Stationary compressible Stokes equations (+Navier-Stokes equations and nonsteady case)

T. Gallouët

joint works with R. Eymard, A. Fettah, R. Herbin, J.-C. Latché, H. Lakehal

Pisa, July 2014

Stationary Compressible Stokes Equations

 Ω is a connected bounded open set of \mathbb{R}^N , N = 2 or 3, with a Lipschitz continuous boundary,

$$\operatorname{div}(\varphi(\rho)u) = 0 \text{ in } \Omega, \ \rho \geq 0 \text{ in } \Omega, \ \int_{\Omega} \rho(x) dx = M,$$

 $-\Delta u + \nabla p = f(\cdot, \rho)$ in Ω , u = 0 on $\partial \Omega$,

 $p = \eta(\rho)$ in Ω

M > 0, f is at most linear, $|f(x, \rho)| \le B(h(x) + |\rho|)$, $h \in L^2(\Omega)$ φ is Lipschitz continuous, increasing, $\varphi(0) = 0$ η is continuous superlinear, $\liminf_{s \to +\infty} \eta(s)/s = +\infty$, increasing $(\eta(0) = 0)$ Functional spaces : $u \in H^1_0(\Omega)^N p, \rho \in L^2(\Omega)$

Main example

$$\begin{split} \varphi(\rho) &= \rho \\ f(x,\rho) &= \overline{f}(x) + g(x)\rho, \ \overline{f} \in L^2(\Omega), \ g \in L^\infty(\Omega) \\ \eta(\rho) &= \rho^\gamma, \ \gamma > 1. \\ \operatorname{div}(\rho u) &= 0 \quad \text{in } \Omega, \ \rho \geq 0 \quad \text{in } \Omega, \ \int_\Omega \rho(x) dx = M, \\ -\Delta u + \nabla p &= \overline{f} + g\rho \ \text{in } \Omega, \ u = 0 \ \text{on } \partial\Omega, \\ p &= \rho^\gamma \ \text{in } \Omega \quad (\text{Equation Of State}) \end{split}$$

M > 0

The main difficulty is the nonlinearity of the EOS (for passing to the limit with weak convergences)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Existence of a solution

Existence of a (weak) solution can be proved passing to the limit on two different approximate solution

- 1. Approximate solution obtained using a convenient numerical scheme
- 2. Approximate solution obtained using a viscous regularization of the mass equation

The second way is essentially in previous works of P. L. Lions, E. Feirsel, A. Novotny (1990...)

No uniqueness result.

(Incompressible NS Equations : J. Leray, 1934)

Existence of a solution

Existence of a (weak) solution can be proved passing to the limit on two different approximate solution

- 1. Approximate solution obtained using a convenient numerical scheme
- 2. Approximate solution obtained using a viscous regularization of the mass equation. Convergence of the approximate solution proven with a simple proof which can be adapted in order to do the first method (in particular with schemes used in an industrial framework)

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Steps of the proof

1. Definition of the approximate problem and existence of an approximate solution

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- 2. Estimates on the approximate solution
- 3. passing to the limit

The approximate problem

 $T_n(s) = \min\{\max\{s, -n\}, n\}$

Then, the regularized problem reads, for $n, l, m \in \mathbb{N}^*$,

$$\begin{split} & u \in H_0^1(\Omega)^N, \ \rho \in H^1(\Omega), \ p \in L^2(\Omega), \\ & \int_{\Omega} \nabla u : \nabla v \, dx - \int_{\Omega} p \, \operatorname{div}(v) \, dx = \int_{\Omega} f_l(x,\rho) \cdot v \, dx, \ \forall v \in H_0^1(\Omega)^N \\ & \int_{\Omega} \varphi(\rho) u \cdot \nabla \psi \, dx - \frac{1}{n} \int_{\Omega} \nabla \rho(x) \cdot \nabla \psi(x) \, dx = 0, \ \forall \psi \in H^1(\Omega) \\ & \rho > 0 \text{ a.e. in } \Omega, \ \int_{\Omega} \rho \, dx = M, \ p = \eta_m(\rho) \text{ a.e. in } \Omega \end{split}$$

where $f_I(x,s) = T_I(f(x,s))$ and $\eta_m(s) = T_m(\eta(s))$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

