Hyperbolic equations and systems with discontinuous coefficients or source terms

T. Gallouët ${ }^{1}$

${ }^{1}$ University of Marseille

Equadiff 11, 2005

Notations

Notations:
$(\cdot)_{t}=\frac{\partial(\cdot)}{\partial t}$,
$(\cdot)_{x}=\frac{\partial(\cdot)}{\partial x}$,
$t \in \mathbb{R}_{+}$.
$x \in \mathbb{R}$, but extensions to $x \in \mathbb{R}^{d}, d=2$ or 3 are possible.

Two phase flow in an heterogeneous porous medium: unknown: $u: \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}$:

$$
u_{t}(x, t)+(k g(u))_{x}=0
$$

$k(x)=k_{l}$, for $x<0$,
$k(x)=k_{r}$, for $x>0$,
$k_{l}, k_{r}>0, k_{l} \neq k_{r}$,
$g:[0,1] \rightarrow \mathbb{R}$, Lipschitz continuous and such that
$g(0)=g(1)=0$. Example: $g(u)=u(1-u)$
This hyperbolic equation with a discontinuous coefficient can be viewed has a conservative 2×2 hyperbolic system, adding k has an unknown and the equation $k_{t}=0$.

$$
\begin{gathered}
u_{t}(x, t)+(k g(u))_{x}=0, \\
k_{t}=0 . \\
W=\left[\begin{array}{l}
u \\
k
\end{array}\right] \text { and } F(W)=\left[\begin{array}{l}
k g(u) \\
0
\end{array}\right], \\
W_{t}+(F(W))_{x}=0,
\end{gathered}
$$

or equivalently (for regular solutions), with $A(W)=D F(W)$:

$$
W_{t}+A(W) W_{x}=0
$$

Saint Venant Equations with topography (nonflat bottom) unknowns: $h, u: \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}$ (with $h>0$):

$$
\begin{aligned}
& h_{t}+(h u)_{x}=0 \\
& (h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x}=-g h z_{x}
\end{aligned}
$$

g is a given constant and z is a given function of x. This 2×2 conservative hyperbolic system with a source term can be viewed has a nonconservative 3×3 hyperbolic system, adding z has an unknown and the equation $z_{t}=0$.

$$
\begin{aligned}
& \begin{array}{l}
h_{t}+(h u)_{x}=0, \\
\\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x}+g h z_{x}=0, \\
z_{t}=0 .
\end{array} \\
& W=\left[\begin{array}{l}
u \\
h u \\
z
\end{array}\right], F(W)=\left[\begin{array}{l}
h u \\
\frac{h u)^{2}}{h}+\frac{1}{2} g h^{2} \\
0
\end{array}\right] \text { and } \\
& B(W)=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & g h \\
0 & 0 & 0
\end{array}\right], \\
& W_{t}+(F(W))_{x}+B(W) W_{x}=0,
\end{aligned}
$$

or equivalently (for regular solutions):
$W_{t}+A(W) W_{x}=0$,
$($ with $A(W)=D F(W)+B(W))$.

Common feature : Resonance

Unknown: $W: \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{p}, p>1$
Equation: $W_{t}+A(W) W_{x}=0$
For all admissible $W \in \mathbb{R}^{p}$, the $p \times p$ matrix $A(W)$ has only real eigenvalues, but $A(W)$ is, for some W, not diagonizable.
$A(W)$ strictly hyperbolic: p real distincts eigenvalues and then diagonizable (in \mathbb{R}).
$A(W)$ genuine-hyperbolic: real eigenvalues and diagonalizable. $A(W)$ resonnant-hyperbolic: real eigenvalues and not diagonalizable.

First example:
$p=2, W=\left[\begin{array}{l}u \\ k\end{array}\right], A(W)=\left[\begin{array}{cc}k g^{\prime}(u) & g(u) \\ 0 & 0\end{array}\right]$ which is not diagonalizable if $g^{\prime}(u)=0$ and $g(u) \neq 0$ (if $g(u)=u(1-u)$, this is the case for $u=\frac{1}{2}$).

