Stationary compressible Stokes equations (+ Navier-Stokes equations and nonsteady case)

T. Gallouët

joint works with
R. Eymard, A. Fettah, R. Herbin, J.-C. Latché, H. Lakehal

Pisa, July 2014

Stationary Compressible Stokes Equations

Ω is a connected bounded open set of $\mathbb{R}^{N}, N=2$ or 3 , with a Lipschitz continuous boundary,

$$
\begin{gathered}
\operatorname{div}(\varphi(\rho) u)=0 \text { in } \Omega, \rho \geq 0 \text { in } \Omega, \int_{\Omega} \rho(x) d x=M \\
-\Delta u+\nabla p=f(\cdot, \rho) \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \\
p=\eta(\rho) \text { in } \Omega
\end{gathered}
$$

$M>0$,
f is at most linear, $|f(x, \rho)| \leq B(h(x)+|\rho|), h \in L^{2}(\Omega)$
φ is Lipschitz continuous, increasing, $\varphi(0)=0$
η is continuous superlinear, $\lim \inf _{s \rightarrow+\infty} \eta(s) / s=+\infty$, increasing ($\eta(0)=0$)
Functional spaces : $u \in H_{0}^{1}(\Omega)^{N} p, \rho \in L^{2}(\Omega)$

Main example

$$
\begin{aligned}
& \varphi(\rho)=\rho \\
& f(x, \rho)=\bar{f}(x)+g(x) \rho, \bar{f} \in L^{2}(\Omega), g \in L^{\infty}(\Omega) \\
& \eta(\rho)=\rho^{\gamma}, \gamma>1 . \\
& \quad \operatorname{div}(\rho u)=0 \text { in } \Omega, \rho \geq 0 \text { in } \Omega, \int_{\Omega} \rho(x) d x=M, \\
& \quad-\Delta u+\nabla p=\bar{f}+g \rho \text { in } \Omega, u=0 \text { on } \partial \Omega, \\
& \quad p=\rho^{\gamma} \text { in } \Omega \quad \text { (Equation Of State) } \\
& M>0
\end{aligned}
$$

The main difficulty is the nonlinearity of the EOS (for passing to the limit with weak convergences)

Existence of a solution

Existence of a (weak) solution can be proved passing to the limit on two different approximate solution

1. Approximate solution obtained using a convenient numerical scheme
2. Approximate solution obtained using a viscous regularization of the mass equation

The second way is essentially in previous works of P. L. Lions, E. Feirsel, A. Novotny (1990. . .)

No uniqueness result.
(Incompressible NS Equations: J. Leray, 1934)

Existence of a solution

Existence of a (weak) solution can be proved passing to the limit on two different approximate solution

1. Approximate solution obtained using a convenient numerical scheme
2. Approximate solution obtained using a viscous regularization of the mass equation. Convergence of the approximate solution proven with a simple proof which can be adapted in order to do the first method (in particular with schemes used in an industrial framework)

Steps of the proof

1. Definition of the approximate problem and existence of an approximate solution
2. Estimates on the approximate solution
3. passing to the limit

The approximate problem

$$
T_{n}(s)=\min \{\max \{s,-n\}, n\}
$$

Then, the regularized problem reads, for $n, l, m \in \mathbb{N}^{*}$,

$$
\begin{aligned}
& u \in H_{0}^{1}(\Omega)^{N}, \rho \in H^{1}(\Omega), p \in L^{2}(\Omega) \\
& \int_{\Omega} \nabla u: \nabla v d x-\int_{\Omega} p \operatorname{div}(v) d x=\int_{\Omega} f_{l}(x, \rho) \cdot v d x, \forall v \in H_{0}^{1}(\Omega)^{N} \\
& \int_{\Omega} \varphi(\rho) u \cdot \nabla \psi d x-\frac{1}{n} \int_{\Omega} \nabla \rho(x) \cdot \nabla \psi(x) d x=0, \forall \psi \in H^{1}(\Omega) \\
& \rho>0 \text { a.e. in } \Omega, \int_{\Omega} \rho d x=M, p=\eta_{m}(\rho) \text { a.e. in } \Omega
\end{aligned}
$$

$$
\text { where } f_{l}(x, s)=T_{l}(f(x, s)) \text { and } \eta_{m}(s)=T_{m}(\eta(s))
$$

Existence of an approximate solution

Schauder fixed point for the application T from $L^{2}(\Omega)$ to $L^{2}(\Omega)$, $T(\rho)=\rho$.