Existence of an approximate solution

Schauder fixed point for the application T from $L^2(\Omega)$ to $L^2(\Omega)$, $T(\rho) = \rho$.

$$\begin{split} u &\in H_0^1(\Omega)^N, \ \rho \in H^1(\Omega), \ p \in L^2(\Omega), \\ \int_{\Omega} \nabla u : \nabla v \, dx - \int_{\Omega} p \, \operatorname{div}(v) \, dx = \int_{\Omega} f_I(x, \rho) \cdot v \, dx, \ \forall v \in H_0^1(\Omega)^N \\ \int_{\Omega} \varphi(\rho) u \cdot \nabla \psi \, dx - \frac{1}{n} \int_{\Omega} \nabla \rho \cdot \nabla \psi \, dx = 0, \ \forall \psi \in H^1(\Omega) \\ \rho > 0 \text{ a.e. in } \Omega, \ \int_{\Omega} \rho \, dx = M, \ p = \eta_m(\rho^+) \text{ a.e. in } \Omega \end{split}$$

where $f_l(x,s) = T_l(f(x,s))$ and $\eta_m(s) = T_m(\eta(s))$

Intermediate problem

 $u \in L^{p}(\Omega)^{N}$, p > N (true if $u \in H_{0}^{1}(\Omega)^{N}$). M > 0. φ Lipschitz continuous and $\varphi(0) = 0$.

There exist a unique ρ solution of

$$\rho \in H^{1}(\Omega),$$

$$\int_{\Omega} \nabla \rho \cdot \nabla v \, dx - \int_{\Omega} \varphi(\rho) u \cdot \nabla v \, dx = 0, \ \forall v \in H^{1}(\Omega)$$

with $\int_{\Omega} \rho(x) dx = M$ Furthermore:

- 1. ho > 0 a.e. on Ω
- 2. For any A > 0, there exists C such that

 $\| |u| \|_{L^{p}(\Omega)} \leq A \Rightarrow \|\rho\|_{H^{1}(\Omega)} \leq C(A, p, M, \varphi, \Omega)$

Proof using the Leray-Schauder topological degree

Intermediate problem, main point

 $u \in L^p(\Omega)^N$, p > N. M > 0. φ Lipschitz continuous and $\varphi(0) = 0$.

$$\rho \in H^{1}(\Omega),$$

$$\int_{\Omega} \nabla \rho \cdot \nabla v \, dx - \int_{\Omega} \varphi(\rho) u \cdot \nabla v \, dx = 0, \ \forall v \in H^{1}(\Omega)$$

with $\int_{\Omega} \rho(x) dx = M$

Proof of a priori positivity of ρ taking $v = T_{\varepsilon}(\rho^+)$ and $\varepsilon \to 0$ and uniqueness taking $v = T_{\varepsilon}((\rho_1 - \rho_2)^+)$, as in an old paper of Boccardo-G-Murat

Intermediate problem, Leray-Schauder topological degree

 $u \in L^{p}(\Omega)^{N}$, p > N. M > 0. φ Lipschitz continuous and $\varphi(0) = 0$. F from $[0,1] \times L^{2}(\Omega)$ to $L^{2}(\Omega)$ $F(t,\rho) = \rho$

$$\rho \in H^{1}(\Omega),$$

$$\int_{\Omega} \nabla \rho \cdot \nabla v \, dx - \int_{\Omega} t \varphi(\rho) u \cdot \nabla v \, dx = 0, \ \forall v \in H^{1}(\Omega)$$

with $\int_{\Omega} \rho \, dx = tM$ $L^2(\Omega)$ -estimate on ρ if $F(t, \rho) = \rho$ Passing to the limit

