Discretization of nonlinear diffusion equations

T. Gallouët

joint work with R. Eymard and R. Herbin

Non linear diffusion equation

Ω is an open bounded connected polygonal subset of \mathbb{R}^{d}, $d \geq 1$.

$$
\begin{gathered}
-\operatorname{div}(\mathbf{a}(x, \nabla u))=f \text { in } \Omega, \\
u=0 \text { on } \partial \Omega
\end{gathered}
$$

$$
\partial \Omega=\bar{\Omega} \backslash \Omega
$$

$p>1, \alpha, \beta>0, b \in L^{p^{\prime}}(\Omega)$,

- a : $\Omega \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a Caratheodory function,
- $\mathbf{a}(x, \xi) \cdot \xi \geq \alpha|\xi|^{p}$, for all $\xi \in \mathbb{R}^{d}$ and a.e. $x \in \Omega$,
- $|\mathbf{a}(x, \xi)| \leq b(x)+\beta|\xi|^{p-1}$, for all $\xi \in \mathbb{R}^{d}$ and a.e. $x \in \Omega$.
- $(\mathbf{a}(x, \xi)-\mathbf{a}(x, \chi)) \cdot(\xi-\chi)>0$, for all $\xi, \chi \in \mathbb{R}^{d}, \xi \neq \chi$, and a.e. $x \in \Omega$.

Main example: $\mathbf{a}(x, \xi)=|\xi|^{p-2} \xi$.
$f \in L^{p^{\prime}}(\Omega)$.

Existence and uniqueness of a solution:

$$
\begin{aligned}
& u \in W_{0}^{1, p}(\Omega), \\
& \int_{\Omega} \mathbf{a}(x, \nabla u(x)) \cdot \nabla v(x) d x=\int_{\Omega} f(x) v(x) d x, \forall v \in W_{0}^{1, p}(\Omega) .
\end{aligned}
$$

Objective

Discretization of this nonlinear diffusion problem with two constraints:

- "General" meshes (not adapted to the Finite Element method)
- One discrete unknown per cell

A good scheme will, at least, leads to:

- Existence and uniqueness of the approximate solution
- Convergence result of the approximate solution to the exact solution when the mesh size goes to 0 .

Example of mesh

Main steps for proving a convergence result

- Estimates on the approximate solutions
- Compactness results on the family of approximate solutions
- Regularity of the limit of approximate solutions $\left(u \in W_{0}^{1, p}(\Omega)\right)$
- Prove that the limit of approximate solutions satisfies
$-\operatorname{div}(\mathbf{a}(x, \nabla u))=f$
To prove these results, one uses some "discrete functional analysis" tools, mimicking classical functional analysis (Sobolev, Kolmogorov, Minty trick, Leray-Lions trick. . .)
\mathcal{T} is a mesh of Ω.
$H_{\mathcal{T}}$ is the set of functions $u: \Omega \rightarrow \mathbb{R}$ such that u is constant on K, for all $K \in \mathcal{T}$; this constant is denoted by u_{K}.

First idea:
For $u \in H_{\mathcal{T}}$, define $\nabla_{\mathcal{T}} u$ (convenient approximation of the gradient on u)

Approximate problem :

$$
\int_{\Omega} \mathbf{a}\left(x, \nabla_{\mathcal{T}} u\right) \cdot \nabla_{\mathcal{T}} v d x=\int f v d x, \forall v \in H_{\mathcal{T}}
$$

Definition of the approximate solution on edges

For $K \in \mathcal{T}$, one chooses $x_{K} \in \mathcal{T}$ (K is " x_{K} star shaped").
For σ, interior edge (interface) of \mathcal{T}, x_{σ} is the center of σ.
One chooses a decomposition of $x_{\sigma}: x_{\sigma}=\sum_{M \in \mathcal{T}} a_{M, \sigma} x_{M}$.
Then, if $u \in H_{\mathcal{T}}$, one sets:

$$
\Pi_{\sigma} u=\sum_{M \in \mathcal{T}} a_{M, \sigma} u_{M}
$$

If σ is an edge on the boundary, one sets $\Pi_{\sigma} u=0$.

