Hyperbolic equations and systems with discontinuous coefficients or source terms

T. Gallouët1

¹University of Marseille

Equadiff 11, 2005

Notations

Notations:

$$(\cdot)_t = \frac{\partial(\cdot)}{\partial t},$$

$$(\cdot)_{x}=\frac{\partial(\cdot)}{\partial x},$$

$$t \in \mathbb{R}_+$$
.

 $x \in \mathbb{R}$, but extensions to $x \in \mathbb{R}^d$, d = 2 or 3 are possible.

Hyperbolic equation with a discontinuous coefficient

Two phase flow in an heterogeneous porous medium: unknown: $u: \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}$:

$$u_t(x,t)+(kg(u))_x=0,$$

$$k(x) = k_l$$
, for $x < 0$,
 $k(x) = k_r$, for $x > 0$,
 $k_l, k_r > 0$, $k_l \neq k_r$,
 $g : [0, 1] \rightarrow \mathbb{R}$, Lipschitz continuous and such that
 $g(0) = g(1) = 0$. Example: $g(u) = u(1 - u)$

This hyperbolic equation with a discontinuous coefficient can be viewed has a conservative 2×2 hyperbolic system, adding k has an unknown and the equation $k_t = 0$.

Hyperbolic equation with a discontinuous coefficient

$$u_t(x,t)+(kg(u))_x=0,$$
 $k_t=0.$
 $W=\left[egin{array}{c} u \ k \end{array}
ight] ext{ and } F(W)=\left[egin{array}{c} kg(u) \ 0 \end{array}
ight],$
 $W_t+(F(W))_x=0.$

or equivalently (for regular solutions), with A(W) = DF(W):

$$W_t + A(W)W_x = 0.$$

Hyperbolic system with a source term

Saint Venant Equations with topography (nonflat bottom) unknowns: $h, u : \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}$ (with h > 0):

$$h_t + (hu)_x = 0,$$

 $(hu)_t + (hu^2 + \frac{1}{2}gh^2)_x = -ghz_x,$

g is a given constant and z is a given function of x. This 2×2 conservative hyperbolic system with a source term can be viewed has a nonconservative 3×3 hyperbolic system, adding z has an unknown and the equation $z_t = 0$.

Hyperbolic system with a source term

$$egin{aligned} h_t + (hu)_x &= 0, \ (hu)_t + (hu^2 + rac{1}{2}gh^2)_x + ghz_x &= 0, \ z_t &= 0. \end{aligned}$$

$$W = \begin{bmatrix} u \\ hu \\ z \end{bmatrix}, F(W) = \begin{bmatrix} hu \\ \frac{(hu)^2}{h} + \frac{1}{2}gh^2 \\ 0 \end{bmatrix} \text{ and }$$

$$B(W) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & gh \\ 0 & 0 & 0 \end{bmatrix},$$

$$W_t + (F(W))_x + B(W)W_x = 0,$$

or equivalently (for regular solutions):

$$W_t + A(W)W_x = 0,$$
 (with $A(W) = DF(W) + B(W)$).

Common feature: Resonance

Unknown: $W : \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}^p$, p > 1

Equation: $W_t + A(W)W_x = 0$

For all admissible $W \in \mathbb{R}^p$, the $p \times p$ matrix A(W) has only real eigenvalues, but A(W) is, for some W, not diagonizable.

A(W) strictly hyperbolic: p real distincts eigenvalues and then diagonizable (in \mathbb{R}).

A(W) genuine-hyperbolic: real eigenvalues and diagonalizable. A(W) resonnant-hyperbolic: real eigenvalues and not diagonalizable.

First example:

$$p=2$$
, $W=\begin{bmatrix} u \\ k \end{bmatrix}$, $A(W)=\begin{bmatrix} kg'(u) & g(u) \\ 0 & 0 \end{bmatrix}$ which is not diagonalizable if $g'(u)=0$ and $g(u)\neq 0$ (if $g(u)=u(1-u)$, this is the case for $u=\frac{1}{2}$).