 $n, l, m \in \mathbb{N}^*$,

$$\begin{split} & u \in H_0^1(\Omega)^N, \ \rho \in H^1(\Omega), \ p \in L^2(\Omega), \\ & \int_{\Omega} \nabla u : \nabla v \, dx - \int_{\Omega} p \, \operatorname{div}(v) \, dx = \int_{\Omega} f_l(x,\rho) \cdot v \, dx, \ \forall v \in H_0^1(\Omega)^N \\ & \int_{\Omega} \varphi(\rho) u \cdot \nabla \psi \, dx - \frac{1}{n} \int_{\Omega} \nabla \rho(x) \cdot \nabla \psi(x) \, dx = 0, \ \forall \psi \in H^1(\Omega) \\ & \rho > 0 \text{ a.e. in } \Omega, \ \int_{\Omega} \rho \, dx = M, \ p = \eta_m(\rho) \text{ a.e. in } \Omega \end{split}$$

 $m \to +\infty$
 $l \to +\infty$
 $n \to +\infty$

 $m \rightarrow +\infty$

n, *l* are fixed

$$\begin{split} & u \in H_0^1(\Omega)^N, \ \rho \in H^1(\Omega), \ p \in L^2(\Omega), \\ & \int_{\Omega} \nabla u : \nabla v \, dx - \int_{\Omega} p \, \operatorname{div}(v) \, dx = \int_{\Omega} f_l(x,\rho) \cdot v \, dx, \ \forall v \in H_0^1(\Omega)^N \\ & \int_{\Omega} \varphi(\rho) u \cdot \nabla \psi \, dx - \frac{1}{n} \int_{\Omega} \nabla \rho(x) \cdot \nabla \psi(x) \, dx = 0, \ \forall \psi \in H^1(\Omega) \\ & \rho > 0 \text{ a.e. in } \Omega, \ \int_{\Omega} \rho \, dx = M, \ p = \eta_m(\rho) \text{ a.e. in } \Omega \end{split}$$

 $H_0^1(\Omega)$ -estimate on u thanks to $\int_\Omega \eta_m(\rho) \operatorname{div}(u) dx \leq 0$ $H^1(\Omega)$ -estimate on ρ $L^2(\Omega)$ -estimate on p taking $\operatorname{div}(v) = p - m$ with $v \in H_0^1(\Omega)^N$ and using $\int_\Omega \rho \, dx = M$. $I \to +\infty$

n is fixed

$$\begin{split} & u \in H_0^1(\Omega)^N, \ \rho \in H^1(\Omega), \ p \in L^2(\Omega), \\ & \int_{\Omega} \nabla u : \nabla v \, dx - \int_{\Omega} p \, \operatorname{div}(v) \, dx = \int_{\Omega} f_l(x,\rho) \cdot v \, dx, \ \forall v \in H_0^1(\Omega)^N \\ & \int_{\Omega} \varphi(\rho) u \cdot \nabla \psi \, dx - \frac{1}{n} \int_{\Omega} \nabla \rho(x) \cdot \nabla \psi(x) \, dx = 0, \ \forall \psi \in H^1(\Omega) \\ & \rho > 0 \text{ a.e. in } \Omega, \ \int_{\Omega} \rho \, dx = M, \ p = \eta(\rho) \text{ a.e. in } \Omega \end{split}$$

 $H_0^1(\Omega)$ -estimate on u and $L^2(\Omega)$ -estimate on p thanks to $\int_\Omega \eta(\rho) \operatorname{div}(u) dx \leq 0$ and taking $\operatorname{div}(v) = p - m$ with $v \in H_0^1(\Omega)^N$ and using $\int_\Omega \rho dx = M$ and the superlinearity of η $H^1(\Omega)$ -estimate on ρ

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

$n \rightarrow +\infty$

$$\begin{split} u_n &\in H_0^1(\Omega)^N, \ \rho_n \in H^1(\Omega), \ p_n \in L^2(\Omega), \\ &\int_{\Omega} \nabla u_n : \nabla v \, dx - \int_{\Omega} p_n \operatorname{div}(v) \, dx = \int_{\Omega} f(x,\rho_n) \cdot v \, dx, \ \forall v \in H_0^1(\Omega)^N \\ &\int_{\Omega} \varphi(\rho_n) u_n \cdot \nabla \psi \, dx - \frac{1}{n} \int_{\Omega} \nabla \rho_n(x) \cdot \nabla \psi(x) \, dx = 0, \ \forall \psi \in H^1(\Omega) \\ &\rho_n > 0 \text{ a.e. in } \Omega, \ \int_{\Omega} \rho_n \, dx = M, \ p_n = \eta(\rho_n) \text{ a.e. in } \Omega \end{split}$$