Common feature : Resonance

Second example:
$p=3, W=\left[\begin{array}{c}u \\ h u \\ z\end{array}\right], A(W)=\left[\begin{array}{ccc}0 & 1 & 0 \\ -u^{2}+g h & 2 u & g h \\ 0 & 0 & 0\end{array}\right]$.
Eigenvalues of $A(W)$ are $u \pm c$ and 0 , with $c=\sqrt{g h}$.
$A(W)$ is not diagonalizable if $u-c=0$ or $u+c=0$ (and $h>0$).

Linear resonant problem, ill posed

The Cauchy problem for a linear resonant problem is ill-posed in L^{∞} (or in $L^{1}, L^{2} \ldots$, but well posed in C^{∞}).
Riemann problem for a typical example:

$$
\begin{gathered}
{\left[\begin{array}{l}
u \\
v
\end{array}\right]_{t}+\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]_{x}=0,} \\
{\left[\begin{array}{l}
u(x, 0) \\
v(x, 0)
\end{array}\right]=\left[\begin{array}{l}
u_{l} \\
v_{l}
\end{array}\right], \text { if } x<0, \text { and }\left[\begin{array}{l}
u_{r} \\
v_{r}
\end{array}\right], \text { if } x>0,}
\end{gathered}
$$

The solution is , for all $t>0, v(\cdot, t)=v(\cdot, 0)$ and

$$
u(\cdot, t)=u_{l} 1_{\mathbb{R}_{-}}+u_{r} 1_{\mathbb{R}_{+}}+t\left(v_{l}-v_{r}\right) \delta_{0}
$$

Nonlinear resonant problem, sometimes ill posed

Academic simple example:

$$
\begin{gathered}
u_{t}+(a u)_{x}=0 \\
a_{t}=0 \\
{\left[\begin{array}{c}
u(x, 0) \\
a(x, 0)
\end{array}\right]=\left[\begin{array}{l}
u_{l} \\
a_{l}
\end{array}\right], \text { if } x<0, \text { and }\left[\begin{array}{c}
u_{r} \\
a_{r}
\end{array}\right], \text { if } x>0,}
\end{gathered}
$$

has no weak solution in L^{∞} if $a_{l}>0, a_{r}<0$ and $a_{l} u_{l} \neq a_{r} u_{r}$ (and has infinetely many solution if $a_{l}<0$ and $a_{r}>0$).

Nonlinear resonant problem, sometimes ill posed

$$
\begin{aligned}
& u_{t}+(a u)_{x}=0 \\
& a_{t}=0
\end{aligned}
$$

is equivalent (for regular solution) to $W_{t}+A(W) W_{x}=0$, with
$W=\left[\begin{array}{l}u \\ a\end{array}\right]$ and $A(W)=\left[\begin{array}{ll}a & u \\ 0 & 0\end{array}\right]$. Resonance occurs when $a=0$ and $u \neq 0$.

The Riemann problem for the nonlinear system is ill posed in L^{∞} provided that 0 is between a_{r} and a_{l} (except if $u_{r}=u_{l}=0$).

This nonlinear case is "worse" than the linear case.

Nonlinear resonant problem, sometimes well posed

First example

$$
\begin{aligned}
& u_{t}+(k g(u))_{x}=0 \\
& k_{t}=0
\end{aligned}
$$

$g:[0,1] \rightarrow \mathbb{R}$, Lipschitz continuous and such that $g(0)=g(1)=0$. The Cauchy problem is well posed in the following sense:
$k(x)=k_{l}$ if $x<0, k(x)=k_{r}$ if $x>0, u(\cdot, 0)=u_{0} \in L^{\infty}$,
$0 \leq u_{0} \leq 1$. Then, the Cauchy problem has a unique entropy
weak solution.
Karlsen-Risebro-Towers
Seguin-Vovelle, Bachmann-Vovelle
Bachmann: $k(x) g(u) \rightsquigarrow g(x, u), g(x, 0)=g(x, 1)=0$.

