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objective

Some results on linear elliptic (or parabolic) equations with
Stampacchia’s methods

Using these methods for the study of numerical schemes
(properties of the approximate solutions, convergence of
schemes. . . )



Positivity

Ω bounded open set of Rd with a Lipschitz continuous
boundary.
A : Ω→ Md (R) sym. pos. def., uniformly (Aξ.ξ ≥ αξ.ξ with
some α > 0), with coefficients in L∞(Ω).
f ∈ L2(Ω).

−div(A∇u) = f , in Ω,

u = 0, on ∂Ω.

f ≤ 0 a.e. ⇒ u ≤ 0 a.e.



Positivity, proof

u ∈ H1
0 (Ω),

∫
Ω

A∇u · ∇vdx =

∫
Ω

fvdx for all v ∈ H1
0 (Ω).

f ≤ 0.

Taking u+ as test function (possible since u+ ∈ H1
0 (Ω)) :

α‖|∇u+|‖2 ≤
∫

Ω
A∇u+ · ∇u+ =

∫
Ω

A∇u · ∇u+ =

∫
Ω

fu+ ≤ 0.

Then, ∇u+ = 0 a.e. and u+ = 0 a.e.., u ≤ 0 a.e...

Property used : ∇u+ = 1u>0∇u = 1u≥0∇u a.e..



Nonlinear tool (Stampacchia)

ϕ : R→ R, Lipschitz continuous function such that ϕ(0) = 0.

u ∈ H1
0 (Ω). Then, ϕ(u) ∈ H1

0 (Ω) and

∇ϕ(u) = ϕ′(u)∇u a.e..

Example : ϕ(s) = s+, ∇u+ = 1u>0∇u = 1u≥0∇u a.e.

Indeed, it is possible to use only regular function ϕ (C1

functions).



Maximum principle

−div(A∇u) = 0, in Ω,

u = g, on ∂Ω.

g ∈ C(∂Ω,R) ∩ H
1
2 (∂Ω).

Then a = inf g ≤ u ≤ max g = b.

Proof : Take (u − b)+ and (u − a)− as test functions in the
weak formulation.



Bounded solutions (Stampacchia)

−div(A∇u) = f , in Ω,

u = 0, on ∂Ω.

f ∈ H−1(Ω). Existence and uniqueness of u solution to :

u ∈ H1
0 (Ω),

∫
Ω

A∇u · ∇vdx = 〈f , v〉H−1(Ω),H1
0 (Ω) ∀v ∈ H1

0 (Ω).

Question : u ∈ L∞(Ω) (d ≥ 2) ?
Answer :
 Yes if it exists p > d

2 such that f ∈ Lp(Ω) (and
〈f , v〉H−1(Ω),H1

0 (Ω) =
∫

Ω fvdx).

 Yes if it exists p > d such that f ∈W−1,p(Ω).

NB: Lp/2(Ω) ⊂W−1,p(Ω) for p > d .



Bounded solutions, proof (1)

Let p > d s.t. f ∈W−1,p(Ω). Then, it exists F ∈ (Lp(Ω))d s.t.
f = divF . One has:
u ∈ H1

0 (Ω),
∫

Ω
A∇u · ∇vdx =

∫
Ω

F · ∇vdx for all v ∈ H1
0 (Ω).

Let k ∈ R?
+. Take v = ψ(u) = (u − k)+ − (u + k)− (ψ is

nondecreasing). One has ∇ψ(u) = 1Ak∇u a.e.with
Ak = {|u| ≥ k} and:∫

Ak

A∇u · ∇udx =

∫
Ak

F · ∇udx .

Then, with Cauchy-Schwarz and Hölder inequalites (p/2 and its
conjugate):

α‖|∇u|‖L2(Ak ) ≤ C1‖f‖W−1,p mes(Ak )
1
2−

1
p .



Bounded solutions, proof (2)

Using Sobolev imbedding (W 1,1
0 (Ω) ⊂ Ld/(d−1)(Ω)) and

Cauchy-Schwarz again:

mes(Ah) ≤
C2‖f‖γW−1,p

h − k
mes(Ak )β, for 0 ≤ k < h,

with γ = d/(d − 1) and β = p−1
p

d
d−1 > 1 (since p > d).