 $H_0^1(\Omega)$ -estimate on u_n and $L^2(\Omega)$ -estimate on p_n thanks to $\int_{\Omega} \eta(\rho_n) \operatorname{div}(u_n) dx \leq 0$ and taking $\operatorname{div}(v_n) = p_n - m_n$ with $v_n \in H_0^1(\Omega)^N$ and using $\int_{\Omega} \rho_n dx = M$ and the superlinearity of η $L^2(\Omega)$ -estimate on ρ

$n \rightarrow +\infty$

$$u_n \to u \text{ in } L^2(\Omega)^N$$
 and weakly in $H_0^1(\Omega)^N$
 $\rho_n \to \rho$ weakly in $L^2(\Omega)$
 $p_n \to p$ weakly in $L^2(\Omega)$

But, we do not have an $H^1(\Omega)$ estimate on ρ_n

$$h_n = f(\cdot, \rho_n) \to h$$
 weakly in $L^2(\Omega)^N$
 $q_n = \varphi(\rho_n) \to q$ weakly in $L^2(\Omega)$

We need some additional tricks to prove $h = f(\cdot, \rho)$, $q = \varphi(\rho)$, $\rho = \eta(\rho)$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 めへで

Passage to the limit in the momentum equation

$$v \in C_c^{\infty}(\Omega)^N,$$

$$\int_{\Omega} \nabla u_n : \nabla v \, dx - \int_{\Omega} p_n \operatorname{div}(v) \, dx = \int_{\Omega} h_n \cdot v \, dx.$$

$$n \to \infty$$

$$\int_{\Omega} \nabla u : \nabla v \, dx - \int_{\Omega} p \operatorname{div}(v) \, dx = \int_{\Omega} h \cdot v \, dx.$$

 $h = f(\cdot, \rho)?$

Passage to the limit in the mass equation

$$v \in C_c^{\infty}(\mathbb{R}^N)$$
$$\int_{\Omega} q_n u_n \cdot \nabla v \, dx - \frac{1}{n} \int_{\Omega} \nabla \rho_n \cdot \nabla v \, dx = 0$$
$$n \to \infty$$
$$\int_{\Omega} q_n v \cdot \nabla v \, dx = 0$$

•

 $q \ge 0$ a.e. q = arphi(
ho)?

Passage to the limit in the nonlinear functions of ρ

$$h = f(\cdot, \rho)? \text{ (easy if } f(x, \rho) = f(x) + g(x)\rho)$$

$$q = \varphi(\rho)? \text{ (easy if } \varphi(\rho) = \rho)$$

$$p = \eta(\rho)$$

Idea: prove $\int_{\Omega} p_n q_n \to \int_{\Omega} pq$ and deduce a.e. convergence (of p_n
and ρ_n)

 $abla :
abla = \operatorname{divdiv} + \operatorname{curl} \cdot \operatorname{curl}$ For all $\overline{u}, \overline{v}$ in $H_0^1(\Omega)^N$,

$$\int_{\Omega} \nabla \bar{u} : \nabla \bar{v} = \int_{\Omega} \operatorname{div}(\bar{u}) \operatorname{div}(\bar{v}) + \int_{\Omega} \operatorname{curl}(\bar{u}) \cdot \operatorname{curl}(\bar{v})$$

Then, for all \bar{v} in $H_0^1(\Omega)^N$, the momentum equation is

$$\int_{\Omega} \operatorname{div}(u_n) \operatorname{div}(\bar{v}) + \int_{\Omega} \operatorname{curl}(u_n) \cdot \operatorname{curl}(\bar{v}) \\ - \int_{\Omega} p_n \operatorname{div}(\bar{v}) = \int_{\Omega} h_n \cdot \bar{v}$$

Choice of \bar{v} ? $\bar{v} = \bar{v}_n$ with $\operatorname{curl}(\bar{v}_n) = 0$, $\operatorname{div}(\bar{v}_n) = q_n$ and \bar{v}_n bounded in $H_0^1(\Omega)^N$ (unfortunately, 0 is impossible). Then, up to a subsequence, $\bar{v}_n \to v$ in $L^2(\Omega)^N$ and weakly in $H_0^1(\Omega)^N$, $\operatorname{curl}(v) = 0$, $\operatorname{div}(v) = q$.