$$
u \in H_{0}^{1}(\Omega)^{N}, \rho \in H^{1}(\Omega), p \in L^{2}(\Omega)
$$

$$
\int_{\Omega} \nabla u: \nabla v d x-\int_{\Omega} p \operatorname{div}(v) d x=\int_{\Omega} f_{l}(x, \rho) \cdot v d x, \forall v \in H_{0}^{1}(\Omega)^{N}
$$

$$
\int_{\Omega} \varphi(\rho) u \cdot \nabla \psi d x-\frac{1}{n} \int_{\Omega} \nabla \rho \cdot \nabla \psi d x=0, \forall \psi \in H^{1}(\Omega)
$$

$$
\rho>0 \text { a.e. in } \Omega, \int_{\Omega} \rho d x=M, p=\eta_{m}\left(\rho^{+}\right) \text {a.e. in } \Omega
$$

where $f_{l}(x, s)=T_{l}(f(x, s))$ and $\eta_{m}(s)=T_{m}(\eta(s))$

Intermediate problem

$u \in L^{p}(\Omega)^{N}, p>N\left(\right.$ true if $\left.u \in H_{0}^{1}(\Omega)^{N}\right) . M>0 . \varphi$ Lipschitz continuous and $\varphi(0)=0$.
There exist a unique ρ solution of

$$
\begin{aligned}
& \rho \in H^{1}(\Omega), \\
& \int_{\Omega} \nabla \rho \cdot \nabla v d x-\int_{\Omega} \varphi(\rho) u \cdot \nabla v d x=0, \forall v \in H^{1}(\Omega)
\end{aligned}
$$

with $\int_{\Omega} \rho(x) d x=M$
Furthermore:

1. $\rho>0$ a.e. on Ω
2. For any $A>0$, there exists C such that

$$
\|\mid u\|_{L^{p}(\Omega)} \leq A \Rightarrow\|\rho\|_{H^{1}(\Omega)} \leq C(A, p, M, \varphi, \Omega)
$$

Proof using the Leray-Schauder topological degree

Intermediate problem, main point

$u \in L^{p}(\Omega)^{N}, p>N . M>0 . \varphi$ Lipschitz continuous and $\varphi(0)=0$.

$$
\begin{aligned}
& \rho \in H^{1}(\Omega) \\
& \int_{\Omega} \nabla \rho \cdot \nabla v d x-\int_{\Omega} \varphi(\rho) u \cdot \nabla v d x=0, \forall v \in H^{1}(\Omega)
\end{aligned}
$$

with $\int_{\Omega} \rho(x) d x=M$
Proof of a priori positivity of ρ taking $v=T_{\varepsilon}\left(\rho^{+}\right)$and $\varepsilon \rightarrow 0$ and uniqueness taking $v=T_{\varepsilon}\left(\left(\rho_{1}-\rho_{2}\right)^{+}\right)$, as in an old paper of Boccardo-G-Murat

Intermediate problem, Leray-Schauder topological degree
$u \in L^{p}(\Omega)^{N}, p>N . M>0 . \varphi$ Lipschitz continuous and $\varphi(0)=0$.
F from $[0,1] \times L^{2}(\Omega)$ to $L^{2}(\Omega)$
$F(t, \rho)=\rho$

$$
\begin{aligned}
& \rho \in H^{1}(\Omega), \\
& \int_{\Omega} \nabla \rho \cdot \nabla v d x-\int_{\Omega} t \varphi(\rho) u \cdot \nabla v d x=0, \forall v \in H^{1}(\Omega)
\end{aligned}
$$

with $\int_{\Omega} \rho d x=t M$
$L^{2}(\Omega)$-estimate on ρ if $F(t, \rho)=\rho$

Passing to the limit

$$
\begin{aligned}
& n, l, m \in \mathbb{N}^{*}, \\
& u \in H_{0}^{1}(\Omega)^{N}, \rho \in H^{1}(\Omega), p \in L^{2}(\Omega), \\
& \int_{\Omega} \nabla u: \nabla v d x-\int_{\Omega} p \operatorname{div}(v) d x=\int_{\Omega} f_{l}(x, \rho) \cdot v d x, \forall v \in H_{0}^{1}(\Omega)^{N} \\
& \int_{\Omega} \varphi(\rho) u \cdot \nabla \psi d x-\frac{1}{n} \int_{\Omega} \nabla \rho(x) \cdot \nabla \psi(x) d x=0, \forall \psi \in H^{1}(\Omega) \\
& \rho>0 \text { a.e. in } \Omega, \int_{\Omega} \rho d x=M, p=\eta_{m}(\rho) \text { a.e. in } \Omega \\
& m \rightarrow+\infty \\
& I \rightarrow+\infty \\
& n \rightarrow+\infty
\end{aligned}
$$