Common feature: Resonance

Second example:

$$p = 3, W = \begin{bmatrix} u \\ hu \\ z \end{bmatrix}, A(W) = \begin{bmatrix} 0 & 1 & 0 \\ -u^2 + gh & 2u & gh \\ 0 & 0 & 0 \end{bmatrix}.$$

Eigenvalues of A(W) are $u \pm c$ and 0, with $c = \sqrt{gh}$.

$$A(W)$$
 is not diagonalizable if $u-c=0$ or $u+c=0$ (and $h>0$).

Linear resonant problem, ill posed

The Cauchy problem for a linear resonant problem is ill-posed in L^{∞} (or in L^1 , L^2 ..., but well posed in C^{∞}).

Riemann problem for a typical example:

$$\begin{bmatrix} u \\ v \end{bmatrix}_t + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}_x = 0,$$

$$\begin{bmatrix} u(x,0) \\ v(x,0) \end{bmatrix} = \begin{bmatrix} u_I \\ v_I \end{bmatrix}, \text{ if } x < 0, \text{ and } \begin{bmatrix} u_r \\ v_r \end{bmatrix}, \text{ if } x > 0,$$

The solution is , for all t>0, $v(\cdot,t)=v(\cdot,0)$ and

$$u(\cdot,t)=u_l\mathbf{1}_{\mathbb{R}_-}+u_r\mathbf{1}_{\mathbb{R}_+}+t(v_l-v_r)\delta_0.$$

Nonlinear resonant problem, sometimes ill posed

Academic simple example:

$$u_t + (au)_x = 0,$$

$$a_t = 0,$$

$$\begin{bmatrix} u(x,0) \\ a(x,0) \end{bmatrix} = \begin{bmatrix} u_l \\ a_l \end{bmatrix}, \text{ if } x < 0, \text{ and } \begin{bmatrix} u_r \\ a_r \end{bmatrix}, \text{ if } x > 0,$$

has no weak solution in L^{∞} if $a_l > 0$, $a_r < 0$ and $a_l u_l \neq a_r u_r$ (and has infinetely many solution if $a_l < 0$ and $a_r > 0$).

Nonlinear resonant problem, sometimes ill posed

$$u_t + (au)_x = 0,$$

$$a_t = 0,$$

is equivalent (for regular solution) to $W_t + A(W)W_x = 0$, with $W = \begin{bmatrix} u \\ a \end{bmatrix}$ and $A(W) = \begin{bmatrix} a & u \\ 0 & 0 \end{bmatrix}$. Resonance occurs when a = 0 and $u \neq 0$.

The Riemann problem for the nonlinear system is ill posed in L^{∞} provided that 0 is between a_r and a_l (except if $u_r = u_l = 0$).

This nonlinear case is "worse" than the linear case.

Nonlinear resonant problem, sometimes well posed

First example

$$u_t + (kg(u))_x = 0,$$

$$k_t = 0,$$

 $g:[0,1]\to\mathbb{R}$, Lipschitz continuous and such that g(0)=g(1)=0. The Cauchy problem is well posed in the following sense:

$$k(x) = k_l$$
 if $x < 0$, $k(x) = k_r$ if $x > 0$, $u(\cdot, 0) = u_0 \in L^{\infty}$, $0 \le u_0 \le 1$. Then, the Cauchy problem has a unique entropy weak solution.

