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Models in fluids mechanics

Euler Equations, Incompressible and compressible Navier-Stokes
Equations, Multiphase Flows. . .

Example : Euler d = 2 or 3,

∂tρ+ div(ρu) = 0, x ∈ Rd , t ∈ R+

∂t(ρu) + div(ρu ⊗ u) +∇p = 0, x ∈ Rd , t ∈ R+

∂tE + div(u(E + p)) = 0, x ∈ Rd , t ∈ R+

E = 1
2ρ|u|

2 + ρe
p = ϕ(ρ, e) (perfect gaz : p = (γ − 1)ρe)
Initial condition on ρ, u, p



Academic Models: Burgers Equation, Transport Equation

Burgers: ∂tρ+ ∂x(ρu) = 0, x ∈ R, t ∈ R+, u = ρ

Transport: ∂tρ+ ∂x(cρ) = 0, x ∈ R, t ∈ R+, c ∈ R, given
Initial condition on ρ

Numerical Analysis: behaviour of numerical schemes, stability,
convergence. . .



Numerical Analysis for some schemes

Numerical analysis (stability, convergence. . . ) may (perhaps) help
to choose the numerical scheme

I Upwinding

I Using staggered grids

I Working with an “equivalent” equation



Explicit upwind scheme for transport equation

∂tρ+ ∂xρ = 0, x ∈ R, t ∈ R+

time step : k, tn = nk, n ∈ N, mesh size : h
Mesh : Mi , i ∈ Z
Mi =]xi− 1

2
, xi+ 1

2
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2
− xi− 1

2
= h

center of Mi : xi
ρni is supposed to be an approximate value for ρ(xi , tn)

1

k
(ρn+1

i − ρni ) +
1

h
(ρni − ρni−1) = 0

k
h is the CFL number



Upwind scheme for transport equation

∂tρ+ ∂xρ = 0, x ∈ R, t ∈ R+

ρ(x , 0) =

{
1, x < 0
0, x > 0

Upwind scheme, CFL=1/2, solution for T=1/2 (N = M = 100)
space step: h = 1/N, M = number of time steps, k = (CFL)h
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Good speed of discontinuity, bounds on the solution, large amount
of numerical diffusion



Why upwinding ?

Centered scheme, CFL=1/2, solution for T=1/20 (N = 100,
M = 10)
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no numerical diffusion but oscillations, no convergence.



Why upwinding ?

Centered scheme, CFL=1/2, solution for T=1/2 (N = 100,
M = 100).
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no numerical diffusion but oscillations, no convergence.



Downwind scheme, for joke

Downwind scheme, CFL=1/2, solution for T=1/2 (N = 100,
M = 100).
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Burgers, upwind

∂tρ+ ∂x(uρ) = 0, u = ρ, x ∈ R, t ∈ R+

ρ(x , 0) =

{
2, x < 0
1, x > 0

Upwind scheme
Space step: h, time step : k = (CFL)h/4

1

k
(ρn+1

i − ρni ) +
1

h
((ρni )2 − (ρni−1)2) = 0

f (ρ) = ρ2, 4 = max{f ′(s), 1 ≤ s ≤ 2}



Burgers, upwind

∂tρ+ ∂x(uρ) = 0, u = ρ, x ∈ R, t ∈ R+

ρ(x , 0) =

{
2, x < 0
1, x > 0

Upwind scheme, CFL=1, solution for T=1/2 (N = 100, M = 200)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/4
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Good localization of the discontinuity, few numerical diffusion,
bounds on the solution, convergence to the entropy solution



Burgers , upwind-ncv
Upwind on u∂xρ + ρ∂xu. Since u = ρ (collocated), it gives

(h/k)(ρn+1
i − ρni ) + 2uni (ρni − ρni−1) = 0, uni = ρni

Initial condition : 1 for x < 0 and 0 for x > 0
Upwind-ncv scheme, CFL=1/4, solution for T=1/4 (N = 100,
M = 200)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/2
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Wrong localization of the discontinuity (0 instead of 0.25 !), no
numerical diffusion !, bounds on the solution, no convergence.



Burgers, upwind-ncv
Upwind on u∂xρ + ρ∂xu. Since u = ρ (collocated), it gives

(h/k)(ρn+1
i − ρni ) + 2uni (ρni − ρni−1) = 0, uni = ρni

Initial condition : 2 for x < 0 and 1 for x > 0
Upwind-ncv scheme, CFL=1, solution for T=1/4 (N = 100,
M = 200)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/4
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not so bad, curious result. . . due to this particular initial condition



Burgers viewed as a coupled system, upwind-ncv
Upwind on u∂xρ + ρ∂xu. Since u = ρ (collocated), it gives

(h/k)(ρn+1
i − ρni ) + 2uni (ρni − ρni−1) = 0, uni = ρni

Initial condition : 3 for x < 0 and 1 for x > 0
Upwind-ncv scheme, CFL=1/4, solution for T=1/4 (N = 100,
M = 200)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/2
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Wrong localization of the discontinuity, bounds on the solution, no
convergence.