Decomposition of x_{σ}

$$
x_{\sigma}=\sum_{M \in \mathcal{T}} a_{M, \sigma} x_{M}
$$

Definition of the approximate gradient

For $K \in \mathcal{T}$,

$$
\frac{1}{m_{K}} \sum_{\sigma \in \mathcal{E}_{K}} m_{\sigma} n_{K, \sigma}\left(x_{\sigma}-x_{K}\right)^{t}=l d .
$$

For $u \in H_{\mathcal{T}}$, the value of the approximate gradient, $\nabla_{\mathcal{T}} u$ is, on K:

$$
\nabla_{K} u=\frac{1}{m_{K}} \sum_{\sigma \in \mathcal{E}_{K}} m_{\sigma}\left(\Pi_{\sigma} u-u_{K}\right) n_{K, \sigma} .
$$

First approximate problem (2)

\mathcal{T} is a mesh of Ω.
$H_{\mathcal{T}}$ is the set of functions $u: \Omega \rightarrow \mathbb{R}$ such that u is constant on K, for all $K \in \mathcal{T}$; this constant is denoted by u_{K}.

One defines $\Pi_{\sigma} u$ for $\sigma \in \mathcal{E}$ and $\nabla_{\mathcal{T}} u$ on Ω.
First approximate problem :

$$
\int_{\Omega} \mathbf{a}\left(x, \nabla_{\mathcal{T}} u\right) \cdot \nabla_{\mathcal{T}} v d x=\int f v d x, \forall v \in H_{\mathcal{T}}
$$

But, no existence, no uniqueness, no coercivity on $H_{\mathcal{T}} \ldots$
$\nabla_{\mathcal{T}} u=0 \nRightarrow u=0$

Stabilization using consistency estimate, $R_{T} u$

$u \in H_{\mathcal{T}}, K \in \mathcal{T}, \sigma \in \mathcal{E}_{K}$, the value of $R_{\mathcal{T}} u$ is on the cone $D_{K, \sigma}$:

$$
R_{K, \sigma} u=\frac{1}{d_{K, \sigma}}\left(\Pi_{\sigma} u-u_{K}-\nabla_{K} u \cdot\left(x_{\sigma}-x_{K}\right)\right)
$$

If u is a regular function $u_{K}=u\left(x_{K}\right), R_{K, \sigma} u \rightarrow 0$ as the mesh size goes to 0 .

Approximate problem

$H_{\mathcal{T}}$ is the set of functions $u: \Omega \rightarrow \mathbb{R}$ such that u is constant on K, for all $K \in \mathcal{T}$; this constant is denoted by u_{K}.

$$
\begin{gathered}
u \in H_{\mathcal{T}}, \\
\int_{\Omega} \mathbf{a}\left(x, \nabla_{\mathcal{T}} u\right) \cdot \nabla_{\mathcal{T}} v d x+b(u, v)=\int f v d x, \forall v \in H_{\mathcal{T}} . \\
b(u, v)=\int_{\Omega}\left|R_{\mathcal{T}} u\right|^{p-2} R_{\mathcal{T}} u R_{\mathcal{T}} v d x
\end{gathered}
$$

main properties:

- Coercivity of the discrete operator, existence of a solution and estimate
- Monotony of b, uniqueness of the solution
- $b(u, u) \geq 0$
- Convenient bound on u, and v such that $v_{K}=\psi\left(x_{K}\right)$ with ψ regular $\left(v=P_{\mathcal{T}} \psi\right)$ gives $b(u, v) \rightarrow 0$ as the $\operatorname{size}(\mathcal{T}) \rightarrow 0$

Discrete $W_{0}^{1, p}$ norms on H_{T}

$u \in H_{\mathcal{T}}$.

$$
\|u\|_{p, \mathcal{T}, \Pi}^{p}=\sum_{K \in \mathcal{T}} \sum_{\sigma \in \mathcal{E}_{K}} m_{\sigma} d_{K, \sigma} \frac{\left|\Pi_{\sigma} u-u_{K}\right|^{p}}{d_{K, \sigma}^{p}}
$$

For $p=1,\|u\|_{1, \mathcal{T}, \Pi} \geq\|u\|_{1, \mathcal{T}}$

$$
\|u\|_{1, \mathcal{T}}=\sum_{\sigma \in \mathcal{E}} m_{\sigma} D_{\sigma} u
$$

where $D_{\sigma} u=\left|u_{K}-u_{L}\right|$ if σ is between K and L and
$D_{\sigma} u=\left|u_{K}-0\right|$ if σ is an edge of K on the boundary of Ω.