Nonlinear resonant problem, sometimes well posed

Second example

Saint Venant Equations with topography. The Riemann problem:

$$
\begin{aligned}
& h_{t}+(h u)_{x}=0 \\
& (h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x}+g h z_{x}=0 \\
& z_{t}=0
\end{aligned}
$$

$$
\left[\begin{array}{l}
h \\
h u \\
z
\end{array}\right](x, 0)=\left[\begin{array}{l}
h_{l} \\
(h u)_{l} \\
z_{l}
\end{array}\right], \text { if } x<0, \text { and }\left[\begin{array}{l}
h_{r} \\
(h u)_{r} \\
z_{r}
\end{array}\right], \text { if } x>0
$$

has one (sometimes three...) solution (composed of constant states and waves), satisfying a classical entropy condition, assuming continuity of (the Riemann invariants) $h u$ and ψ at the contact discontinuity (at $x=0$) with $\psi=\frac{1}{2} u^{2}+g(h+z)$. Chinnayya-LeRoux-Seguin, Goatin-LeFloch

Nonlinear resonant problem, sometimes well posed

Third example

Isentropic Euler Equations with an EOS taking into account a simple model of "phase transition", that is:

$$
\begin{aligned}
& p=a_{1} \rho, \text { if } 0<\rho<\rho_{1} \\
& p=a_{1} \rho_{1}, \text { if } \rho_{1} \leq \rho \leq \rho_{2}, \\
& p=a_{2} \rho, \text { if } \rho_{2}<\rho,
\end{aligned}
$$

with $\rho_{1}, \rho_{2}, a_{1}, a_{2}$ given constants, $0<\rho_{1}<\rho_{2}, 0<a_{1}<a_{2}$.

$$
\begin{aligned}
& \rho_{t}+(\rho u)_{x}=0 \\
& (\rho u)_{t}+\left(\rho u^{2}+p\right)_{x}=0
\end{aligned}
$$

For $\rho_{1} \leq \rho \leq \rho_{2}$ and any u, the system is resonant (with u as eigenvalue, and the 2 genuinely nonlinear fields lead to a linear degenerate field). But the Riemann problem is well posed. Recent result of Seguin.

Discretization by Finite Volume Shemes

$$
\begin{gathered}
W_{t}+(F(W))_{x}+B(W) W_{x}=0, \\
W(\cdot, 0)=W_{0} .
\end{gathered}
$$

Time step: $k, t_{n}=n k$
Space step: $h, x_{i+\frac{1}{2}}=\left(i+\frac{1}{2}\right) h$
Approximate solution for $x \in\left(x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right)$ and $t=t_{n}: W_{i}^{n}$

$$
W_{i}^{0}=\frac{1}{h} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} W_{0}(x) d x, i \in \mathbb{Z} .
$$

Riemann problem

$$
\begin{gathered}
W_{t}+(F(W))_{x}+B(W) W_{x}=0, \\
W(x, 0)=\left\{\begin{array}{l}
W_{1} \text { if } x<0, \\
W_{r} \text { if } x>0
\end{array}\right.
\end{gathered}
$$

Let W be the (or a) self similar solution, that is:

$$
W(x, t)=R\left(\frac{x}{t}, W_{l}, W_{r}\right)
$$

and set

$$
W^{\star, \pm}\left(W_{l}, W_{r}\right)=R\left(0^{ \pm}, W_{l}, W_{r}\right) .
$$

Godunov scheme for nonconservative system

For $i \in \mathbb{Z}, n \geq 0$:

$$
\frac{W_{i}^{n+1}-W_{i}^{n}}{k}+F_{i+\frac{1}{2}}^{n,-}-F_{i-\frac{1}{2}}^{n,+}+B\left(W_{i}^{n}\right)\left(W_{i+\frac{1}{2}}^{n,-}-W_{i-\frac{1}{2}}^{n,+}\right)=0,
$$

with $F_{i+\frac{1}{2}}^{n, \pm}=F\left(W_{i+\frac{1}{2}}^{n, \pm}\right)$,
$W_{i+\frac{1}{2}}^{n, \pm}=W^{*, \pm}\left(W_{i}^{n}, W_{i+1}^{n}\right)$.
CFL condition: $k \leq C h$.