$m \rightarrow+\infty$

$n, /$ are fixed
$u \in H_{0}^{1}(\Omega)^{N}, \rho \in H^{1}(\Omega), p \in L^{2}(\Omega)$,
$\int_{\Omega} \nabla u: \nabla v d x-\int_{\Omega} p \operatorname{div}(v) d x=\int_{\Omega} f_{l}(x, \rho) \cdot v d x, \forall v \in H_{0}^{1}(\Omega)^{N}$
$\int_{\Omega} \varphi(\rho) u \cdot \nabla \psi d x-\frac{1}{n} \int_{\Omega} \nabla \rho(x) \cdot \nabla \psi(x) d x=0, \forall \psi \in H^{1}(\Omega)$
$\rho>0$ a.e. in $\Omega, \int_{\Omega} \rho d x=M, p=\eta_{m}(\rho)$ a.e. in Ω
$H_{0}^{1}(\Omega)$-estimate on u thanks to $\int_{\Omega} \eta_{m}(\rho) \operatorname{div}(u) d x \leq 0$ $H^{1}(\Omega)$-estimate on ρ
$L^{2}(\Omega)$-estimate on p taking $\operatorname{div}(v)=p-m$ with $v \in H_{0}^{1}(\Omega)^{N}$ and using $\int_{\Omega} \rho d x=M$.

$$
I \rightarrow+\infty
$$

n is fixed

$$
\begin{aligned}
& u \in H_{0}^{1}(\Omega)^{N}, \rho \in H^{1}(\Omega), p \in L^{2}(\Omega) \\
& \int_{\Omega} \nabla u: \nabla v d x-\int_{\Omega} p \operatorname{div}(v) d x=\int_{\Omega} f_{l}(x, \rho) \cdot v d x, \forall v \in H_{0}^{1}(\Omega)^{N} \\
& \int_{\Omega} \varphi(\rho) u \cdot \nabla \psi d x-\frac{1}{n} \int_{\Omega} \nabla \rho(x) \cdot \nabla \psi(x) d x=0, \forall \psi \in H^{1}(\Omega) \\
& \rho>0 \text { a.e. in } \Omega, \int_{\Omega} \rho d x=M, p=\eta(\rho) \text { a.e. in } \Omega
\end{aligned}
$$

$H_{0}^{1}(\Omega)$-estimate on u and $L^{2}(\Omega)$-estimate on p thanks to $\int_{\Omega} \eta(\rho) \operatorname{div}(u) d x \leq 0$ and taking $\operatorname{div}(v)=p-m$ with $v \in H_{0}^{1}(\Omega)^{N}$ and using $\int_{\Omega} \rho d x=M$ and the superlinearity of η $H^{1}(\Omega)$-estimate on ρ

```
\[
n \rightarrow+\infty
\]
```

$$
\begin{aligned}
& u_{n} \in H_{0}^{1}(\Omega)^{N}, \rho_{n} \in H^{1}(\Omega), p_{n} \in L^{2}(\Omega), \\
& \int_{\Omega} \nabla u_{n}: \nabla v d x-\int_{\Omega} p_{n} \operatorname{div}(v) d x=\int_{\Omega} f\left(x, \rho_{n}\right) \cdot v d x, \forall v \in H_{0}^{1}(\Omega)^{N} \\
& \int_{\Omega} \varphi\left(\rho_{n}\right) u_{n} \cdot \nabla \psi d x-\frac{1}{n} \int_{\Omega} \nabla \rho_{n}(x) \cdot \nabla \psi(x) d x=0, \forall \psi \in H^{1}(\Omega) \\
& \rho_{n}>0 \text { a.e. in } \Omega, \int_{\Omega} \rho_{n} d x=M, p_{n}=\eta\left(\rho_{n}\right) \text { a.e. in } \Omega
\end{aligned}
$$