Karlsen-Risebro-Towers

Seguin-Vovelle, Bachmann-Vovelle

Bachmann: $k(x)g(u) \rightsquigarrow g(x,u), g(x,0) = g(x,1) = 0.$

Nonlinear resonant problem, sometimes well posed

Second example

Saint Venant Equations with topography. The Riemann problem:

$$h_t + (hu)_x = 0,$$

 $(hu)_t + (hu^2 + \frac{1}{2}gh^2)_x + ghz_x = 0,$
 $z_t = 0$

$$\begin{bmatrix} h \\ hu \\ z \end{bmatrix} (x,0) = \begin{bmatrix} h_l \\ (hu)_l \\ z_l \end{bmatrix}, \text{ if } x < 0, \text{ and } \begin{bmatrix} h_r \\ (hu)_r \\ z_r \end{bmatrix}, \text{ if } x > 0,$$

has one (sometimes three...) solution (composed of constant states and waves), satisfying a classical entropy condition, assuming continuity of (the Riemann invariants) hu and ψ at the contact discontinuity (at x=0) with $\psi=\frac{1}{2}u^2+g(h+z)$. Chinnayya-LeRoux-Seguin, Goatin-LeFloch

Nonlinear resonant problem, sometimes well posed

Third example

Isentropic Euler Equations with an EOS taking into account a simple model of "phase transition", that is:

$$p = a_1 \rho$$
, if $0 < \rho < \rho_1$,
 $p = a_1 \rho_1$, if $\rho_1 \le \rho \le \rho_2$,
 $p = a_2 \rho$, if $\rho_2 < \rho$,

with ρ_1, ρ_2, a_1, a_2 given constants, $0 < \rho_1 < \rho_2, 0 < a_1 < a_2$.

$$\rho_t + (\rho u)_x = 0,
(\rho u)_t + (\rho u^2 + p)_x = 0.$$

For $\rho_1 \leq \rho \leq \rho_2$ and any u, the system is resonant (with u as eigenvalue, and the 2 genuinely nonlinear fields lead to a linear degenerate field). But the Riemann problem is well posed. Recent result of Seguin.

Discretization by Finite Volume Shemes

$$W_t + (F(W))_x + B(W)W_x = 0,$$

$$W(\cdot, 0) = W_0.$$

Time step: k, $t_n = nk$

Space step: $h, x_{i+\frac{1}{2}} = (i + \frac{1}{2})h$

Approximate solution for $x \in (x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}})$ and $t = t_n$: W_i^n

$$W_i^0 = \frac{1}{h} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} W_0(x) dx, \ i \in \mathbb{Z}.$$

Riemann problem

$$W_t + (F(W))_X + B(W)W_X = 0,$$

$$W(x,0) = \begin{cases} W_I \text{ if } x < 0, \\ W_T \text{ if } x > 0. \end{cases}$$

Let W be the (or a) self similar solution, that is:

$$W(x,t) = R(\frac{x}{t}, W_l, W_r)$$

and set

$$W^{\star,\pm}(W_l,W_r) = R(0^{\pm},W_l,W_r).$$

Godunov scheme for nonconservative system

For $i \in \mathbb{Z}$, $n \ge 0$:

$$\frac{W_i^{n+1}-W_i^n}{k}+F_{i+\frac{1}{2}}^{n,-}-F_{i-\frac{1}{2}}^{n,+}+B(W_i^n)(W_{i+\frac{1}{2}}^{n,-}-W_{i-\frac{1}{2}}^{n,+})=0,$$

with
$$F_{i+\frac{1}{2}}^{n,\pm} = F(W_{i+\frac{1}{2}}^{n,\pm}),$$

 $W_{i+\frac{1}{2}}^{n,\pm} = W^{\star,\pm}(W_i^n, W_{i+1}^n).$

CFL condition: $k \leq Ch$.

Godunov scheme, particular cases

$$\frac{W_i^{n+1}-W_i^n}{k}+F_{i+\frac{1}{2}}^{n,-}-F_{i-\frac{1}{2}}^{n,+}+B(W_i^n)(W_{i+\frac{1}{2}}^{n,-}-W_{i-\frac{1}{2}}^{n,+})=0,$$

- conservative case: $F_{i+\frac{1}{2}}^{n,+} = F_{i+\frac{1}{2}}^{n,-}$, even if $W_{i+\frac{1}{2}}^{n,+} \neq W_{i+\frac{1}{2}}^{n,-}$ (thanks to Rankine-Hugoniot condition on the Riemann problem).
- In the case of Saint Venant equations with topography, one has $z_{i+\frac{1}{2}}^{n,-}=z_{i-\frac{1}{2}}^{n,+}=z_i^n$ and then $B(W_i^n)(W_{i+\frac{1}{2}}^{n,-}-W_{i-\frac{1}{2}}^{n,+})=0$.