Burgers viewed as a coupled system, upwind-ncv

Upwind on u∂xρ + ρ∂xu (or 2ρ∂xρ)

Upwind-ncv=upwind + discretization of h(∂xu)2.

No problem for a regular solution. A problem might arise if ∂xu
not in L2.

I Full upwind collocated scheme is perfect. Good discontinuity,
bounds on the solution, convergence

I Non conservative upwind collocated scheme is not good.

What happens with staggered grids?



Staggered grid

time step : k, tn = nk, n ∈ N, mesh size : h
Mesh : Mi , i ∈ Z
Mi =]xi− 1
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Burgers, upwind-staggered

∂tρ+ ∂x(uρ) = 0, u = ρ, x ∈ R, t ∈ R+

ρ(x , 0) =

{
2, x < 0
1, x > 0

Upwind staggered scheme:
We have ρ > 0 (and then u > 0).
Then upwind staggered consists to take ρn

i+ 1
2

= ρni

Space step: h, time step: k
Since the exact solution is between 1 and 2, it seems that we can
take k = (CFL)h/4 with CFL ≤ 1



Burgers, upwind-staggered

(h/k)(ρn+1
i − ρni ) + (un

i+ 1
2
ρni − un

i− 1
2
ρni−1) = 0,

ui+ 1
2

= (1/2)(ρni + ρni+1)

Upwind-staggered scheme, CFL=1, solution for T=1/20
(N = 100, M = 20)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/4
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Burgers viewed as a coupled system, upwind-staggered

(h/k)(ρn+1
i − ρni ) + (un

i+ 1
2
ρni − un

i− 1
2
ρni−1) = 0,

ui+ 1
2

= (1/2)(ρni + ρni+1)

Upwind-staggered scheme, CFL=1/2(reduced CFL), solution for
T=1/20 (N = 100, M = 40)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/4
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Burgers viewed as a coupled system, upwind-staggered

(h/k)(ρn+1
i − ρni ) + (un

i+ 1
2
ρni − un

i− 1
2
ρni−1) = 0,

ui+ 1
2

= (1/2)(ρni + ρni+1)

Upwind-staggered scheme, CFL=1/2(reduced CFL), solution for
T=1/4 (N = 100, M = 200)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/4
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upper bound on the solution.



Burgers viewed as a coupled system

∂tρ+ ∂x(uρ) = 0, u = ρ, x ∈ R, t ∈ R+

ρ(x , 0) =

{
2, x < 0
1, x > 0

Upwind scheme with staggered grids is pretty good. . . Good
discontinuity, positivity of the solution, no upper bound (and then
reduced CFL is needed) but probably convergence
Work in progress: D. Doyen and R. Eymard



Burgers view as a coupled system, conclusion

∂tρ+ ∂x(uρ) = 0, x ∈ R, t ∈ R+

u = ρ, x ∈ R, t ∈ R+

with a discontinuous solution

possible schemes

I Collocated scheme, full upwind (upwind on uρ)

I staggered, upwind on ρ

I (staggered, upwind on u and ρ)

It is possible to use staggered schemes for compressible fluid
mechanics

Is it possible to work with an “equivalent equation”?



Why working on an equivalent equation?

Example: Euler system is equivalent, for regular solutions, to the
following one

∂tρ+ div(ρu) = 0, x ∈ Rd , t ∈ R+

∂t(ρu) + div(ρu ⊗ u) +∇p = 0, x ∈ Rd , t ∈ R+

∂tρe + div(ρue) + pdivu = 0, x ∈ Rd , t ∈ R+

and there are some reasons to prefer (in particular with staggered
grids) to work with this system instead of the initial system

But, this system is not equivalent to the initial system when the
solution contains shocks



Burgers, upwind on an “equivalent equation”

∂tρ+ ∂x(ρ2) = 0, x ∈ R, t ∈ R+

ρ(x , 0) =

{
2, x < 0
1, x > 0

For positive and regular solution, an equivalent equation is

∂tρ
2 +

4

3
∂x(ρ3) = 0, x ∈ R, t ∈ R+

The classical upwind scheme on this latter equation leads to a
solution which does not have the good localization of the
discontinuity

The speed of the discontinuity is 3 for burgers and 28/9 for the
equivalent equation