$H_{0}^{1}(\Omega)$-estimate on u_{n} and $L^{2}(\Omega)$-estimate on p_{n} thanks to $\int_{\Omega} \eta\left(\rho_{n}\right) \operatorname{div}\left(u_{n}\right) d x \leq 0$ and taking $\operatorname{div}\left(v_{n}\right)=p_{n}-m_{n}$ with $v_{n} \in H_{0}^{1}(\Omega)^{N}$ and using $\int_{\Omega} \rho_{n} d x=M$ and the superlinearity of η $L^{2}(\Omega)$-estimate on ρ

$$
\begin{aligned}
& u_{n} \rightarrow u \text { in } L^{2}(\Omega)^{N} \text { and weakly in } H_{0}^{1}(\Omega)^{N} \\
& \rho_{n} \rightarrow \rho \text { weakly in } L^{2}(\Omega) \\
& p_{n} \rightarrow p \text { weakly in } L^{2}(\Omega)
\end{aligned}
$$

But, we do not have an $H^{1}(\Omega)$ estimate on ρ_{n}

$$
\begin{aligned}
& h_{n}=f\left(\cdot, \rho_{n}\right) \rightarrow h \text { weakly in } L^{2}(\Omega)^{N} \\
& q_{n}=\varphi\left(\rho_{n}\right) \rightarrow q \text { weakly in } L^{2}(\Omega)
\end{aligned}
$$

We need some additional tricks to prove $h=f(\cdot, \rho), q=\varphi(\rho)$, $p=\eta(\rho)$

Passage to the limit in the momentum equation

$$
\begin{aligned}
& v \in C_{c}^{\infty}(\Omega)^{N}, \\
& \quad \int_{\Omega} \nabla u_{n}: \nabla v d x-\int_{\Omega} p_{n} \operatorname{div}(v) d x=\int_{\Omega} h_{n} \cdot v d x . \\
& \quad \int_{\Omega} \nabla u: \nabla v d x-\int_{\Omega} p \operatorname{div}(v) d x=\int_{\Omega} h \cdot v d x \\
& h=f(\cdot, \rho) ?
\end{aligned}
$$

Passage to the limit in the mass equation

$$
\begin{aligned}
& v \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right) \\
& \qquad \int_{\Omega} q_{n} u_{n} \cdot \nabla v d x-\frac{1}{n} \int_{\Omega} \nabla \rho_{n} \cdot \nabla v d x=0, \\
& \\
& \qquad \int_{\Omega} q u \cdot \nabla v d x=0 \\
& \begin{array}{l}
q \geq 0 \text { a.e. } \\
q=\varphi(\rho) ?
\end{array}
\end{aligned}
$$

Passage to the limit in the nonlinear functions of ρ

$$
\begin{aligned}
& h=f(\cdot, \rho) ?(\text { easy if } f(x, \rho)=\bar{f}(x)+g(x) \rho) \\
& q=\varphi(\rho) ?(\text { easy if } \varphi(\rho)=\rho) \\
& p=\eta(\rho)
\end{aligned}
$$

Idea: prove $\int_{\Omega} p_{n} q_{n} \rightarrow \int_{\Omega} p q$ and deduce a.e. convergence (of p_{n} and ρ_{n})

$\nabla: \nabla=\operatorname{divdiv}+\operatorname{curl} \cdot$ curl

For all \bar{u}, \bar{v} in $H_{0}^{1}(\Omega)^{N}$,

$$
\int_{\Omega} \nabla \bar{u}: \nabla \bar{v}=\int_{\Omega} \operatorname{div}(\bar{u}) \operatorname{div}(\bar{v})+\int_{\Omega} \operatorname{curl}(\bar{u}) \cdot \operatorname{curl}(\bar{v})
$$

Then, for all \bar{v} in $H_{0}^{1}(\Omega)^{N}$, the momentum equation is

$$
\begin{array}{r}
\int_{\Omega} \operatorname{div}\left(u_{n}\right) \operatorname{div}(\bar{v})+\int_{\Omega} \operatorname{curl}\left(u_{n}\right) \cdot \operatorname{curl}(\bar{v}) \\
-\int_{\Omega} p_{n} \operatorname{div}(\bar{v})=\int_{\Omega} h_{n} \cdot \bar{v}
\end{array}
$$

Choice of $\bar{v} ? \bar{v}=\bar{v}_{n}$ with $\operatorname{curl}\left(\bar{v}_{n}\right)=0, \operatorname{div}\left(\bar{v}_{n}\right)=q_{n}$ and \bar{v}_{n} bounded in $H_{0}^{1}(\Omega)^{N}$ (unfortunately, 0 is impossible).
Then, up to a subsequence,
$\bar{v}_{n} \rightarrow v$ in $L^{2}(\Omega)^{N}$ and weakly in $H_{0}^{1}(\Omega)^{N}$,
$\operatorname{curl}(v)=0, \operatorname{div}(v)=q$.