Proof using $\bar{v}_n(1)$

$$\int_{\Omega} \operatorname{div}(u_n) \operatorname{div}(\bar{v}_n) + \int_{\Omega} \operatorname{curl}(u_n) \cdot \operatorname{curl}(\bar{v}_n) - \int_{\Omega} p_n \operatorname{div}(\bar{v}_n) \\ = \int_{\Omega} h_n \cdot \bar{v}_n$$

But, $\operatorname{div}(\bar{v}_n) = q_n$ and $\operatorname{curl}(\bar{v}_n) = 0$. Then:

J

$$\int_{\Omega} (\operatorname{div}(u_n) - p_n) q_n = \int_{\Omega} h_n \cdot \bar{v}_n$$

 $n \to \infty$

$$\lim_{n\to\infty}\int_{\Omega}(\operatorname{div}(u_n)-p_n)q_n=\int_{\Omega}h\cdot v$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Proof using
$$\overline{v}_n(2)$$

But, since $-\Delta u + \nabla p = h$
 $\int_{\Omega} \operatorname{div}(u) \operatorname{div}(v) + \int_{\Omega} \operatorname{curl}(u) \cdot \operatorname{curl}(v) - \int_{\Omega} p \operatorname{div}(v)$
 $= \int_{\Omega} h \cdot v$
which gives (using $\operatorname{div}(v) = q$ and $\operatorname{curl}(v) = 0$)
 $\int_{\Omega} (\operatorname{div}(u) - p)q = \int_{\Omega} h \cdot v$ Then
 $\lim_{n \to \infty} \int_{\Omega} (p_n - \operatorname{div}(u_n))q_n = \int_{\Omega} (p - \operatorname{div}(u))q$

thanks to the mass equations, $\int_{\Omega} q_n \operatorname{div}(u_n) \leq 0$ and $\int_{\Omega} q \operatorname{div}(u) = 0$. Then,

$$\limsup_{n\to\infty}\int_{\Omega}p_nq_n\leq\int_{\Omega}pq$$

Error in the preceding proof

In the preceding proof, we used \bar{v}_n such that $\operatorname{curl}(\bar{v}_n) = 0$, $\operatorname{div}(\bar{v}_n) = \rho_n$ and \bar{v}_n bounded in $H_0^1(\Omega)^N$.

Unfortunately, it is impossible to have $\bar{v}_n \in H^1_0(\Omega)^d$ but only $\bar{v}_n \in H^1(\Omega)^N$.

Curl-free test function

Let $w_n \in H^1_0(\Omega)$, $-\Delta w_n = q_n$, One has $w_n \in H^2_{loc}(\Omega)$ since, for $\psi \in C^{\infty}_c(\Omega)$, one has $\Delta(w_n\psi) \in L^2(\Omega)$ and

$$\begin{split} \sum_{i,j=1}^{d} \int_{\Omega} \partial_{i} \partial_{j}(w_{n}\psi) \,\partial_{i} \partial_{j}(w_{n}\psi) &= \sum_{i,j=1}^{d} \int_{\Omega} \partial_{i} \partial_{i}(w_{n}\psi) \,\partial_{j} \partial_{j}(w_{n}\psi) \\ &= \int_{\Omega} (\Delta(w_{n}\psi))^{2} = C_{\psi} < \infty \end{split}$$

Then, taking $v_n = \nabla w_n$

- $v_n \in (H^1_{loc}(\Omega))^N$,
- $\operatorname{div}(v_n) = q_n$ a.e. in Ω ,
- $\operatorname{curl}(v_n) = 0$ a.e. in Ω ,
- $H^1_{loc}(\Omega)$ -estimate on v_n with respect to $||q_n||_{L^2(\Omega)}$.