Burgers, upwind on an “equivalent” equation

(h/k)((ρn+1
i )2 − (ρni )2) +

4

3
((ρni )3 − (ρni−1)3) = 0,

Upwind scheme on the “equivalent” equation, CFL=1, solution for
T=1/2 (N = 100, M = 200)
Space step: h = 1/N, M = number of time steps, k = (CFL)h/4
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Burgers, numerical diffusion

∂tρ+ ∂x(f (ρ)) = 0

On this equation, if f ′ ≥ 0, upwinding is “similar” to add a
numerical diffusion. Namely, is similar to

∂tρ+ ∂x(f (ρ))− ∂x(
hf ′(ρ)− kf ′2(ρ)

2
∂xρ) = 0

The CFL condition is for hf ′(ρ)− kf ′2(ρ) ≥ 0 (i.e. kf ′(ρ) ≤ h)

In the case of the Burgers equation it gives

∂tρ+ ∂x(ρ2)− ∂x((hρ− 2kρ2)∂xρ) = 0, x ∈ R, t ∈ R+



Burgers, non conservative numerical diffusion

In the case of the “equivalent” equation

∂tρ
2 + (4/3)∂x(ρ3) = 0,

upwinding is similar to (since ρ > 0)

∂tρ
2 +

4

3
∂x(ρ3)− ∂x((2hρ2 − 4kρ3)∂xρ) = 0,

Turning back to the Burgers equation, this leads to

∂tρ+ ∂x(ρ2)− 1

ρ
∂x((hρ2 − 2kρ3)∂xρ) = 0, x ∈ R, t ∈ R+

This is a numerical diffusion (thanks to the CFL condition) but not
on a conservative form.

The consequence is that a non conservative diffusion may lead to
wrong discontinuities



Burgers, non conservative numerical diffusion on an
equivalent equation

The discretization of a non conservative diffusion on the burgers
equation lead to wrong discontinuities

But

Using a non conservative diffusion on an equivalent equation may
gives the good discontinuities for the initial equation?

The answer is yes. . . (T. Gallouët, R. Herbin, J.-C. Latché and T.
T. Trung)



Working with internal energy in Euler Equations

when the solution contains a shock wave, the initial Euler
Equations are not equivalent to the following ones

∂tρ+ div(ρu) = 0, x ∈ Rd , t ∈ R+

∂t(ρu) + div(ρu ⊗ u) +∇p = 0, x ∈ Rd , t ∈ R+

∂tρe + div(ρue) + pdivu = 0, x ∈ Rd , t ∈ R+

But, discretizing the third equation by adding a convenient source
term gives an approximate solution which converges, as the mesh
size and the time step go to 0 (with a CFL condition in the case of
an explicit scheme), to a weak solution of the Euler Equations
(assuming some estimates on the approximate solution).

Papers of R. Herbin, W. Kheriji, J.-C. Latché and T. T. Trung

Indeed, the source term converge to 0 except in the shocks waves.



Stationary compressible Stokes equations

Works with R. Eymard, A. Fettah, R. Herbin and J. C. Latché.

d = 2 or 3, Ω bounded domain of Rd , d = 2 or d = 3
f ∈ L2(Ω)d and M > 0

−∆u +∇p = f in Ω, u = 0 on ∂Ω,

div(ρu) = 0 in Ω, ρ ≥ 0 in Ω,

∫
Ω
ρ(x)dx = M,

p = ϕ(ρ) in Ω, ϕ increasing and lim inf
s→+∞

ϕ(s)

s
= +∞.

(Example: p = ργ , γ > 1)

Discretization by schemes with staggered grids



Main result

I Two possible discretizations for the momentum equation :
 MAC scheme (most commonly used scheme for
incompressible Navier Stokes equations)
 Crouzeix-Raviart Finite Element

I Discretization of the mass equation (and total mass
constraint) by classical upwind Finite Volume

I Existence of solution for the discrete problem

I Proof of the convergence (up to subsequence) of the solution
of the discrete problem towards a weak solution of the
continuous problem (no uniqueness result for this problem) as
the mesh size goes to 0



Generalizations

I (Easy) Complete Stokes problem:
−µ∆u − µ

3∇(div u) +∇p = f , with µ ∈ R?+ given

I (Ongoing work) Navier-Stokes Equations with γ > 1 if d = 2
and γ > 3

2 if d = 3 (probably sharp result with respect to γ
without changing the diffusion term or the EOS)

I (Open question) Other boundary condition. Addition of an
energy equation

I (Ongoing work) Evolution equation (Stokes and
Navier-Stokes), convergence and error estimates (in
MODTERCOM. . . )