Godunov scheme, particular cases

$$
\frac{W_{i}^{n+1}-W_{i}^{n}}{k}+F_{i+\frac{1}{2}}^{n,-}-F_{i-\frac{1}{2}}^{n,+}+B\left(W_{i}^{n}\right)\left(W_{i+\frac{1}{2}}^{n,-}-W_{i-\frac{1}{2}}^{n,+}\right)=0,
$$

(1) conservative case: $F_{i+\frac{1}{2}}^{n,+}=F_{i+\frac{1}{2}}^{n,-}$, even if $W_{i+\frac{1}{2}}^{n,+} \neq W_{i+\frac{1}{2}}^{n,}$ (thanks to Rankine-Hugoniot condition on the Riemann problem).
(2) In the case of Saint Venant equations with topography, one has $z_{i+\frac{1}{2}}^{n,-}=z_{i-\frac{1}{2}}^{n,+}=z_{i}^{n}$ and then $B\left(W_{i}^{n}\right)\left(W_{i+\frac{1}{2}}^{n,-}-W_{i-\frac{1}{2}}^{n,+}\right)=0$.
The non conservativity of the equation (that is the source term) appears only in the fact that, generally, $F_{i+\frac{1}{2}}^{n,+} \neq F_{i+\frac{1}{2}}^{n,-}$.

Linearized system

- Initial system: $W_{t}+A(W) W_{x}=0$,
$A(W)=D F(W)+B(W)$.
- Linearized system: $W_{t}+A(\bar{W}) W_{x}=0$, with some fixed $\bar{W} \in \mathbb{R}^{p}$.
- Initial system with a change of unknown: $Y=\phi(W) . \phi$ is not necessarily invertible, but one assumes that there exists C, G, D, such that $A(W)=C(Y), F(W)=G(Y)$, $B(W) W_{x}=D(W) Y_{x}$. Then $W_{t}+A(W) W_{x}$ leads to

$$
Y_{t}+C(W) Y_{x}=0
$$

- Linearized system with a change of unknown: $Y=\phi(W)$,

$$
Y_{t}+C(\bar{W}) Y_{x}=0
$$

with some fixed $\bar{W} \in \mathbb{R}^{p}$.

linearized Riemann problem

$$
Y_{t}+C(\bar{W}) Y_{x}=0,
$$

$$
Y(x, 0)=\left\{\begin{array}{l}
Y_{1}=\phi\left(W_{I}\right) \text { if } x<0, \\
Y_{r}=\phi\left(W_{r}\right) \text { if } x>0 .
\end{array}\right.
$$

For instance, $\bar{W}=\frac{W_{r}+W_{I}}{2}$ or another mean value between W_{l} and W_{r}.
Let Y be the self similar solution of this problem (when it exists...), that is:

$$
Y(x, t)=L R\left(\frac{x}{t}, Y_{l}, Y_{r}\right)
$$

and set $Y^{\star, \pm}\left(W_{l}, W_{r}\right)=\operatorname{LR}\left(0^{ \pm}, Y_{l}, Y_{r}\right)$.

VFRoe-ncv scheme

For $i \in \mathbb{Z}, n \geq 0$:

$$
\frac{W_{i}^{n+1}-W_{i}^{n}}{k}+F_{i+\frac{1}{2}}^{n,-}-F_{i-\frac{1}{2}}^{n,+}+D\left(W_{i}^{n}\right)\left(Y_{i+\frac{1}{2}}^{n,-}-Y_{i-\frac{1}{2}}^{n+1}\right)=0,
$$

with:
$F_{i+\frac{1}{2}}^{n, \pm}=G\left(Y_{i+\frac{1}{2}}^{n, \pm}\right)\left(F(W)=G(\phi(W)), B(W) W_{x}=D(W) Y_{x}\right)$,
$Y_{i+\frac{1}{2}}^{n, \frac{1}{2}}=Y^{\star, \pm}\left(W_{i}^{n}, W_{i+1}^{n}\right)$
CFL condition: $k \leq C h$.

VFroe-ncv scheme

(1) Modification for conservativity (null eigenvalue)
(2) Discontinuity of the numerical flux when there is 0 as eigenvalue. $F\left(W^{\star}\left(W_{l}, W_{r}\right)\right)$ is a discontinuous fonction of W_{l} and W_{r}).
(3) Choice of Y.
$Y=(k g(u), k)^{t}$ for porous media,
$Y=(2 c, u, z)^{t}$ or $Y=(q, \psi, z)^{t}$ for Saint Venant with topography.