Coercivity, estimate on the approximate solution

For $u \in H_{\mathcal{T}}$,

$$
C\|u\|_{1, p, \Pi}^{p} \leq \int_{\Omega} \mathbf{a}\left(x, \nabla_{\mathcal{T}} u\right) \cdot \nabla_{\mathcal{T}} u d x+b(u, u) .
$$

Then, if u is solution of the approximate problem, taking $v=u$,

$$
C\|u\|_{1, p, \Pi}^{p} \leq \int f u d x \leq\|f\|_{L L^{\prime}}\|u\|_{L \rho} .
$$

Estimate on u follows if $\|u\|_{L \rho} \leq C\|u\|_{1, p, \Pi} \cdots$

Discrete Sobolev embedding (1)

$u \in H_{\mathcal{T}}$
$p=1,1^{\star}=\frac{d}{d-1}$, then $\|u\|_{L^{1^{\star}}} \leq\|u\|_{1, \mathcal{T}}=\sum_{\sigma \in \mathcal{E}} m_{\sigma} D_{\sigma} u$.
Proof by induction on d.

- $d=1,\|u\|_{L^{\infty}} \leq\|u\|_{1, \mathcal{T}}=\sum_{\sigma \in \mathcal{E}} D_{\sigma} u$.
- $d=2, x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$,

$$
u\left(x_{1}, x_{2}\right)^{2} \leq\left(\sum_{\sigma \in \mathcal{E}} \chi_{1, \sigma}\left(x_{2}\right) D_{\sigma} u\right)\left(\sum_{\sigma \in \mathcal{E}} \chi_{2, \sigma}\left(x_{1}\right) D_{\sigma} u\right)
$$

$\chi_{1, \sigma}\left(x_{2}\right)=1$ if $\left\{\left(y, x_{2}\right), y \in \mathbb{R}\right\} \cap \sigma \neq \emptyset$, and 0 otherwise.
Integrating leads to $\|u\|_{L^{2}} \leq \sum_{\sigma \in \mathcal{E}} m_{\sigma} D_{\sigma} u=\|u\|_{1, \mathcal{T}}$.

Discrete Sobolev embedding (2)

$$
\begin{aligned}
& d=3, x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}, \\
& \int|u(x)|^{\frac{3}{2}} d x_{1} d x_{2} \leq\left(\int|u(x)| d x_{1} d x_{2}\right)^{\frac{1}{2}}\left(\int|u(x)|^{2} d x_{1} d x_{2}\right)^{\frac{1}{2}} \\
& |u(x)| \leq \sum_{\sigma \in \mathcal{E}} \chi_{\sigma}\left(x_{1}, x_{2}\right) D_{\sigma} u,
\end{aligned}
$$

with $\chi_{\sigma}\left(x_{1}, x_{2}\right)=1$ if $\left\{\left(x_{1}, x_{2}, y\right), y \in \mathbb{R}\right\} \cap \sigma \neq \emptyset$ (and 0 elsewhere).