Proof using $\bar{v}_{n}(1)$

$$
\begin{array}{r}
\int_{\Omega} \operatorname{div}\left(u_{n}\right) \operatorname{div}\left(\bar{v}_{n}\right)+\int_{\Omega} \operatorname{curl}\left(u_{n}\right) \cdot \operatorname{curl}\left(\bar{v}_{n}\right)-\int_{\Omega} p_{n} \operatorname{div}\left(\bar{v}_{n}\right) \\
=\int_{\Omega} h_{n} \cdot \bar{v}_{n}
\end{array}
$$

But, $\operatorname{div}\left(\bar{v}_{n}\right)=q_{n}$ and $\operatorname{curl}\left(\bar{v}_{n}\right)=0$. Then:

$$
\int_{\Omega}\left(\operatorname{div}\left(u_{n}\right)-p_{n}\right) q_{n}=\int_{\Omega} h_{n} \cdot \bar{v}_{n}
$$

$n \rightarrow \infty$

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left(\operatorname{div}\left(u_{n}\right)-p_{n}\right) q_{n}=\int_{\Omega} h \cdot v
$$

Proof using \bar{v}_{n} (2)

But, since $-\Delta u+\nabla p=h$

$$
\begin{array}{r}
\int_{\Omega} \operatorname{div}(u) \operatorname{div}(v)+\int_{\Omega} \operatorname{curl}(u) \cdot \operatorname{curl}(v)-\int_{\Omega} p \operatorname{div}(v) \\
=\int_{\Omega} h \cdot v
\end{array}
$$

which gives (using $\operatorname{div}(v)=q$ and $\operatorname{curl}(v)=0$)

$$
\begin{aligned}
& \int_{\Omega}(\operatorname{div}(u)-p) q=\int_{\Omega} h \cdot v \text { Then } \\
& \qquad \lim _{n \rightarrow \infty} \int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) q_{n}=\int_{\Omega}(p-\operatorname{div}(u)) q
\end{aligned}
$$

thanks to the mass equations, $\int_{\Omega} q_{n} \operatorname{div}\left(u_{n}\right) \leq 0$ and $\int_{\Omega} \operatorname{qdiv}(u)=0$. Then,

$$
\limsup _{n \rightarrow \infty} \int_{\Omega} p_{n} q_{n} \leq \int_{\Omega} p q
$$

Error in the preceding proof

In the preceding proof, we used \bar{v}_{n} such that $\operatorname{curl}\left(\bar{v}_{n}\right)=0$, $\operatorname{div}\left(\bar{v}_{n}\right)=\rho_{n}$ and \bar{v}_{n} bounded in $H_{0}^{1}(\Omega)^{N}$.

Unfortunately, it is impossible to have $\bar{v}_{n} \in H_{0}^{1}(\Omega)^{d}$ but only $\bar{v}_{n} \in H^{1}(\Omega)^{N}$.

Curl-free test function

Let $w_{n} \in H_{0}^{1}(\Omega),-\Delta w_{n}=q_{n}$,
One has $w_{n} \in H_{l o c}^{2}(\Omega)$ since, for $\psi \in C_{c}^{\infty}(\Omega)$, one has
$\Delta\left(w_{n} \psi\right) \in L^{2}(\Omega)$ and

$$
\begin{gathered}
\sum_{i, j=1}^{d} \int_{\Omega} \partial_{i} \partial_{j}\left(w_{n} \psi\right) \partial_{i} \partial_{j}\left(w_{n} \psi\right)=\sum_{i, j=1}^{d} \int_{\Omega} \partial_{i} \partial_{i}\left(w_{n} \psi\right) \partial_{j} \partial_{j}\left(w_{n} \psi\right) \\
=\int_{\Omega}\left(\Delta\left(w_{n} \psi\right)\right)^{2}=C_{\psi}<\infty
\end{gathered}
$$

Then, taking $v_{n}=\nabla w_{n}$

- $v_{n} \in\left(H_{l o c}^{1}(\Omega)\right)^{N}$,
- $\operatorname{div}\left(v_{n}\right)=q_{n}$ a.e. in Ω,
- $\operatorname{curl}\left(v_{n}\right)=0$ a.e. in Ω,
- $H_{l o c}^{1}(\Omega)$-estimate on v_{n} with respect to $\left\|q_{n}\right\|_{L^{2}(\Omega)}$.