Remark on resonance, porous media

$$
\begin{aligned}
& u_{t}(x, t)+(k g(u))_{x}=0 \\
& k_{t}=0
\end{aligned}
$$

With the choice $Y=(k g(u), k)^{t}$ the linearized system is
$Y_{t}+C(\bar{W}) Y_{x}=0, \bar{W}=(\bar{u}, \bar{k})^{t}$,

$$
C(\bar{W})=\left[\begin{array}{cc}
\bar{k} g^{\prime}(\bar{u}) & 0 \\
0 & 0
\end{array}\right]
$$

which is never resonnant. . .
Eigenvalues: $\lambda_{1}=\bar{k} g^{\prime}(\bar{u}), \lambda_{2}=0$
Eigenvectors: $e_{1}=(1,0)^{t}, e_{2}=(0,1)^{t}$

Remark on resonance, Saint Venant with topography

$$
\begin{aligned}
& h_{t}+(h u)_{x}=0 \\
& (h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x}+g h z_{x}=0 \\
& z_{t}=0
\end{aligned}
$$

With the choice $Y=(q, \psi, z)^{t}$, the linearized system is
$Y_{t}+C(\bar{W}) Y_{x}=0, \bar{W}=(\bar{h}, \bar{h} \bar{u}, \bar{z})^{t}, \bar{c}=\sqrt{g \bar{h}}$,

$$
C(\bar{W})=\left[\begin{array}{lll}
\bar{u} & \bar{h} & 0 \\
g & \bar{u} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

which is never resonnant (for $\bar{h}>0$)...
Eigenvalues: $\lambda_{1}=0, \lambda_{2}=\bar{u}+\bar{c}, \lambda_{2}=\bar{u}-\bar{c}$
Eigenvectors: $e_{1}=(0,0,1)^{t}, e_{2}=(\bar{h}, \bar{c}, 0)^{t}, e_{3}=(-\bar{h}, \bar{c}, 0)^{t}$

Remark on resonance, Saint Venant with topography

With the choice $Y=(2 c, u, z)^{t}$, the linearized system is
$Y_{t}+C(\bar{W}) Y_{x}=0, \bar{W}=(\bar{h}, \bar{h} \bar{u}, \bar{z})^{t}, \bar{c}=\sqrt{g \bar{h}}$,

$$
C(\bar{W})=\left[\begin{array}{lll}
\bar{u} & \bar{c} & 0 \\
\bar{c} & \bar{u} & g \\
0 & 0 & 0
\end{array}\right]
$$

which is resonnant if $\bar{u}+\bar{c}=0$ or $\bar{u}-\bar{c}=0$.
Eigenvalues: $\lambda_{1}=0, \lambda_{2}=\bar{u}+\bar{c}, \lambda_{2}=\bar{u}-\bar{c}$
Eigenvectors:

- If $\bar{u} \pm \bar{c} \neq 0$,
$e_{1}=\left(\bar{c} g,-\bar{u} g, \bar{u}^{2}-\bar{c}^{2}\right)^{t}, e_{2}=(1,1,0)^{t}, e_{3}=(1,-1,0)^{t}$
- If $\bar{u}=\bar{c}, e_{1}=(1,-1,0)^{t}, e_{2}=(1,1,0)^{t}$
- If $\bar{u}=-\bar{c}, e_{1}=(1,1,0)^{t}, e_{3}=(1,-1,0)^{t}$

Numerical results

(1) Perfect with Godunov. In particular, for Saint Venant with topography, one has preservation of all steady state solutions : $q=h u$ and $\psi=\frac{u^{2}}{2}+g(h+z)$ constant (and not only those with $u=0$ which are called "lake at rest")
(2) Perfect also with VFRoe-ncv, sometimes with one "incorrect point". For Saint Venant with topography: Preservation of steady state solution with $u=0$ (for any choice of the variable of linearization Y) and preservation of all steady state solutions for $Y=(q, \psi, z)^{t}$

numerical results, two phase flow in porous media

Resonance occurs for all (k, u) with $u \in\left(\frac{1}{4}, \frac{3}{4}\right)$.

numerical results, two phase flow in porous media

Resonance occurs for all (k, u) with $u \in\left(\frac{1}{4}, \frac{3}{4}\right)$.

numerical results, Saint Venant with topography

A case with $h=0$, steady state, sonic point. . .VFRoe-ncv with $Y=(2 c, u, z)^{t}$ (best choice for the problem of vanishing h).

References

(1) Porous medium: Towers, Seguin-Vovelle, Bachmann
(2) Saint Venant: Kurganov-Levy, Simeoni-Perthame, Chinnayya-LeRoux-Seguin, Goutal-Karni Hérard-Gallouët-Seguin...