$$
\left(\int|u(x)|^{2} d x_{1} d x_{2}\right)^{\frac{1}{2}} \leq \sum_{\sigma \in \mathcal{E}} I_{\sigma}\left(x_{3}\right) D_{\sigma} u,
$$

where $I_{\sigma}\left(x_{3}\right)=\lambda_{2}\left(\left\{\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}, x_{3}\right) \in \sigma\right\}\right)$. Then

$$
\begin{gathered}
\int|u(x)|^{\frac{3}{2}} d x_{1} d x_{2} \leq\left(\sum_{\sigma \in \mathcal{E}} m_{\sigma} D_{\sigma} u\right)^{\frac{1}{2}} \sum_{\sigma \in \mathcal{E}} I_{\sigma}\left(x_{3}\right) D_{\sigma} u \\
\int|u(x)|^{\frac{3}{2}} d x \leq\left(\sum_{\sigma \in \mathcal{E}} m_{\sigma} D_{\sigma} u\right)^{\frac{3}{2}}
\end{gathered}
$$

Discrete Sobolev embedding (3)

$u \in H_{\mathcal{T}}$

- $1<p<d . p^{\star}=\frac{d p}{d-p}$, then $\|u\|_{L^{p^{\star}}} \leq C\|u\|_{p, \mathcal{T}, \Pi}$, where C depends on some $\eta>0$ such that $\eta \leq \frac{d_{K, \sigma}}{d_{L, \sigma}} \leq \frac{1}{\eta}$ for all σ.

Proof using $p=1$ with $|u|^{\alpha}, \alpha 1^{\star}=p^{\star}$.

- $p \geq d, q<\infty$, then $\|u\|_{L a} \leq C\|u\|_{p, \mathcal{T}, \Pi}$.

Estimate on the approximate solution

$$
C\|u\|_{1, p, \Pi}^{p} \leq \int f u d x \leq\|f\|_{L \rho^{\prime}}\|u\|_{L \rho} .
$$

Using sobolev embedding $\|u\|_{L^{\rho}} \leq C\|u\|_{1, p, \Pi}$, then

$$
\begin{gathered}
\|u\|_{L^{\rho}} \leq C \\
\|u\|_{1, p, \Pi} \leq C \\
\left\|\nabla_{\mathcal{T}} u\right\|_{L^{p}} \leq C .
\end{gathered}
$$

Compactness of the family of approximate solutions

If $u \in H_{\mathcal{T}}, \xi \in \mathbb{R}^{d}$.

$$
\int_{\mathbb{R}^{d}}|u(x+\xi)-u(x)| d x \leq|\xi|\|u\|_{1, \mathcal{T}}
$$

(In general, no similar result for $p>1$, except particular meshes).

Then, since the family of approximate solutions is bounded for the norm $\|\cdot\|_{1, p, \Pi}$, it is bounded for the norm $\|\cdot\|_{1, \mathcal{T}}$ and then, by the Kolmogorov compacness theorem, the family of approximate solution is relatively compact in L^{1}.

Since, the family of approximate solution is bounded in L^{q} for some $q>p$, it is also relatively compact in L^{p}.
$u_{\mathcal{T}} \rightarrow u$ in $L^{p}(\Omega)$ or $L^{p}\left(\mathbb{R}^{d}\right)$ as the mesh size goes to 0 . (Indeed, this is true for subsequences of sequences of approximate solutions).

Since $\nabla_{\mathcal{T}} u_{\mathcal{T}}$ is bounded in $\left(L^{p}\right)^{d}$, one also has (up to subsequences),

$$
\nabla_{\mathcal{T}} u_{\mathcal{T}} \rightarrow g, \text { weakly in }\left(L^{p}(\Omega)\right)^{d} \text { or }\left(L^{p}\left(\mathbb{R}^{d}\right)\right)^{d}
$$

But, for $\psi \in\left(C^{\infty}\left(\mathbb{R}^{d}\right)\right)^{d}$, let $P_{\mathcal{T}} \psi \in H_{\mathcal{T}}$ define by $P_{\mathcal{T}} \psi=\psi\left(x_{K}\right)$ on K.

$$
\int_{\mathbb{R}^{d}} \nabla_{\mathcal{T}} u_{\mathcal{T}} \cdot P_{\mathcal{T}} \psi d x=-\int_{\mathbb{R}^{d}} u_{\mathcal{T}} \operatorname{div}_{\mathcal{T}} P_{\mathcal{T}} \psi d x
$$