Then, up to a subsequence, as $n \to \infty$, $v_n \to v$ in $L^2_{loc}(\Omega)^N$ and weakly in $H^1_{loc}(\Omega)^N$, $\operatorname{curl}(v) = 0$, $\operatorname{div}(v) = q$.

Proof of $\int_{\Omega} (p_n - \operatorname{div}(u_n)) q_n \psi \to \int_{\Omega} (p - \operatorname{div}(u)) q \psi$

Let $\psi \in C_c^{\infty}(\Omega)$ (so that $v_n \psi \in H_0^1(\Omega)^N$)). Taking $\bar{v} = v_n \psi$:

$$\begin{split} \int_{\Omega} \operatorname{div}(u_n) \operatorname{div}(v_n \psi) &+ \int_{\Omega} \operatorname{curl}(u_n) \cdot \operatorname{curl}(v_n \psi) - \int_{\Omega} p_n \operatorname{div}(v_n \psi) \\ &= \int_{\Omega} h_n \cdot (v_n \psi). \end{split}$$

Using a proof similar to that given if $\psi = 1$ (with additionnal terms involving ψ), we obtain :

$$\lim_{n\to\infty}\int_{\Omega}(p_n-\operatorname{div}(u_n))q_n\psi=\int_{\Omega}(p-\operatorname{div}(u))q\psi$$

Proof of $\int_{\Omega} (p_n - \operatorname{div}(u_n)) q_n \to \int_{\Omega} (p - \operatorname{div}(u)) q$

 $F_n = (p_n - \operatorname{div}(u_n))q_n$, $F = (p - \operatorname{div}(u))q$ $F_n \to F$ in $D'(\Omega)$ The sequence F_n is equiintegrable (since $p_n - \operatorname{div}(u_n)$ is bounded in L^2 and q_n^2 is equiintegrable thanks to p_n bounded in L^2 and η superlinear) Then $F_n \to F$ weakly in $L^1(\Omega)$

Proving $\int_{\Omega} p_n q_n \rightarrow \int_{\Omega} p q$

$$\int_{\Omega} (p_n - \operatorname{div}(u_n)) q_n \to \int_{\Omega} (p - \operatorname{div}(u)) q$$

But thanks to the mass equations:

$$\int_{\Omega} \operatorname{div}(u_n) q_n \leq 0, \ \int_{\Omega} \operatorname{div}(u) q = 0;$$

Then:

$$\limsup_{n\to\infty}\int_{\Omega}p_nq_n\leq\int_{\Omega}pq$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

a.e. convergence of ρ_n and p_n . Leray-Lions trick

Simple case: $\varphi(\rho) = \rho$ and assuming $\eta(\rho) \in L^2(\Omega)$. Let $G_n = (\eta(\rho_n) - \eta(\rho))(\rho_n - \rho) \in L^1(\Omega)$ and $G_n \ge 0$ a.e. in Ω . Futhermore

 $G_n = (p_n - \eta(\rho))(\rho_n - \rho) = p_n\rho_n - p_n\rho - \eta(\rho)\rho_n + \eta(\rho)\rho$ and

$$\int_{\Omega} G_n = \int_{\Omega} p_n \rho_n - \int_{\Omega} p_n \rho - \int_{\Omega} \eta(\rho) \rho_n + \int_{\Omega} \eta(\rho) \rho$$

Using the weak convergence in $L^2(\Omega)$ of p_n and ρ_n and $\lim_{n\to\infty} \int_{\Omega} p_n \rho_n \leq \int_{\Omega} p\rho$

$$\lim_{n\to\infty}\int_{\Omega}G_n=0,$$

Then (up to a subsequence), $G_n \rightarrow 0$ a.e. and then $\rho_n \rightarrow \rho$ a.e. (since η is increasing function). Finally

$$p_n = \eta(\rho_n) \rightarrow \eta(\rho) \text{ in } L^q(\Omega) \text{ for all } 1 \le q < 2,$$