Then, up to a subsequence, as $n \rightarrow \infty, v_{n} \rightarrow v$ in $L_{\text {loc }}^{2}(\Omega)^{N}$ and weakly in $H_{l o c}^{1}(\Omega)^{N}, \operatorname{curl}(v)=0, \operatorname{div}(v)=q$.

Proof of $\int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) q_{n} \psi \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) q \psi$

Let $\psi \in C_{c}^{\infty}(\Omega)$ (so that $\left.v_{n} \psi \in H_{0}^{1}(\Omega)^{N}\right)$). Taking $\bar{v}=v_{n} \psi$:

$$
\begin{aligned}
\int_{\Omega} \operatorname{div}\left(u_{n}\right) \operatorname{div}\left(v_{n} \psi\right)+\int_{\Omega} \operatorname{curl}\left(u_{n}\right) \cdot \operatorname{curl}\left(v_{n} \psi\right) & -\int_{\Omega} p_{n} \operatorname{div}\left(v_{n} \psi\right) \\
& =\int_{\Omega} h_{n} \cdot\left(v_{n} \psi\right) .
\end{aligned}
$$

Using a proof similar to that given if $\psi=1$ (with additionnal terms involving ψ), we obtain :

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) q_{n} \psi=\int_{\Omega}(p-\operatorname{div}(u)) q \psi
$$

Proof of $\int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) q_{n} \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) q$

$F_{n}=\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) q_{n}, F=(p-\operatorname{div}(u)) q$
$F_{n} \rightarrow F$ in $D^{\prime}(\Omega)$
The sequence F_{n} is equiintegrable (since $p_{n}-\operatorname{div}\left(u_{n}\right)$ is bounded in L^{2} and q_{n}^{2} is equiintegrable thanks to p_{n} bounded in L^{2} and η superlinear)
Then $F_{n} \rightarrow F$ weakly in $L^{1}(\Omega)$

Proving $\int_{\Omega} p_{n} q_{n} \rightarrow \int_{\Omega} p q$

$$
\int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) q_{n} \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) q
$$

But thanks to the mass equations:

$$
\int_{\Omega} \operatorname{div}\left(u_{n}\right) q_{n} \leq 0, \int_{\Omega} \operatorname{div}(u) q=0 ;
$$

Then:

$$
\limsup _{n \rightarrow \infty} \int_{\Omega} p_{n} q_{n} \leq \int_{\Omega} p q
$$

a.e. convergence of ρ_{n} and p_{n}. Leray-Lions trick

Simple case: $\varphi(\rho)=\rho$ and assuming $\eta(\rho) \in L^{2}(\Omega)$.
Let $G_{n}=\left(\eta\left(\rho_{n}\right)-\eta(\rho)\right)\left(\rho_{n}-\rho\right) \in L^{1}(\Omega)$ and $G_{n} \geq 0$ a.e. in Ω.
Futhermore
$G_{n}=\left(p_{n}-\eta(\rho)\right)\left(\rho_{n}-\rho\right)=p_{n} \rho_{n}-p_{n} \rho-\eta(\rho) \rho_{n}+\eta(\rho) \rho$ and

$$
\int_{\Omega} G_{n}=\int_{\Omega} p_{n} \rho_{n}-\int_{\Omega} p_{n} \rho-\int_{\Omega} \eta(\rho) \rho_{n}+\int_{\Omega} \eta(\rho) \rho
$$

Using the weak convergence in $L^{2}(\Omega)$ of p_{n} and ρ_{n} and $\lim _{n \rightarrow \infty} \int_{\Omega} p_{n} \rho_{n} \leq \int_{\Omega} p \rho$

$$
\lim _{n \rightarrow \infty} \int_{\Omega} G_{n}=0
$$

Then (up to a subsequence), $G_{n} \rightarrow 0$ a.e. and then $\rho_{n} \rightarrow \rho$ a.e. (since η is increasing function). Finally
$p_{n}=\eta\left(\rho_{n}\right) \rightarrow \eta(\rho)$ in $L^{q}(\Omega)$ for all $1 \leq q<2$,
$p_{n} \rightarrow p$ weakly in $L^{2}(\Omega)$
then $p=\eta(\rho)$, similarly $h=f(\cdot, \rho)$
a.e. convergence of ρ_{n} and p_{n}, general case