Since β > 1, this gives (with a little tricky computation)
mes(Ah) = 0 si h ≥ C3‖f‖W−1,p . Then:

‖u‖∞ ≤ C3‖f‖W−1,p .

A further developpement of this proof leads to u ∈ C(Ω) and
finally to the Hölder continuity of u.



Existence of a solution for f “measure”

−div(A∇u) = f , in Ω,

u = 0, on ∂Ω.

f is a measure on Ω (f ∈ (C(Ω))′).

First method: duality method (Stampacchia, 1965)

Second method: passing to the limit on approximate solutions
Main difficulty: obtain estimates on u only depending of the
L1−norm of f (with f ∈ L2).



Existence of a solution for f “measure”, proof (1)

u ∈ H1
0 (Ω),

∫
Ω

A∇u · ∇vdx =

∫
Ω

fvdx for all v ∈ H1
0 (Ω).

For θ > 1, one defines ϕ :

ϕ(s) =

∫ s

0

1
(1 + |t |)θ

dt ; s ∈ R.

Taking v = ϕ(u) ∈ H1
0 (Ω) leads to:∫

Ω

|∇u|2

(1 + |u|)θ
dx ≤ Cθ‖f‖1,

with Cθ =
∫∞

0
1

(1+|t |)θ dt <∞.



Existence de solution with f “mesure”, proof (1)

u ∈ H1
0 (Ω),

∫
Ω

A∇u · ∇vdx =

∫
Ω

fvdx for all v ∈ H1
0 (Ω).

For θ > 1, one defines ϕ :

ϕ(s) =

∫ s

0

1
(1 + |t |)θ

dt ; s ∈ R.

taking v = ϕ(u) ∈ H1
0 (Ω) leads to:∫

Ω
|∇φ(u)|2dx =

∫
Ω

|∇u|2

(1 + |u|)θ
dx ≤ Cθ‖f‖1,

with φ(s) =
∫ s

0

√
ϕ′(t)dt .



Existence of a solution for f “measure”, proof (2)

Using Hölder Inequality, Sobolev imbedding and θ close 1, one
obtains, for q < d

d−1 :∫
Ω
|∇u|qdx ≤ Cq‖f‖L1 .

Passing to the limit on a sequence of approximate solutions
(corresponding to regular second members converging towards
f ), one obtains existence of a solution (in the disctribution
sense) if f is a measure.
This solution belongs to W 1,q

0 (Ω) for all q < d
d−1 .



Convection-diffusion without coercivity

−divA∇u + div(wu) = f in Ω,
u = 0 on ∂Ω,

with w ∈ C(Ω)d and f ∈ L2(Ω) (or f measure on Ω).

Existence and uniqueness of a solution.

Main step: a priori estimates on meas({|u| ≥ k}) (this measure
goes to 0 as k →∞).

(then, one obtains an H1
0 (Ω)−estimate and existence follows

with a topological degree argument. Uniqueness is a
consequence of an existence result for the dual problem.)



Convection-diffusion without coercivity, proof (1)

u ∈ H1
0 (Ω),∫

Ω
A∇u · ∇vdx −

∫
Ω

uw · ∇vdx =

∫
Ω

fvdx , for all v ∈ H1
0 (Ω).

Idea of Lucio Boccardo.
Taking v = ϕ(u) with ϕ(s) =

∫ s
0

1
(1+|s|)2 (θ = 2):

α

∫
Ω

|∇u|2

(1 + |u|)2 dx ≤ ‖f‖1 +

∫
Ω

|w ||u||∇u|
(1 + |u|)2 dx

≤ ‖f‖1 + ‖w‖∞
∫

Ω

|∇u|
1 + |u|

dx ,

with ‖w‖∞ = supx∈Ω |w(x)| <∞.



Convection-diffusion without coercivity, proof (2)

and, with Young Inequality:

∫
Ω
|∇ ln(1 + |u|)|2dx =

∫
Ω

|∇u|2

(1 + |u|)2 dx ≤ C(α, ‖f‖1, ‖w‖∞).

|∇ ln(1 + |u|)| = |∇φ(u)|.
φ(s) ==

∫ s
0

√
ϕ′(t)dt =

∫ s
0

1
1+|t |dt .

Since ln(1 + |u|) ∈ H1
0 (Ω), one deduces an estimate on

ln(1 + |u|) in L2(Ω) and then an estimate on meas({|u| ≥ k}).



Positivity for convection-diffusion without coercivity

−divA∇u + div(wu) = f in Ω,
u = 0 on ∂Ω,

with w ∈ C(Ω)d and f ∈ L2(Ω) (or f measure on Ω).

Then f ≥ 0 a.e. implies u ≥ 0 a.e..
(Or f ≤ 0 a.e. implies u ≤ 0 a.e..)



Positivity for conv.-diff. without coercivity, proof (1)

u ∈ H1
0 (Ω),∫

Ω
A∇u · ∇vdx −

∫
Ω

uw · ∇vdx =

∫
Ω

fvdx , for all v ∈ H1
0 (Ω).

Assume f ≤ 0 a.e.

Taking v = Tε(u+) =


0 if u ≤ 0
u if 0 < u < ε
ε if u ≥ ε

leads to

α‖∇Tεu+‖22 −
∫

Ω
uw · ∇Tε(u+) ≤ 0.

Then, with Cauchy-Schwarz Inequality,

α‖∇Tεu+‖22 ≤ εaε‖∇Tεu+‖2,

with a2
ε =

∫
0<u<ε |w |

2dx → 0, as ε→ 0.



Positivity for conv.-diff. without coercivity, proof (2)

α‖∇Tεu+‖22 ≤ εaε‖∇Tεu+‖2
gives

‖∇Tεu+‖1 ≤ C1‖∇Tεu+‖2 ≤ C2εaε.

Then, with Sobolev Inequality,

εmeas{u > ε}
1

1? ≤ ‖Tε(u+)‖1? ≤ C3‖∇Tεu+‖1 ≤ C4εaε,

and we obtain meas{u > ε} → 0, as ε→ 0, that is u ≤ 0 a.e..

Similar ideas are in Gilbarg-Trudinger and Boccardo-G-Murat.



Stampacchia methods with FV schemes

Finite Volumes schemes with the so-called “admissible meshes
for A”.

1. positivity, maximum principle
2. Bounded solutions, Hölder continuous solutions: Thomas
Rey thesis
3. “Measure” data: G-Herbin
4. Convection-diffusion without coercivity (and with measure
data) : Droniou-G-Herbin

“Non admissible” meshes ?



Stampacchia methods with FE schemes

M is a mesh of Ω, with triangles (d = 2) or tetrahedra (d = 3).

H = {u ∈ C(Ω); u|K ∈ P1}.
H0 = {u ∈ H; u = 0 on ∂Ω}.

uM ∈ H0,∫
Ω

A∇uM · ∇vdx (−
∫

Ω
uMw · ∇vdx) = T (v), for all v ∈ H0.

T (v) =
∫

Ω fvdx (examples 1, 2, 4)
T (v) =

∫
Ω vdf (examples 3, 4)

Difficulty : u ∈ H0 6⇒ u+, (u − b)+, ψ(u), ϕ(u),Tε(u+) ∈ H0.



Choice of the test function

Idea: take as test function the interpolate of the test function of
the “continuous” case.

If v ∈ C(Ω), ΠM(v) ∈ H and ΠM(v) = v at the vertices of the
mesh.

Denoting by V the set of vertices of the mesh:
ΠM(v) =

∑
K∈V v(K )φK , where φK is the basis function

associated to K .



re-writing the scheme (1)

uM ∈ H0,∫
Ω

A∇uM · ∇vdx =

∫
Ω

fvdx , for all v ∈ H0.

With uM =
∑

K∈V uKφK and v =
∑

L∈V vLφL, this gives∑
K∈V

∑
L∈V

(−TK ,L)uK vL =

∫
fvdx ,

with TK ,L = −
∫

Ω A∇φK · ∇φLdx .
or, since

∑
L∈V TK ,L = 0,∑
K∈V

∑
L∈V

(−TK ,L)(uK )(vL − vK ) =

∫
fvdx ,



re-writing the scheme (2)

and, finally, ∑
(K ,L)∈(V)2

TK ,L(uK − uL)(vK − vL) =

∫
fvdx .