$u_{\mathcal{T}} \rightarrow u$ in $L^{p}\left(\mathbb{R}^{d}\right),\|u\|_{1, p, \Pi}^{p} \leq C$.
$\nabla_{\mathcal{T}} u_{\mathcal{T}} \rightarrow g$, weakly in $\left(L^{p}\left(\mathbb{R}^{d}\right)\right)^{d}$

$$
\int_{\mathbb{R}^{d}} \nabla_{\mathcal{T}} u_{\mathcal{T}} \cdot P_{\mathcal{T}} \psi d x \rightarrow \int_{\mathbb{R}^{d}} g \cdot \psi d x .
$$

The consistency of the definition of $\nabla_{\mathcal{T}}$ gives

$$
\int_{\mathbb{R}^{d}} u_{\mathcal{T}} \operatorname{div}_{\mathcal{T}} P_{\mathcal{T}} \psi d x \rightarrow \int_{\mathbb{R}^{d}} u \operatorname{div} \psi d x .
$$

Then, $\int_{\mathbb{R}^{d}} g \cdot \psi d x=-\int_{\mathbb{R}^{d}} u \operatorname{div} \psi d x$, and $g=\nabla u$.
This proves that $u \in W_{0}^{1, p}(\Omega)$.

$-\operatorname{div}(\mathbf{a}(x, \nabla u))=f, \operatorname{Minty} \operatorname{trick}(1)$

$\mathbf{a}\left(\nabla_{\mathcal{T}} u_{\mathcal{T}}\right)$ is bounded in $L^{\rho^{\prime}}(\Omega)$. Then one can assume

$$
\mathbf{a}\left(\nabla_{\mathcal{T}} u_{\mathcal{T}}\right) \rightarrow h, \text { weakly in }\left(L^{\rho^{\prime}}\right)^{d} .
$$

Let $\psi \in C_{c}^{\infty}(\Omega)$,

$$
\int_{\Omega} \mathbf{a}\left(\nabla_{\mathcal{T}} u_{\mathcal{T}}\right) \cdot \nabla_{\mathcal{T}} P_{\mathcal{T}} \psi d x+b\left(u_{\mathcal{T}}, P_{\mathcal{T}} \psi\right)=\int_{\Omega} f P_{\mathcal{T}} \psi d x
$$

Thanks to estimate on $u_{\mathcal{T}}$ (for $\|\cdot\|_{1, p, \mathcal{T}}$) and $\nabla_{\mathcal{T}} u_{\mathcal{T}}$ in L^{p}), the regularity of ψ gives $b\left(u_{\mathcal{T}}, P_{\mathcal{T}} \psi\right) \rightarrow 0$. Then

$$
\int_{\Omega} h \cdot \nabla \psi d x=\int_{\Omega} f \psi d x .
$$

By density, this is also true if $\psi \in W_{0}^{1, p}(\Omega)$. It remains to prove $\int_{\Omega} h \cdot \nabla \psi d x=\int_{\Omega} a(\nabla u) \cdot \nabla \psi d x$.

$-\operatorname{div}(\mathbf{a}(x, \nabla u))=f$, Minty trick (2)

$$
\begin{aligned}
& \text { Let } \psi \in C_{C}^{\infty}(\Omega), \\
& \quad \int_{\Omega}\left(\mathbf{a}\left(\nabla_{\mathcal{T}} u_{\mathcal{T}}\right)-\mathbf{a}\left(\nabla_{\mathcal{T}} P_{\mathcal{T}} \psi\right)\right) \cdot\left(\nabla_{\mathcal{T}} u_{\mathcal{T}}-\nabla_{\mathcal{T}} P_{\mathcal{T}} \psi\right) d x \geq 0 . \\
& \int_{\Omega} \mathbf{a}\left(\nabla_{\mathcal{T}} u_{\mathcal{T}}\right) \cdot \nabla_{\mathcal{T}} u_{\mathcal{T}} d x \leq \int_{\Omega} \mathbf{a}\left(\nabla_{\mathcal{T}} u_{\mathcal{T}}\right) \cdot \nabla_{\mathcal{T}} u_{\mathcal{T}}+b\left(u_{\mathcal{T}}, u_{\mathcal{T}}\right)=\int_{\Omega} f u_{\mathcal{T}} d x \\
& \quad \limsup \int_{\Omega} \mathbf{a}\left(\nabla_{\mathcal{T}} u_{\mathcal{T}}\right) \cdot \nabla_{\mathcal{T}} u_{\mathcal{T}} d x \leq \int_{\Omega} f u d x=\int_{\Omega} n \cdot \nabla u d x .
\end{aligned}
$$