The non conservativity of the equation (that is the source term) appears only in the fact that, generally, $F_{i+\frac{1}{2}}^{n,+} \neq F_{i+\frac{1}{2}}^{n,-}$.

Linearized system

- Initial system: $W_t + A(W)W_x = 0$, A(W) = DF(W) + B(W).
- Linearized system: $W_t + A(\overline{W})W_x = 0$, with some fixed $\overline{W} \in \mathbb{R}^p$.
- Initial system with a change of unknown: $Y = \phi(W)$. ϕ is not necessarily invertible, but one assumes that there exists C, G, D, such that A(W) = C(Y), F(W) = G(Y), $B(W)W_x = D(W)Y_x$. Then $W_t + A(W)W_x$ leads to

$$Y_t + C(W)Y_x = 0.$$

• Linearized system with a change of unknown: $Y = \phi(W)$,

$$Y_t + C(\overline{W})Y_x = 0,$$

with some fixed $\overline{W} \in \mathbb{R}^p$.

linearized Riemann problem

$$Y_t + C(\overline{W})Y_x = 0,$$

$$\mathbf{Y}(\mathbf{x},0) = \begin{cases} \mathbf{Y}_I = \phi(W_I) \text{ if } \mathbf{x} < 0, \\ \mathbf{Y}_r = \phi(W_r) \text{ if } \mathbf{x} > 0. \end{cases}$$

For instance, $\overline{W} = \frac{W_r + W_l}{2}$ or another mean value between W_l and W_r .

Let Y be the self similar solution of this problem (when it exists...), that is:

$$Y(x,t) = LR(\frac{x}{t}, Y_l, Y_r)$$

and set $Y^{*,\pm}(W_l, W_r) = LR(0^{\pm}, Y_l, Y_r)$.

VFRoe-ncv scheme

For $i \in \mathbb{Z}$, $n \ge 0$:

$$\frac{W_i^{n+1}-W_i^n}{k}+F_{i+\frac{1}{2}}^{n,-}-F_{i-\frac{1}{2}}^{n,+}+D(W_i^n)(Y_{i+\frac{1}{2}}^{n,-}-Y_{i-\frac{1}{2}}^{n,+})=0,$$

with:

$$F_{i+\frac{1}{2}}^{n,\pm} = G(Y_{i+\frac{1}{2}}^{n,\pm}) (F(W) = G(\phi(W)), B(W)W_{x} = D(W)Y_{x}),$$

$$Y_{i+\frac{1}{2}}^{n,\pm} = Y^{*,\pm}(W_{i}^{n}, W_{i+1}^{n})$$

CFL condition: $k \leq Ch$.

VFroe-ncv scheme

- Modification for conservativity (null eigenvalue)
- ② Discontinuity of the numerical flux when there is 0 as eigenvalue. $F(W^*(W_l, W_r))$ is a discontinuous fonction of W_l and W_r).
- 3 Choice of Y. $Y = (kg(u), k)^t$ for porous media, $Y = (2c, u, z)^t$ or $Y = (q, \psi, z)^t$ for Saint Venant with topography.

Remark on resonance, porous media

$$u_t(x,t)+(kg(u))_x=0,$$

$$k_t=0.$$

With the choice $Y = (kg(u), k)^t$ the linearized system is $Y_t + C(\overline{W})Y_x = 0$, $\overline{W} = (\overline{u}, \overline{k})^t$,

$$C(\overline{W}) = \begin{bmatrix} \overline{k}g'(\overline{u}) & 0 \\ 0 & 0 \end{bmatrix},$$

which is never resonnant...