The function η is a one-to-one function from \mathbb{R}_{+}onto \mathbb{R}_{+}. We denote by $\bar{\eta}$ the reciprocal function of η. ($\bar{\eta}$ sublinear)
Since $p \in L^{2}(\Omega)$, one has $\bar{\eta}(p) \in L^{2}(\Omega)$ and we set $\bar{\rho}=\bar{\eta}(p)$

$$
G_{n}=\left(\varphi\left(\rho_{n}\right)-\varphi(\bar{\rho})\right)\left(\eta\left(\rho_{n}\right)-\eta(\bar{\rho})\right)
$$

so that $G_{n} \in L^{1}(\Omega), G_{n} \geq 0$ a.e.

$$
0 \leq \int_{\Omega} G_{n}=\int_{\Omega}\left(q_{n}-\varphi(\bar{\rho})\right)\left(p_{n}-p\right)
$$

Then

$$
\lim _{n \rightarrow \infty} \int_{\Omega} G_{n} d x \leq \int_{\Omega}(q-\varphi(\bar{\rho}))(p-p) d x=0 .
$$

This gives $G_{n} \rightarrow 0$ in $L^{1}(\Omega)$ and then, up to a subsequence,

$$
G_{n}=\left(\varphi\left(\rho_{n}\right)-\varphi(\bar{\rho})\right)\left(\eta\left(\rho_{n}\right)-\eta(\bar{\rho})\right) \rightarrow 0 \text { a.e. in } \Omega
$$

We now use the fact that φ and η are increasing, $\rho_{n} \rightarrow \bar{\rho}$ a.e. in Ω Then $\bar{\rho}=\rho, q=\varphi(\rho), h=f(\cdot, \rho), p=\eta(\rho)$

η non decreasing instead of increasing

Simple case $f(., \rho)=\bar{f}+g \rho, \varphi(\rho)=\rho$
One proves $p=\eta(\rho)$ with the Minty trick (but no a.e. convergence)
We set $\eta(s)=0$ for $s<0$ and $\bar{\eta}$ is the reciprocal function of $s \mapsto \eta(s)+s$ (which is a one-to-one function from \mathbb{R} onto \mathbb{R}) Let $\bar{p} \in L^{2}(\Omega)$ and $\bar{\rho}=\bar{\eta}(\bar{p})$ so that $\bar{\rho} \in L^{2}(\Omega)$

$$
\begin{gathered}
0 \leq \int_{\Omega}\left(\rho_{n}-\bar{\rho}\right)\left(\eta\left(\rho_{n}\right)-\eta(\bar{\rho})\right)=\int_{\Omega}\left(\rho_{n}-\bar{\rho}\right)\left(p_{n}-\bar{p}+\bar{\rho}\right) \\
0 \leq \int_{\Omega}(\rho-\bar{\rho})(p-\bar{p}+\bar{\rho})
\end{gathered}
$$

which gives also

$$
0 \leq \int_{\Omega}(\rho-\bar{\rho})(p-\bar{p}+\rho)=\int_{\Omega}(\rho-\bar{\eta}(\bar{p}))(p-\bar{p}+\rho)
$$

η non decreasing instead of increasing

For all $\bar{p} \in L^{2}(\Omega)$

$$
0 \leq \int_{\Omega}(\rho-\bar{\eta}(\bar{p}))(p-\bar{p}+\rho) d x
$$

Let $\psi \in C_{c}^{\infty}(\Omega), \epsilon>0$. Taking $\bar{p}=p+\rho+\epsilon \psi$, letting $\epsilon \rightarrow 0$ leads to, with the Dominated Convergence Theorem,

$$
\left.0 \leq-\int_{\Omega}(\rho-\bar{\eta}(p+\rho))\right) \psi d x .
$$

Since ψ is arbitrary in $C_{c}^{\infty}(\Omega)$, we then conclude that $\rho=\bar{\eta}(p+\rho)$ which gives $\eta(\rho)+\rho=p+\rho$ and then $p=\eta(\rho)$.