Taking v = ΠMϕ(u) leads to:∑
(K ,L)∈(V)2

TK ,L(uK − uL)(ϕ(uK )− ϕ(uL)) =

∫
fvdx .



positivity (1)

f ≤ 0 a.e.
ϕ(s) = s+.∑

(K ,L)∈(V)2

TK ,L(uK − uL)(ϕ(uK )− ϕ(uL)) =

∫
fvdx ,

yields: ∑
(K ,L)∈(V)2

TK ,L(uK − uL)(u+
K − u+

L ) =

∫
fvdx ,

If TK ,L ≥ 0, one has:

∑
(K ,L)∈(V)2

TK ,L(u+
K − u+

L )2 ≤
∑

(K ,L)∈(V)2

TK ,L(uK − uL)(u+
K − u+

L ),



positivity (2)

∑
(K ,L)∈(V)2

TK ,L(u+
K − u+

L )(u+
K − u+

L ) ≤
∫

fvdx ≤ 0,

then:

∫
Ω

A∇ΠMu+ · ∇ΠMu+dx =
∑

(K ,L)∈(V)2

TK ,L(u+
K − u+

L )2 = 0,

from which one deduces u+ = 0.



nondecreasing function ϕ
Let ϕ ∈ C(R,R) Lipschitz continuous and nondecreasing.
Define φ by φ(s) =

∫ s
0

√
ϕ′(t)dt .

For a,b ∈ R, one has (thanks to Cauchy-Schwarz Inequality) :

(φ(a)− φ(b))2 ≤ (a− b)(ϕ(a)− ϕ(b)).

then, IF TK ,L ≥ 0 (for all (K ,L)), one has:∑
(K ,L)∈(V)2

TK ,L(φ(uK )− φ(uL))2 ≤∑
(K ,L)∈(V)2

TK ,L(uK − uL)(ϕ(uK )− ϕ(uL)).

∫
Ω

A∇ΠMφ(u) · ∇ΠMφ(u) =
∑

(K ,L)∈(V)2

TK ,L(φ(uK )− φ(uL))2.



“measure” data

For θ > 1, define ϕ:

ϕ(s) =

∫ s

0

1
(1 + |t |)θ

dt ; s ∈ R.

Taking v = ΠMϕ(u) ∈ H0:∫
Ω
|∇ΠMφ(u)|2dx ≤ Cθ‖f‖1,

with φ(s) =
∫ s

0

√
ϕ′(t)dt .



convection-diffusion without coercivity

Take v = ΠMϕ(u) with ϕ(s) =
∫ s

0
1

(1+|s|)2 (θ = 2).
If the mesh size is small enough (or using an “upwinding” for
convection part), one obtains an H1

0 (Ω)−estimate on
ΠM ln(1 + |u|) ∈ H1

0 (Ω), then, an estimate on ln(1 + |u|) in
L2(Ω) and finally, as in the “continuous” case, an estimate on
meas({|u| ≥ k}).



Conclusion

If TK ,L ≥ 0, for all K ,L, the methods of Stampacchia can be
used for the study of numerical schemes (EF and VF). . .

They gives the desired properties on the approximate solution
in Examples 1 and 2 (positivity, L∞−bound), Estimates and
Convergence of the approximate solution in Examples 3 and 4
(measure data and convection-diffusion without coercivity).



Ongoing work

Without the condition TK ,L ≥ 0, it seems not easy to use the
methods of Stampacchia. . .

For Finite Volumes schemes with a “non admissible” meshes, a
possible solution is (perhaps) to discretize this elliptic linear
problem with a nonlinear scheme taking some TK ,L(u)
depending on the approximate solution, that is a scheme under
the form: ∑

(K ,L)∈(V)2

TK ,L(u)(uK − uL)(vK − vL) = T (v),

and with TK ,L(u) ≥ 0, for all K ,L.