Eigenvalues: $\lambda_1 = \overline{k}g'(\overline{u})$, $\lambda_2 = 0$

Eigenvectors: $e_1 = (1,0)^t$, $e_2 = (0,1)^t$

Remark on resonance, Saint Venant with topography

$$h_t + (hu)_x = 0,$$

 $(hu)_t + (hu^2 + \frac{1}{2}gh^2)_x + ghz_x = 0,$
 $z_t = 0$

With the choice $Y = (q, \psi, z)^t$, the linearized system is

$$Y_t + C(\overline{W}) Y_x = 0, \ \overline{W} = (\overline{h}, \overline{h}\overline{u}, \overline{z})^t, \ \overline{c} = \sqrt{g\overline{h}},$$

$$C(\overline{W}) = \left[\begin{array}{ccc} \overline{u} & h & 0 \\ g & \overline{u} & 0 \\ 0 & 0 & 0 \end{array} \right],$$

which is never resonaant (for $\overline{h} > 0$)...

Eigenvalues: $\lambda_1 = 0$, $\lambda_2 = \overline{u} + \overline{c}$, $\lambda_2 = \overline{u} - \overline{c}$

Eigenvectors: $e_1 = (0, 0, 1)^t$, $e_2 = (\overline{h}, \overline{c}, 0)^t$, $e_3 = (-\overline{h}, \overline{c}, 0)^t$

Remark on resonance, Saint Venant with topography

With the choice $Y = (2c, u, z)^t$, the linearized system is $Y_t + C(\overline{W})Y_x = 0$, $\overline{W} = (\overline{h}, \overline{h}\overline{u}, \overline{z})^t$, $\overline{c} = \sqrt{g\overline{h}}$,

$$C(\overline{W}) = \left[egin{array}{ccc} \overline{u} & \overline{c} & 0 \ \overline{c} & \overline{u} & g \ 0 & 0 & 0 \end{array}
ight],$$

which is resonnant if $\overline{u} + \overline{c} = 0$ or $\overline{u} - \overline{c} = 0$. Eigenvalues: $\lambda_1 = 0$, $\lambda_2 = \overline{u} + \overline{c}$, $\lambda_2 = \overline{u} - \overline{c}$ Eigenvectors:

- If $\overline{u} \pm \overline{c} \neq 0$, $e_1 = (\overline{c}g, -\overline{u}g, \overline{u}^2 \overline{c}^2)^t$, $e_2 = (1, 1, 0)^t$, $e_3 = (1, -1, 0)^t$
- If $\overline{u} = \overline{c}$, $e_1 = (1, -1, 0)^t$, $e_2 = (1, 1, 0)^t$
- If $\overline{u} = -\overline{c}$, $e_1 = (1, 1, 0)^t$, $e_3 = (1, -1, 0)^t$

Numerical results

- Perfect with Godunov. In particular, for Saint Venant with topography, one has preservation of all steady state solutions: q = hu and $\psi = \frac{u^2}{2} + g(h+z)$ constant (and not only those with u = 0 which are called "lake at rest")
- ② Perfect also with VFRoe-ncv, sometimes with one "incorrect point". For Saint Venant with topography: Preservation of steady state solution with u=0 (for any choice of the variable of linearization Y) and preservation of all steady state solutions for $Y=(q,\psi,z)^t$

numerical results, two phase flow in porous media

Resonance occurs for all (k, u) with $u \in (\frac{1}{4}, \frac{3}{4})$.

numerical results, two phase flow in porous media

Resonance occurs for all (k, u) with $u \in (\frac{1}{4}, \frac{3}{4})$.

numerical results, Saint Venant with topography

A case with h = 0, steady state, sonic point... VFRoe-ncv with $Y = (2c, u, z)^t$ (best choice for the problem of vanishing h).

References

- Porous medium: Towers, Seguin-Vovelle, Bachmann
- Saint Venant: Kurganov-Levy, Simeoni-Perthame, Chinnayya-LeRoux-Seguin, Goutal-Karni Hérard-Gallouët-Seguin...