Generalizations

- (Easy) Complete Diffusion term: $-\mu \Delta u-\frac{\mu}{3} \nabla(\operatorname{div} u)$, with $\mu \in \mathbb{R}_{+}^{\star}$ given, instead of $-\Delta u$.
- Stationary compressible Navier Stokes equation $\eta(\rho)=\rho^{\gamma}$, $\gamma>3$ if $N=3$.
- Navier-Stokes Equations with $N=3$ and $\frac{3}{2}<\gamma \leq 3$. (probably sharp result with respect to γ without changing the diffusion term or the EOS)
- Evolution equation (Stokes and Navier-Stokes)

Stationary compressible Navier Stokes equations

Ω is a bounded open set of $\mathbb{R}^{N}, N=2$ or 3 , with a Lipschitz continuous boundary, $\gamma>1, f \in L^{2}(\Omega)^{N}$ and $M>0$

$$
\begin{gathered}
-\Delta u+(\rho u \cdot \nabla) u+\nabla p=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \\
\operatorname{div}(\rho u)=0 \text { in } \Omega, \rho \geq 0 \text { in } \Omega, \int_{\Omega} \rho(x) d x=M \\
p=\rho^{\gamma} \text { in } \Omega
\end{gathered}
$$

Functional spaces : $u \in H_{0}^{1}(\Omega)^{N}, p \in L^{\bar{q}}(\Omega), \rho \in L^{\gamma \bar{q}}(\Omega)$.
If $d=2$ or if $d=3$ and $\gamma \geq 3: \bar{q}=2$.
If $d=3$ and $\frac{3}{2}<\gamma<3: \bar{q}=\frac{3(\gamma-1)}{\gamma}$.
$\gamma=\frac{3}{2}, \frac{3 \gamma-1}{\gamma}=1,3(\gamma-1)=\frac{3}{2}$

What about uniqueness?

- No uniqueness result for the stationary case
- "weak-strong" uniqueness for the evolution case (Stokes and Navier-Stokes equations, $p=\rho^{\gamma}, \gamma>3 / 2$ for $\left.N=3\right)$. Recent result by E. Feireisl, B. J. Jin and A. Novotny (2012).
- Adaptation of the proof of the "weak-strong" uniqueness result leads to an error estimate between a strong solution and an approximate solution given by a convenient numerical scheme (T.G, R. Herbin, D. Maltese and A. Novotny).

weak-strong uniqueness, simple case

$$
\begin{gathered}
\left.\partial_{t} \rho+\operatorname{div}(\rho u)=0 \text { in } \Omega \times\right] 0, T[, \rho \geq 0 \text { in } \Omega, \\
\left.\partial_{t} u-\Delta u+\nabla p=f \text { in } \Omega \times\right] 0, T[, u=0 \text { on } \partial \Omega, \\
u(x, 0)=u_{0}, \rho(x, 0)=\rho_{0} \\
\left.p=\rho^{2} \text { in } \Omega \times\right] 0, T[
\end{gathered}
$$

ρ, u : weak solution
$\bar{\rho}, \bar{u}$: regular solution
Relative Energy :

$$
E(t)=\frac{1}{2} \int_{\Omega}|u-\bar{u}|^{2} d x+\int_{\Omega}|\rho-\bar{\rho}|^{2} d x
$$

A similar idea was first introduced by C. Dafermos for hyperbolic systems (Relative Entropy)

weak-strong uniqueness, Gronwall Inequality

$$
\begin{gathered}
E(t)=\frac{1}{2} \int_{\Omega}|u-\bar{u}|^{2} d x+\int_{\Omega}|\rho-\bar{\rho}|^{2} d x \\
E(t)-E(0) \leq-\int_{0}^{t} \int_{\Omega}(\rho-\bar{\rho})^{2} \operatorname{div} \bar{u} d x d t+2 \int_{0}^{t} \int_{\Omega}(\rho-\bar{\rho})(u-\bar{u}) \cdot \nabla \bar{\rho} d x d t
\end{gathered}
$$

Since $\operatorname{div}(\bar{u})$ and $\nabla \bar{\rho}$ are bounded and $E(0)=0$, this gives

$$
E(t) \leq C \int_{0}^{t} E(s) d s
$$

Then $E(t)=0$ for all t

Proof of the energy inequality

Take u and \bar{u} as test functions in the two momemtum equations Take ρ and $\bar{\rho}$ as test functions in the two mass equations We obtain

$$
E(t)-E(0) \leq-\int_{0}^{t} \int_{\Omega}(\rho-\bar{\rho})^{2} \operatorname{div} \bar{u} d x d t+2 \int_{0}^{t} \int_{\Omega}(\rho-\bar{\rho})(u-\bar{u}) \cdot \nabla \bar{\rho} d x d t
$$