 $p_n \rightarrow p \text{ weakly in } L^2(\Omega)$
then $p = \eta(\rho)$, similarly $h = f(\cdot, \rho)$

a.e. convergence of ρ_n and p_n , general case

The function η is a one-to-one function from \mathbb{R}_+ onto \mathbb{R}_+ . We denote by $\bar{\eta}$ the reciprocal function of η . ($\bar{\eta}$ sublinear) Since $p \in L^2(\Omega)$, one has $\bar{\eta}(p) \in L^2(\Omega)$ and we set $\bar{\rho} = \bar{\eta}(p)$

$$G_n = (\varphi(\rho_n) - \varphi(\bar{\rho}))(\eta(\rho_n) - \eta(\bar{\rho}))$$

so that $G_n \in L^1(\Omega)$, $G_n \ge 0$ a.e.

$$0 \leq \int_{\Omega} G_n = \int_{\Omega} (q_n - \varphi(\bar{\rho}))(p_n - p)$$

Then

$$\lim_{n\to\infty}\int_{\Omega}G_n\,dx\leq\int_{\Omega}(q-\varphi(\bar{\rho}))(p-p)\,dx=0.$$

This gives $G_n \to 0$ in $L^1(\Omega)$ and then, up to a subsequence,

$$G_n = (\varphi(\rho_n) - \varphi(\bar{\rho}))(\eta(\rho_n) - \eta(\bar{\rho})) \to 0 \text{ a.e. in } \Omega$$

We now use the fact that φ and η are increasing, $\rho_n \to \bar{\rho}$ a.e. in Ω Then $\bar{\rho} = \rho$, $q = \varphi(\rho)$, $h = f(\cdot, \rho)$, $p = \eta(\rho)_{\alpha = \beta}, \beta = \beta = \beta_{\alpha} = \beta_{\alpha}$

η non decreasing instead of increasing

Simple case $f(., \rho) = \overline{f} + g\rho$, $\varphi(\rho) = \rho$ One proves $p = \eta(\rho)$ with the Minty trick (but no a.e. convergence) We set $\eta(s) = 0$ for s < 0 and $\overline{\eta}$ is the reciprocal function of $s \mapsto \eta(s) + s$ (which is a one-to-one function from \mathbb{R} onto \mathbb{R}) Let $\overline{p} \in L^2(\Omega)$ and $\overline{\rho} = \overline{\eta}(\overline{p})$ so that $\overline{\rho} \in L^2(\Omega)$

$$0 \leq \int_{\Omega} (\rho_n - \bar{\rho})(\eta(\rho_n) - \eta(\bar{\rho})) = \int_{\Omega} (\rho_n - \bar{\rho})(p_n - \bar{p} + \bar{\rho})$$
$$0 \leq \int_{\Omega} (\rho - \bar{\rho})(p - \bar{p} + \bar{\rho})$$

which gives also

$$0\leq \int_{\Omega}(
ho-ar
ho)(
ho-ar
ho+
ho)=\int_{\Omega}(
ho-ar\eta(ar
ho))(
ho-ar
ho+
ho)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

η non decreasing instead of increasing

For all $\bar{p} \in L^2(\Omega)$

$$0 \leq \int_{\Omega} (
ho - ar\eta(ar p))(
ho - ar p +
ho) \, dx$$

Let $\psi \in C_c^{\infty}(\Omega)$, $\epsilon > 0$. Taking $\bar{p} = p + \rho + \epsilon \psi$, letting $\epsilon \to 0$ leads to, with the Dominated Convergence Theorem,

$$0\leq -\int_{\Omega}(
ho-ar\eta(
ho+
ho)))\psi\,dx.$$

Since ψ is arbitrary in $C_c^{\infty}(\Omega)$, we then conclude that $\rho = \overline{\eta}(p + \rho)$ which gives $\eta(\rho) + \rho = p + \rho$ and then $p = \eta(\rho)$.

