$ and then w = 0 a.e.

Regularity of the limit

As in the continuous approximation, $u_n \to u$ in $L^1(\Omega \times (0, T))$ and $(u_n)_{n \in \mathbb{N}}$ bounded in $L^q((0, T), W_{q,n}(\Omega))$ for $1 \le q < (d+2)/(d+1)$. Then $u_n \to u$ in $L^q(\Omega \times (0, T)))$ for $1 \le q < \frac{d+2}{d+1}$, $u \in L^q((0, T), W_0^{1,q}(\Omega))$ for $1 \le q < (d+2)/(d+1)$.

Discrete Aubin-Simon' Compactness Lemma

B a Banach, $(B_n)_{n \in \mathbb{N}}$ family of finite dimensional subspaces of *B*. $\|\cdot\|_{X_n}$ and $\|\cdot\|_{Y_n}$ two norms on B_n such that: If $(\|w_n\|_{X_n})_{n \in \mathbb{N}}$ is bounded, then,

- up to a subsequence, there exists $w \in B$ such that $w_n \to w$ in B.
- If $w_n \to w$ in B and $||w_n||_{Y_n} \to 0$, then w = 0.

 $X_n = B_n$ with norm $\|\cdot\|_{X_n}$, $Y_n = B_n$ with norm $\|\cdot\|_{Y_n}$. Let T > 0, $k_n > 0$ and $(u_n)_{n \in \mathbb{N}}$ be a sequence such that

- ▶ for all n, $u_n(\cdot, t) = u_n^{(p)} \in B_n$ for $t \in ((p-1)k_n, pk_n)$
- $(u_n)_{n\in\mathbb{N}}$ is bounded in $L^1((0,T),X_n)$,
- $(\partial_{t,k_n}u_n)_{n\in\mathbb{N}}$ is bounded in $L^1((0,T),Y_n)$.

Then there exists $u \in L^1((0, T), B)$ such that, up to a subsequence, $u_n \to u$ in $L^1((0, T), B)$.

Stefan problem

$$\begin{array}{l} \partial_t u - \Delta \varphi(u) = f \ \text{in } \Omega \times (0, T), \\ u = 0 \ \text{on } \partial \Omega \times (0, T), \\ u(\cdot, 0) = u_0 \ \text{in } \Omega. \end{array}$$

- Ω is a polygonal (for d = 2) or polyhedral (for d = 3) open subset of ℝ^d (d = 2 or 3), T > 0
- φ is a non decreasing function from ℝ to ℝ, Lipschitz continuous and lim inf_{s→+∞} φ(s)/s > 0
- $u_0 \in L^2(\Omega)$
- $f \in L^2(\Omega \times (0, T))$

Mail difficulty : φ may be constant on some interval of \mathbb{R} Objective : To present a general framework to prove the convergence of many different schemes (FE, NCFE, FV, HFV...)

Discrete unknown

Discretization parameters, \mathcal{D} : spatial mesh, time step (δt) Discrete unknown at time $t_k = k\delta t$: $u^{(k)} \in X_{\mathcal{D},0}$.

- values at the vertices of the mesh (FE)
- values at the edges of the mesh (NCFE)
- values in the cells (FV)
- values in the cells and in the edges (HFV)

With an element v of $X_{\mathcal{D},0}$ (for instance $v = u^{(k)}$ or $v = \varphi(u^{(k)})$), one defines two functions

- \bar{v} (reconstruction of the approximate solution)
- $\nabla_{\mathcal{D}} v$ (reconstruction of an approximate gradient)

with some natural properties of consistency.

A crucial property is $\overline{\varphi(u)} = \varphi(\overline{u})$

N.B. the functions \bar{v} and $\nabla_D v$ are piecewise constant functions, but not necessarily on the same mesh

Numerical scheme (Gradient schemes)

 $ar{u}^{(0)}$ given by the initial condition and for $k\geq 0,$ $u^{(k+1)}\in X_{\mathcal{D},0}$

$$\int_{\Omega} \frac{\overline{u}^{(k+1)} - \overline{u}^{(k)}}{\delta t} \overline{v} dx dt + \int_{\Omega} \nabla_{\mathcal{D}} \varphi(u^{(k+1)}) \cdot \nabla_{\mathcal{D}} v dx = \frac{1}{\delta t} \int_{t_k}^{t_{k+1}} f \overline{v} dx dt, \forall v \in X_{\mathcal{D},0}$$

Classical examples : FE with mass lumping, FV but also many other schemes. . .

Steps of the proof of convergence

Let $(u_n)_{n\in\mathbb{N}}$ be a sequence of approximate solutions (associated to \mathcal{D}_n and δt_n with $\lim_{n\to\infty} \operatorname{size}(\mathcal{D}_n) = 0$ and $\lim_{n\to\infty} \delta t_n = 0$)

- 1. Estimates on the approximate solution
- 2. Compactness result on the sequence of approximate solutions
- 3. Passage to the limit in the approximate equation

Steps 2 and 3 are tricky due to the fact that φ may be constant on some interval of $\mathbb R$

Estimates

One mimics the estimates for the continuous equation

$$\begin{array}{l} \partial_t u - \Delta \varphi(u) = f \text{ in } \Omega \times (0, T), \\ u = 0 \text{ on } \partial \Omega \times (0, T), \\ u(\cdot, 0) = u_0 \text{ in } \Omega. \end{array}$$

Taking $\varphi(u)$ as test function one obtains

- an estimate on u in $L^{\infty}((0, T), L^{2}(\Omega))$
- an estimate on $\varphi(u)$ in $L^2((0, T), H^1_0(\Omega))$
- and therefore an estimate on $\partial_t u$ in $L^2((0, T), H^{-1}(\Omega))$

Estimates with corresponding discrete norms hold for the discrete setting of gradient schemes : $L^{\infty}((0, T), L^{2}(\Omega))$ -estimate on \bar{u} , $L^{2}((0, T), L^{2}(\Omega))$ -estimate on $\nabla_{\mathcal{D}}\varphi(u)$ and an estimate on the time discrete derivative for a dual norm

Estimates (2)

These estimates give only weak compactness on the sequences of approximate solutions $(u_n)_{n \in \mathbb{N}}$ and $(\varphi(u_n))_{n \in \mathbb{N}}$. Not sufficient to pass to the limit...

$$\lim_{n\to\infty}\varphi(u_n)=\varphi(\lim_{n\to\infty}u_n)?$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Lions-Aubin-Simon Compactness Lemma

- X, B, Y are three Banach spaces such that
 - X ⊂ B with compact embedding,
 - $B \subset Y$ with continuous embedding.
- Let $\mathcal{T}>0, \ 1\leq p<+\infty$ and $(v_n)_{n\in\mathbb{N}}$ be a sequence such that
 - $(v_n)_{n\in\mathbb{N}}$ is bounded in $L^p((0, T), X)$,
 - $(\partial_t v_n)_{n \in \mathbb{N}}$ is bounded in $L^p((0, T), Y)$.

Then there exists $v \in L^p((0, T), B)$ such that, up to a subsequence, $v_n \to v$ in $L^p((0, T), B)$.

Example: p = 2, $X = H_0^1(\Omega)$, $B = L^2(\Omega)$, $Y = H^{-1}(\Omega)$.

A dicrete version with a family a spaces $(X_n)_{n \in \mathbb{N}}$ and a family a spaces $(Y_n)_{n \in \mathbb{N}}$ is possible.

The Lions-Aubin-Simon lemma is of no use here

- $(\partial_t u_n)_{n \in \mathbb{N}}$ bounded in $L^2((0, T), H^{-1}(\Omega))$
- $\varphi(u_n)_{n\in\mathbb{N}}$ bounded in $L^2((0,T), H^1_0(\Omega))$

Unfortunately,

- b the estimate on (φ(u_n))_{n∈ℕ} does not give an analogue estimate on (u_n)_{n∈ℕ} (since φ may be constant on some interval). It gives only (u_n)_{n∈ℕ} bounded in L²((0, T), L²(Ω))
- the estimate on (∂_tu_n)_{n∈N} does not give an analogue estimate on (∂_tφ(u_n))_{n∈N} (the product of an L[∞](Ω) function with a H⁻¹(Ω) element is not well defined)

One cannot use Lions-Aubin-Simon Compactness lemma on the sequence $(u_n)_{n\in\mathbb{N}}$ nor on the sequence $(\varphi(u_n))_{n\in\mathbb{N}}$

Between Kolmogorov and Aubin-Simon

X, B are two Banach spaces such that

• $X \subset B$ with compact embedding,

Let $\mathcal{T}>0, \ 1\leq p<+\infty$ and $(v_n)_{n\in\mathbb{N}}$ be a sequence such that

• $(v_n)_{n\in\mathbb{N}}$ is bounded in $L^p((0, T), X)$,

► $\|v_n(\cdot + h) - v_n\|_{L^p((0, T-h), B)} \rightarrow 0$, as $h \rightarrow 0_+$, unif. w.r.t. n.

Then there exists $v \in L^p((0, T), B)$ such that, up to a subsequence, $v_n \to v$ in $L^p((0, T), B)$.

Example: p = 2, $X = H_0^1(\Omega)$, $B = L^2(\Omega)$

Here also, a dicrete version with a family a spaces $(X_n)_{n \in \mathbb{N}}$ is possible.

Alt-Luckhaus method for the Stefan problem

One knows that $\varphi(u_n)_{n\in\mathbb{N}}$ is bounded in $L^2((0, T), H_0^1(\Omega))$. To obtain compactness of $\varphi(u_n)_{n\in\mathbb{N}}$ in $L^2((0, T), L^2(\Omega))$ one has to prove that $\|\varphi(u_n)(\cdot + h) - \varphi(u_n)\|_{L^2((0, T-h), L^2(\Omega))} \to 0_+$, as $h \to 0$, uniformly w.r.t. *n*. (For simplicity, f = 0.)

$$\partial_t u_n(s) - \Delta \varphi(u_n(s)) = 0, \ s \in (t, t+h).$$

One multiplies by $\varphi(u_n(t+h)) - \varphi(u_n(t))$ and integrate between t and t + h and on Ω

$$\int_{t}^{t+h} \int_{\Omega} \partial_{t} u_{n}(s)(\varphi(u_{n}(t+h)) - \varphi(u_{n}(t))) dx ds \\ + \int_{t}^{t+h} \int_{\Omega} \nabla \varphi(u_{n}(s)) \cdot (\nabla \varphi(u_{n}(t+h)) - \nabla \varphi(u_{n}(t))) dx ds.$$

AL method for the Stefan problem (2)

$$\begin{split} &\int_{t}^{t+h}\int_{\Omega}\partial_{t}u_{n}(s)(\varphi(u_{n}(t+h))-\varphi(u_{n}(t)))dxds \\ &+\int_{t}^{t+h}\int_{\Omega}\nabla\varphi(u_{n}(s))\cdot(\nabla\varphi(u_{n}(t+h))-\nabla\varphi(u_{n}(t)))dxds=0. \\ &\int_{\Omega}(u_{n}(t+h))-u_{n}(t))(\varphi(u_{n}(t+h))-\varphi(u_{n}(t)))dx\leq \\ &\int_{t}^{t+h}\int_{\Omega}|\nabla\varphi(u_{n}(s))||\nabla\varphi(u_{n}(t+h))|+|\nabla\varphi(u_{n}(s))||\nabla\varphi(u_{n}(t))|dxds. \end{split}$$

One now integrates on $t \in (0, T - h)$, uses a Lipschitz constant for φ (denoted L) and $ab \leq (a^2 + b^2)/2$

$$\int_{0}^{T-h} \int_{\Omega} (\varphi(u_n(t+h)) - \varphi(u_n(t)))^2 dx \leq L \int_{0}^{T-h} \int_{\Omega} (u_n(t+h)) - u_n(t))(\varphi(u_n(t+h)) - \varphi(u_n(t))) dx \leq L \sum_{i=1}^{3} T_i$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

AL method for the Stefan problem (3)

$$\int_0^{T-h} \int_{\Omega} (\varphi(u_n(t+h)) - \varphi(u_n(t)))^2 dx \le L(T_1 + T_2 + T_3)$$
$$T_1 = \int_0^{T-h} \int_t^{t+h} \int_{\Omega} |\nabla \varphi(u_n(s))|^2 dx ds dt \le h |||\nabla \varphi(u_n)|||_{L^2(Q)}^2$$
$$T_2 = \int_0^{T-h} \int_t^{t+h} \int_{\Omega} |\nabla \varphi(u_n(t+h))|^2 dx ds dt \le h |||\nabla \varphi(u_n)|||_{L^2(Q)}^2$$

 $T_3 = \int_0^{T-h} \int_t^{t+h} \int_{\Omega} |\nabla \varphi(u_n(t))|^2 dx ds dt \le h |||\nabla \varphi(u_n)|||_{L^2(Q)}^2$

where $Q = \Omega \times (0, T)$.

Thanks to the $L^2((0, T), H^1_0(\Omega))$ estimate on $(\varphi(u_n))_{n \in \mathbb{N}}$, one obtains the relative compactness of this sequence in $L^2(Q)$.

Translation (in time) of $\varphi(u_n)$, at the discrete level

At the discrete level, let u_n be the approximate solution associated to mesh \mathcal{D}_n and time step δt_n . A very similar proof gives

$$\int_0^{T-h}\int_{\Omega}(\varphi(\bar{u}_n(t+h))-\varphi(\bar{u}_n(t)))^2dx\leq h\||\nabla_{\mathcal{D}}\varphi(u_n)|\|_{L^2(Q)}^2$$

The only difference is due to the fact that $\partial_t u$ is replaced by a differential quotient.

For this proof, the crucial property $\overline{\varphi(u)} = \varphi(\overline{u})$ is used

Compactness, for a sequence of approximate solutions

X, B are two Banach spaces such that

• $X \subset B$ with compact embedding,

Let $\mathcal{T}>$ 0, $1\leq p<+\infty$ and $(v_n)_{n\in\mathbb{N}}$ be a sequence such that

• $(v_n)_{n\in\mathbb{N}}$ is bounded in $L^p((0, T), X)$,

 $\blacktriangleright \|v_n(\cdot+h)-v_n\|_{L^p((0,T-h),B)} \to 0, \text{ as } h \to 0_+, \text{ unif. w.r.t. } n.$

Then there exists $v \in L^p((0, T), B)$ such that, up to a subsequence, $v_n \to v$ in $L^p((0, T), B)$.

Example: p = 2, $X = H_0^1(\Omega)$, $B = L^2(\Omega)$ One wants to take $v_n = \varphi(\bar{u}_n)$. Compactness, for a sequence of approximate solutions

X, B are two Banach spaces such that

• $X \subset B$ with compact embedding,

Let $\mathcal{T}>0, \ 1\leq p<+\infty$ and $(v_n)_{n\in\mathbb{N}}$ be a sequence such that

• $(v_n)_{n\in\mathbb{N}}$ is bounded in $L^p((0, T), X)$,

► $\|v_n(\cdot + h) - v_n\|_{L^p((0, T-h), B)} \rightarrow 0$, as $h \rightarrow 0_+$, unif. w.r.t. n.

Then there exists $v \in L^p((0, T), B)$ such that, up to a subsequence, $v_n \to v$ in $L^p((0, T), B)$.

Example: p = 2, $X = H_0^1(\Omega)$, $B = L^2(\Omega)$ One wants to take $v_n = \varphi(\bar{u}_n)$. Everything is ok, except that there is no X-space...

Modified Compactness Lemma

B is a banach space $(B = L^2(Q))$ X_n normed vector spaces $(X_n = X_{\mathcal{D}_n,0}, ||u||_{X_n} = |||\nabla_{\mathcal{D}_n}u|||_{L^2})$ T_n a linear operator from X_n to B $(T_n(u) = \bar{u})$ The hypothesis $X \subset B$ with compact embedding is replaced by " $u_n \in X_n$, if the sequence $(||u_n||_{X_n})_{n \in \mathbb{N}}$ is bounded, then the sequence $(T_n(u_n))_{n \in \mathbb{N}}$ is relatively compact in *B*". With this hypothesis, let T > 0, $1 \le p < +\infty$ and $(v_n)_{n \in \mathbb{N}}$ be a sequence such that $v_n \in L^p((0, T), X_n)$ for all *n*. Assume that

- ▶ There exists C such that $||v_n||_{L^p((0,T),X_n)} \leq C$ for all $n \in \mathbb{N}$
- ► $||T_n(v_n)(\cdot + h) T_n(v_n)||_{L^p((0,T-h),B)} \rightarrow 0$, as $h \rightarrow 0_+$, uniformly w.r.t. n.

Then there exists $g \in L^p((0, T), B)$ such that, up to a subsequence, $T_n(v_n) \rightarrow g$ in $L^p((0, T), B)$.

p = 2, $v_n = \varphi(u_n)$. With this Compactness Lemma, one obtains that $\varphi(\bar{u}_n) \to g$ in $L^2(Q)$

Minty trick (simple version)

Let $(u_n)_{n\in\mathbb{N}}$ be a sequence of approximate solutions. One has, as $n \to \infty$,

 $\overline{u}_n \to u$ weakly in $L^2(Q)$,

 $\varphi(\bar{u}_n) \to g \text{ in } L^2(Q).$

Then, the Minty trick (since φ is nondecreasing) gives $g = \varphi(u)$: Let $w \in L^2(\Omega)$, $0 \leq \int_Q (\varphi(\bar{u}_n) - \varphi(w))(\bar{u}_n - w) dx dt$ gives, as $n \to \infty$,

$$0\leq \int_Q (g-\varphi(w))(u-w)dxdt.$$

Taking $w = u + \varepsilon \psi$, with $\psi \in C^{\infty}_{c}(Q)$ and letting $\varepsilon \to 0^{\pm}$ leads to

$$\int_Q (g - \varphi(u)) \psi dx dt = 0.$$

Then $g = \varphi(u)$ a.e.

It remains to pass to the limit in the approximate equation. This is possible thanks to some natural properties of consistency. That is to say, for any regular function ψ , as $\operatorname{size}(\mathcal{D}) \to 0$,

1.
$$\min_{v \in X_{\mathcal{D},0}} \| \bar{v} - \psi \|_{L^{2}(\Omega)} \to 0$$

2.
$$\min_{v \in X_{\mathcal{D},0}} \| |\nabla_{\mathcal{D}} v - \nabla \psi | \|_{L^{2}(\Omega)} \to 0$$

3.
$$\max_{u \in X_{\mathcal{D},0} \setminus \{0\}} \frac{1}{\| |\nabla_{\mathcal{D}} u | \|_{L^{2}(\Omega)}} \left| \int_{\Omega} \left(\nabla_{\mathcal{D}} u \cdot \psi + \bar{u} \operatorname{div} \psi \right) dx \right| \to 0$$

Modified Compactness Lemma

B is a banach space X_n normed vector spaces T_n a linear operator from X_n to *B* The hypothesis $X \subset B$ with compact embedding is replaced by " $u_n \in X_n$, if the sequence $(||u_n||_{X_n})_{n \in \mathbb{N}}$ is bounded, then the sequence $(T_n(u_n))_{n \in \mathbb{N}}$ is relatively compact in *B*". With this hypothesis, let T > 0, $1 \le p < +\infty$ and $(v_n)_{n \in \mathbb{N}}$ be a sequence such that $v_n \in L^p((0, T), X_n)$ for all *n*. Assume that

- ▶ There exists C such that $||v_n||_{L^p((0,T),X_n)} \leq C$ for all $n \in \mathbb{N}$
- ► $||T_n(v_n)(\cdot + h) T_n(v_n)||_{L^p((0,T-h),B)} \rightarrow 0$, as $h \rightarrow 0$, uniformly w.r.t. n.

Then there exists $g \in L^p((0, T), B)$ such that, up to a subsequence, $T_n(v_n) \rightarrow g$ in $L^p((0, T), B)$.

Compactness Lemma, simple case

B is a banach space X_n normed vector spaces The sequence X_n is compactly embedded in *B*'' $T > 0, 1 \le p < +\infty$

• $(v_n)_{n\in\mathbb{N}}$ bounded in $L^p((0, T), X_n)$

▶ $\|v_n(\cdot + h) - v_n\|_{L^p((0, T-h), B)} \to 0$, as $h \to 0$, unif. w.r.t. n. Then there exists $v \in L^p((0, T), B)$ such that, up to a subsequence, $v_n \to v$ in $L^p((0, T), B)$.