Then, taking the limsup of the first inequality leads to

$$
\int_{\Omega}(h-\mathbf{a}(\nabla \psi)) \cdot(\nabla u-\nabla \psi) d x \geq 0 .
$$

This last inequality is also true, by density, if $\psi \in W_{0}^{1, p}(\Omega)$. Then, Taking $\psi=u \pm t \varphi$ leads to $-\operatorname{div}(\mathbf{a}(x, \nabla u))=f$

$$
\int_{\Omega}(h-\mathbf{a}(\nabla \psi)) \cdot(\nabla u-\nabla \psi) d x \geq 0
$$

for all $\psi \in W_{0}^{1, p}$. Let $\varphi \in C_{c}^{\infty}(\Omega)$ and $t \in \mathbb{R}_{+}^{\star}$. Take $\psi=u+t \varphi$:

$$
\int_{\Omega}(h-\mathbf{a}(\nabla u+t \nabla \varphi)) \cdot \nabla \varphi d x \geq 0
$$

this gives, as $t \rightarrow 0$,

$$
\int_{\Omega}(h-\mathbf{a}(\nabla u)) \cdot \nabla \varphi d x \geq 0
$$

Changing φ in $-\varphi$:

$$
\left(\int_{\Omega} f \varphi d x=\right) \int_{\Omega} h \cdot \nabla \varphi d x=\int_{\Omega} \mathbf{a}(\nabla u) \cdot \nabla \varphi d x .
$$

Strong convergence of the gradient, Leray lions trick

$\nabla_{\mathcal{T}} u_{\mathcal{T}} \rightarrow \nabla u$ weakly in L^{p}.
$\lim \sup \int_{\Omega} \mathbf{a}\left(\nabla_{\mathcal{T}} u_{\mathcal{T}}\right) \cdot \nabla_{\mathcal{T}} u_{\mathcal{T}} d x \leq \int_{\Omega} f u d x=\int_{\Omega} \mathbf{a}(\nabla u) \cdot \nabla u d x$.
Then $\limsup \int_{\Omega}\left(\mathbf{a}\left(\nabla_{\mathcal{T}} u_{\mathcal{T}}\right)-\mathbf{a}(\nabla u)\right) \cdot\left(\nabla_{\mathcal{T}} u_{\mathcal{T}}-\nabla u\right) d x \leq 0$
Since $\left(\mathbf{a}\left(\nabla_{\mathcal{T}} u_{\mathcal{T}}\right)-\mathbf{a}(\nabla u)\right) \cdot\left(\nabla_{\mathcal{T}} u_{\mathcal{T}}-\nabla u\right) \geq 0$ a.e.,

$$
\left(\mathbf{a}\left(\nabla_{\mathcal{T}} u_{\mathcal{T}}\right)-\mathbf{a}(\nabla u)\right) \cdot\left(\nabla_{\mathcal{T}} u_{\mathcal{T}}-\nabla u\right) \rightarrow 0 \text { in } L^{1}
$$

and therefore a.e. for a subsequence. Then, Leray-Lions trick shows that $\nabla_{\mathcal{T}} u_{\mathcal{T}} \rightarrow \nabla u$ a.e., at least for the same subsequence.
Finally, strong convergence of the gradient follows.

Numerical example, two grids, p-laplacian

Numerical example,two grids, $\mathrm{p}=1.3$

Numerical example,two grids, p=1.6

Numerical example,two grids, p=2

Numerical example,two grids, $\mathrm{p}=3$

Numerical example,two grids, $\mathrm{p}=6$