Generalizations

- (Easy) Complete Diffusion term: $-\mu\Delta u \frac{\mu}{3}\nabla(\operatorname{div} u)$, with $\mu \in \mathbb{R}^{\star}_{+}$ given, instead of $-\Delta u$.
- Stationary compressible Navier Stokes equation η(ρ) = ρ^γ, γ > 3 if N = 3.
- Navier-Stokes Equations with N = 3 and ³/₂ < γ ≤ 3. (probably sharp result with respect to γ without changing the diffusion term or the EOS)

Evolution equation (Stokes and Navier-Stokes)

Stationary compressible Navier Stokes equations

 Ω is a bounded open set of \mathbb{R}^N , N = 2 or 3, with a Lipschitz continuous boundary, $\gamma > 1$, $f \in L^2(\Omega)^N$ and M > 0

$$-\Delta u + (\rho u \cdot \nabla)u + \nabla p = f \text{ in } \Omega, \quad u = 0 \text{ on } \partial\Omega,$$
$$\operatorname{div}(\rho u) = 0 \text{ in } \Omega, \ \rho \ge 0 \text{ in } \Omega, \ \int_{\Omega} \rho(x) dx = M,$$
$$p = \rho^{\gamma} \text{ in } \Omega$$

Functional spaces : $u \in H_0^1(\Omega)^N$, $\rho \in L^{\overline{q}}(\Omega)$, $\rho \in L^{\gamma \overline{q}}(\Omega)$. If d = 2 or if d = 3 and $\gamma \ge 3$: $\overline{q} = 2$. If d = 3 and $\frac{3}{2} < \gamma < 3$: $\overline{q} = \frac{3(\gamma - 1)}{\gamma}$. $\gamma = \frac{3}{2}, \frac{3\gamma - 1}{\gamma} = 1, 3(\gamma - 1) = \frac{3}{2}$

What about uniqueness?

- No uniqueness result for the stationary case
- "weak-strong" uniqueness for the evolution case (Stokes and Navier-Stokes equations, p = ρ^γ, γ > 3/2 for N = 3). Recent result by E. Feireisl, B. J. Jin and A. Novotny (2012).
- Adaptation of the proof of the "weak-strong" uniqueness result leads to an error estimate between a strong solution and an approximate solution given by a convenient numerical scheme (T.G, R. Herbin, D. Maltese and A. Novotny).

weak-strong uniqueness, simple case

$$\partial_t \rho + \operatorname{div}(\rho u) = 0 \text{ in } \Omega \times]0, T[, \ \rho \ge 0 \text{ in } \Omega,$$

 $\partial_t u - \Delta u + \nabla p = f \text{ in } \Omega \times]0, T[, \ u = 0 \text{ on } \partial\Omega$
 $u(x, 0) = u_0, \rho(x, 0) = \rho_0,$
 $p = \rho^2 \text{ in } \Omega \times]0, T[.$

 ρ , u: weak solution $\overline{\rho}$, \overline{u} : regular solution Relative Energy :

$$E(t) = \frac{1}{2} \int_{\Omega} |u - \overline{u}|^2 dx + \int_{\Omega} |\rho - \overline{\rho}|^2 dx.$$

A similar idea was first introduced by C. Dafermos for hyperbolic systems (Relative Entropy)

weak-strong uniqueness, Gronwall Inequality

$$E(t)=rac{1}{2}\int_{\Omega}|u-ar{u}|^2dx+\int_{\Omega}|
ho-ar{
ho}|^2dx.$$

$$E(t)-E(0) \leq -\int_0^t \int_{\Omega} (\rho-\bar{\rho})^2 \mathrm{div}\,\bar{u}dxdt + 2\int_0^t \int_{\Omega} (\rho-\bar{\rho})(u-\bar{u})\cdot\nabla\bar{\rho}dxdt$$

Since $\operatorname{div}(\bar{u})$ and $\nabla \bar{\rho}$ are bounded and E(0) = 0, this gives

$$E(t) \leq C \int_0^t E(s) ds$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○ ○

Then E(t) = 0 for all t

Take u and \bar{u} as test functions in the two momentum equations Take ρ and $\bar{\rho}$ as test functions in the two mass equations We obtain

$$E(t)-E(0) \leq -\int_0^t \int_{\Omega} (\rho-\bar{\rho})^2 \mathrm{div}\,\bar{u}\,dxdt + 2\int_0^t \int_{\Omega} (\rho-\bar{\rho})(u-\bar{u})\cdot\nabla\bar{\rho}\,dxdt$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで