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Fisrt step for proving the convergence of approximate solutions for
the evolution compressible Navier-Stokes equations (which gives, in
particular, the existence of solutions for compressible Navier Stokes
equations, d = 3, p = ργ , γ > 3

2 ).

Existence of (weak) solutions is already known since the works of
P. L. Lions, E. Feirsel, A. Novotny. . .
No uniqueness result.

Aim : to prove the existence of solutions, passing to the limit on
approximate solutions given by efficient numerical schemes (in
particular, with schemes used in industrial codes).



Stationary compressible Stokes equations

Ω is a bounded open set of Rd , d = 2 or 3, with a Lipschitz
continuous boundary, γ ≥ 1, f ∈ L2(Ω)d and M > 0

−∆u +∇p = f in Ω, u = 0 on ∂Ω,

div(ρu) = 0 in Ω, ρ ≥ 0 in Ω,

∫
Ω
ρ(x)dx = M,

p = ργ in Ω

Functional spaces : u ∈ H1
0 (Ω), p ∈ L2(Ω), ρ ∈ L2γ(Ω)

(different spaces for p and ρ in the case of Navier-Stokes if d = 3
and γ < 3)



Weak solution of the stationary compressible Stokes
problem

Functional spaces : u ∈ H1
0 (Ω)d , p ∈ L2(Ω), ρ ∈ L2γ(Ω)

I Momentum equation:∫
Ω
∇u : ∇v dx−

∫
Ω

pdiv(v) dx =

∫
Ω

f ·v dx for all v ∈ H1
0 (Ω)d

I Mass equation:∫
Ω
ρu · ∇ϕ dx = 0 for all ϕ ∈ C∞c (Ω)

ρ ≥ 0 a.e.,
∫

Ω
ρdx = M

I EOS: p = ργ



Main result

I Two possible discretizations for the momentum equation :
 MAC scheme (most commonly used scheme for
incompressible Navier Stokes equations)
 Crouzeix-Raviart Finite Element

I Discretization of the mass equation (and total mass
constraint) by classical upwind Finite Volume

I Existence of solution for the discrete problem

I Proof of the convergence (up to subsequence) of the solution
of the discrete problem towards a weak solution of the
continuous problem (no uniqueness result for this problem) as
the mesh size goes to 0



Simpler result: “continuity” with respect to the data

−∆un +∇pn = fn in Ω, un = 0 on ∂Ω,

div(ρnun) = 0 in Ω, ρ ≥ 0 in Ω,

∫
Ω
ρn(x)dx = Mn,

pn = ργn in Ω

γ > 1, fn → f weakly in (L2(Ω))d and Mn → M. Then, up to a
subsequence,

I un → u in L2(Ω)d and weakly in H1
0 (Ω)d ,

I pn → p in Lq(Ω) for any 1 ≤ q < 2 and weakly in L2(Ω),

I ρn → ρ in Lq(Ω) for any 1 ≤ q < 2γ and weakly in L2γ(Ω),

where (u, p, ρ) is a weak solution of the compressible Stokes
equations (with f and M as data)



Preliminary lemma

ρ ∈ L2γ(Ω), ρ ≥ 0 a.e. in Ω, u ∈ (H1
0 (Ω))d , div(ρu) = 0, then:∫

Ω
ρdiv(u)dx = 0∫

Ω
ργdiv(u)dx = 0

The second part is used in order to obtain some estimates on the
approximate solutions

The first part is crucial for passing to the limit on the EOS (if
γ > 1)



Proof of the preliminary result, ρ regular

For simplicity : ρ ∈ C 1(Ω̄), ρ ≥ α a.e. in Ω.

1 < β ≤ γ. Take ϕ = ρβ−1 as test function in div(ρu) = 0:∫
Ω
ρu · ∇ρβ−1dx = (β − 1)

∫
Ω
ρβ−1u · ∇ρdx = 0.

Then

0 =

∫
Ω

u · ∇ρβdx ,

and finally ∫
Ω
ρβdiv(u)dx = 0.

Two cases :
β = γ
β = 1 + 1

n and n→∞ (or ϕ = ln(ρ))



Proof of the preliminary result, non regular ρ

One uses a “classical” lemma

γ > 1, ρ ∈ L2γ(Rd), and u ∈ H1(Rd)d .
Let (rn)n∈N? be a sequence of mollifiers and, for n ∈ N?,
ρn = ρ ? rn and (ρu)n = (ρu) ? rn.

Then, [(ρu)n − ρnu]→ 0 weakly in W 1,(2γ)/(γ+1)(Rd)d (which
gives, in particular, that div((ρu)n − ρnu)→ 0 weakly in
L(2γ)/(γ+1)(Rd)).

r ∈ C∞c (Rd ,R),

∫
Rd

rdx = 1, r ≥ 0 in Rd

and, for n ∈ N?, x ∈ Rd , rn(x) = nd r(nx).
(1)



Estimates on u

Taking un as test function in −∆un +∇pn = fn:∫
Ω
∇un : ∇un dx −

∫
Ω

pndiv(un) dx =

∫
Ω

fn · un dx .

But pn = ργn a.e. and div(ρnun) = 0, then
∫

Ω pndiv(un) dx = 0.
This gives an estimate on un:

‖un‖(H1
0 (Ω))d ≤ C1.



Estimate on p, divergence Lemma

Let q ∈ L2(Ω) s.t.
∫

Ω qdx = 0.

Then, there exists v ∈ (H1
0 (Ω))d s.t.

div(v) = q a.e. in Ω,

‖v‖(H1
0 (Ω))d ≤ C2‖q‖L2(Ω),

where C2 only depends on Ω.



Estimate on p

mn = 1
|Ω|

∫
Ω pndx , vn ∈ H1

0 (Ω)d , div(vn) = pn −mn.

Taking vn as test function in −∆un +∇pn = fn:∫
Ω
∇un : ∇vn dx −

∫
Ω

pndiv(vn) dx =

∫
Ω

fn · vn dx .

Using
∫

Ω div(vn)dx = 0:∫
Ω

(pn −mn)2dx =

∫
Ω

(fn · vn −∇un : ∇vn)dx .

Since ‖vn‖(H1
0 (Ω))d ≤ C2‖pn −mn‖L2(Ω) and ‖un‖(H1

0 (Ω))d ≤ C1, the
preceding inequality leads to:

‖pn −mn‖L2(Ω) ≤ C3.

where C3 only depends on the L2−bound of (fn)n∈N and on Ω.



Estimate on p and ρ

‖pn −mn‖L2(Ω) ≤ C3.

∫
Ω

p
1
γ
n dx =

∫
Ω
ρndx ≤ sup{Mp, p ∈ N}.

Then:
‖pn‖L2(Ω) ≤ C4;

where C4 only depends on the L2−bound of (fn)n∈N, the bound of
(Mn)n∈N, γ and Ω.

pn = ργn a.e. in Ω, then:

‖ρn‖L2γ(Ω) ≤ C5 = C
1
γ

4 .



Weak-convergence on un, pn, ρn

Thanks to the estimates on un, pn, ρn, it is possible to assume (up
to a subsequence) that, as n→∞:

un → u in L2(Ω)d and weakly in H1
0 (Ω)d ,

pn → p weakly in L2(Ω),

ρn → ρ weakly in L2γ(Ω).



Passage to the limit on the equations, except EOS

Linear equation :

−∆u +∇p = f in Ω, u = 0 on ∂Ω,

Strong times weak convergence

div(ρu) = 0 in Ω,

L1-weak convergence of ρn gives positivity of ρ and convergence of
mass:

ρ ≥ 0 in Ω,

∫
Ω
ρ(x)dx = M.



Passage to the limit in EOS

I No problem if γ = 1, p = ρ

I If γ > 1, question:
p = ργ in Ω ?

pn and ρn converge only weakly. . .

Idea : prove
∫

Ω pnρn →
∫

Ω pρ and deduce a.e. convergence (of pn

and ρn) and p = ργ .



∇ : ∇ = divdiv + curl · curl

For all ū, v̄ in H1
0 (Ω)d ,∫

Ω
∇ū : ∇v̄ =

∫
Ω

div(ū)div(v̄) +

∫
Ω

curl(ū) · curl(v̄).

Then, for all v̄ in H1
0 (Ω)d∫

Ω
div(un)div(v̄) +

∫
Ω

curl(un) · curl(v̄)−
∫

Ω
pndiv(v̄) =

∫
Ω

fn · v̄ .

Choice of v̄ ? v̄ = v̄n with curl(v̄n) = 0, div(v̄n) = ρn and v̄n

bounded in H1
0 (unfortunately, 0 is impossible).

Then, up to a subsequence,

v̄n → v in L2(Ω) and weakly in H1
0 (Ω),

curl(v) = 0, div(v) = ρ.



Proof using v̄n (1)

∫
Ω

div(un)div(v̄n)+

∫
Ω

curl(un)·curl(v̄n)−
∫

Ω
pndiv(v̄n) =

∫
Ω

fn ·v̄n.

But, div(v̄n) = ρn and curl(v̄n) = 0. Then:∫
Ω

(div(un)− pn)ρn =

∫
Ω

fn · v̄n.

Weak convergence of fn in L2(Ω)d to f and convergence of v̄n in
L2(Ω)d to v :

lim
n→∞

∫
Ω

(div(un)− pn)ρn =

∫
Ω

f · v .



Proof using v̄n (2)

But, since −∆u +∇p = f :∫
Ω

div(u)div(v) +

∫
Ω

curl(u) · curl(v)−
∫

Ω
pdiv(v) =

∫
Ω

f · v .

which gives (using div(v) = ρ and curl(v) = 0):∫
Ω

(div(u)− p)ρ =

∫
Ω

f · v . Then:

lim
n→∞

∫
Ω

(pn − div(un))ρn =

∫
Ω

(p − div(u))ρ.

Finally, the preliminary lemma gives, thanks to the mass equations,∫
Ω ρndiv(un) = 0 and

∫
Ω ρdiv(u) = 0. Then,

lim
n→∞

∫
Ω

pnρn =

∫
Ω

pρ.

Unfortunately, it is impossible to have v̄n ∈ H1
0



Curl-free test function
Let wn ∈ H1

0 (Ω), −∆wn = ρn,
One has wn ∈ H2

loc(Ω) since, for ϕ ∈ C∞c (Ω), one has
∆(wnϕ) ∈ L2(Ω) and

d∑
i ,j=1

∫
Ω
∂i∂j(wnϕ) ∂i∂j(wnϕ) =

d∑
i ,j=1

∫
Ω
∂i∂i (wnϕ) ∂j∂j(wnϕ)

=

∫
Ω

(∆(wnϕ))2 = Cϕ <∞

Then, taking vn = ∇wn

I vn ∈ (H1
loc(Ω))d ,

I div(vn) = ρn a.e. in Ω,

I curl(vn) = 0 a.e. in Ω,

I H1
loc(Ω)-estimate on vn with respect to ‖ρn‖L2(Ω).

Then, up to a subsequence, as n→∞, vn → v in L2
loc(Ω) and

weakly in H1
loc(Ω), curl(v) = 0, div(v) = ρ.



Proof of
∫

Ω(pn − div(un))ρnϕ→
∫

Ω(p − div(u))ρϕ

Let ϕ ∈ C∞c (Ω) (so that vnϕ ∈ H1
0 (Ω)d)). Taking v̄ = vnϕ:∫

Ω
div(un)div(vnϕ) +

∫
Ω

curl(un) · curl(vnϕ)−
∫

Ω
pndiv(vnϕ)

=

∫
Ω

fn · (vnϕ).

Using a proof similar to that given if ϕ = 1 (with additionnal terms
involving ϕ), we obtain :

lim
n→∞

∫
Ω

(pn − div(un))ρnϕ =

∫
Ω

(p − div(u))ρϕ,



Proving
∫

Ω(pn − div(un))ρnϕ→
∫

Ω(p − div(u))ρϕ

Let ϕ ∈ C∞c (Ω) (so that vnϕ ∈ H1
0 (Ω)d)). Taking v̄ = vnϕ:∫

Ω div(un)div(vnϕ) +
∫

Ω curl(un) · curl(vnϕ)−
∫

Ω pndiv(vnϕ)
=

∫
Ω fn · (vnϕ).

But, div(vnϕ) = ρnϕ+ vn · ∇ϕ and curl(vnϕ) = L(ϕ)vn, where
L(ϕ) is a matrix involving the first order derivatives of ϕ. Then:∫

Ω(div(un)− pn)ρnϕ =
∫

Ω fn · (vnϕ)
−

∫
Ω div(un)vn · ∇ϕ−

∫
curl(un) · L(ϕ)vn +

∫
Ω pnvn · ∇ϕ.

Weak convergence of un in H1
0 (Ω)d , weak convergence of pn and

fn in L2(Ω) and convergence of vn in L2
loc(Ω)d :

limn→∞
∫

Ω(div(un)− pn)ρnϕ =
∫

Ω f · (vϕ)
−

∫
Ω div(u)v · ∇ϕ−

∫
curl(u) · L(ϕ)v +

∫
Ω pv · ∇ϕ.



Proof of
∫

Ω(pn − div(un))ρnϕ→
∫

Ω(p − div(u))ρϕ

But, since −∆u +∇p = f :∫
Ω div(u)div(vϕ) +

∫
Ω curl(u) · curl(vϕ)−

∫
Ω pdiv(vϕ)

=
∫

Ω f · (vϕ).

which gives (using div(v) = ρ and curl(v) = 0):∫
Ω(div(u)− p)ρϕ =

∫
Ω f · (vϕ)

−
∫

Ω div(u)v · ∇ϕ−
∫

curl(u) · L(ϕ)v +
∫

Ω pv · ∇ϕ.

Then:

lim
n→∞

∫
Ω

(pn − div(un))ρnϕ =

∫
Ω

(p − div(u))ρϕ.



Proof of
∫

Ω(pn − div(un))ρn →
∫

Ω(p − div(u))ρ

Lemma : Fn → F in D ′(Ω), (Fn)n∈N bounded in Lq for some
q > 1. Then Fn → F weakly in L1.

With Fn = (pn − div(un))ρn, F = (p − div(u))ρ and since γ > 1,
the lemma gives∫

Ω
(pn − div(un))ρn →

∫
Ω

(p − div(u))ρ.



Proving
∫

Ω pnρn →
∫

Ω pρ

∫
Ω

(pn − div(un))ρn →
∫

Ω
(p − div(u))ρ.

But thanks to the mass equations, the preliminary lemma gives:∫
Ω

div(un)ρn = 0,

∫
Ω

div(u)ρ = 0;

Then:

lim
n→∞

∫
Ω

pnρn =

∫
Ω

pρ.



a.e. convergence of ρn and pn

Let Gn = (ργn − ργ)(ρn − ρ) ∈ L1(Ω) and Gn ≥ 0 a.e. in Ω.
Futhermore Gn = (pn − ργ)(ρn − ρ) = pnρn − pnρ− ργρn + ργρ
and: ∫

Ω
Gn =

∫
Ω

pnρn −
∫

Ω
pnρ−

∫
Ω
ργρn +

∫
Ω
ργρ.

Using the weak convergence in L2(Ω) of pn and ρn and
limn→∞

∫
Ω pnρn =

∫
Ω pρ:

lim
n→∞

∫
Ω

Gn = 0,

Then (up to a subsequence), Gn → 0 a.e. and then ρn → ρ a.e.
(since y 7→ yγ is an increasing function on R+). Finally:

ρn → ρ in Lq(Ω) for all 1 ≤ q < 2γ,

pn = ργn → ργ in Lq(Ω) for all 1 ≤ q < 2,

and p = ργ .



Generalizations

I (Easy) Complete Stokes problem:
−µ∆u − µ

3∇(div u) +∇P = f , with µ ∈ R?
+ given

I (Ongoing work) Navier-Stokes Equations with γ > 1 if d = 2
and γ > 3

2 if d = 3 (probably sharp result with respect to γ
without changing the diffusion term or the EOS)

I (Open question) Other boundary condition. Addition of an
energy equation

I (Open question) Evolution equation (Stokes and
Navier-Stokes)



Additional difficulty for stat. comp. NS equations

Ω is a bounded open set of Rd , d = 2 or 3, with a Lipschitz
continuous boundary, γ > 1, f ∈ L2(Ω)d and M > 0

−∆u + div(ρu ⊗ u) +∇p = f in Ω, u = 0 on ∂Ω,

div(ρu) = 0 in Ω, ρ ≥ 0 in Ω,

∫
Ω
ρ(x) = M,

p = ργ in Ω

d = 2 : no aditional difficulty

d = 3 : no additional difficulty if γ ≥ 3. But for γ < 3, no
estimate on p in L2(Ω).



Estimates in the case of NS equations, 3
2 < γ < 3

Estimate on u : Taking u as test function in the momentum leads
to an estimate on u in (H1

0 (Ω)d since∫
Ω
ρu ⊗ u : ∇u = 0.

Then, we have also an estimate on u in L6(Ω)d (using Sobolev
embedding).

Estimate on p in Lq(Ω), with 1 < q = 3(γ−1)
γ < 2 and q → 1 when

γ → 3
2 (using the divergence lemma in Lr instead of L2, r = q

q−1 ).

Estimate on ρ in Lq(Ω), with 3
2 < q = 3(γ − 1) < 6 and q → 3

2
when γ → 3

2 (since p = ργ).

Remark : ρu ⊗ u ∈ L1(Ω), since u ∈ L6(Ω)d and ρ ∈ L
3
2 (Ω) (and

1
6 + 1

6 + 2
3 = 1).



NS equations, γ < 3, how to pass to the limit in the EOS

We prove

lim
n→∞

∫
Ω

pnρ
θ
n =

∫
Ω

pρθ,

with some convenient choice of θ > 0 instead of θ = 1.

This gives, as for θ = 1, the a.e. convergence (up to a
subsequence) of pn and ρn.



Preliminary lemma with the numerical scheme (1)
Roughly speaking, upwinding replaces div(ρu) = 0 and∫

Ω ρdx = M by

div(ρu)−hdiv(|u|∇ρ)+hα(ρ− ρ?) = 0

with ρ? = M
|Ω|

This equation as (for a given u) a solution ρ > 0 and we prove∫
Ω
ργndivn undx≤Chα,

∫
Ω
ρndivn undx≤Chα.

C depends on Ω, M and γ
Chα is due to hα(ρ− ρ?)
≤ is due to upwinding

The first inequality leads to the estimate on the approx. solution.



Preliminary lemma with the numerical scheme (2)

For the passage to the limit on the EOS∫
Ω
ρndivn undx ≤ Chα

∫
Ω
ρdiv udx = 0

give limn→∞
∫

Ω pnρndx ≤
∫

Ω pρdx = 0,
which is sufficient to prove the a.e. convergence (up to a
subsequence) of pn and ρn



Passage to the limit in the EOS with the numerical scheme

I Miracle with the Mac scheme. There exists a discrete
counterpart of∫

Ω∇u : ∇vdx =
∫

Ω(div(u)div(v) + curl(u) · curl(v))dx

I No discrete counterpart with Crouzeix-Raviart. Two possible
solutions
– Use the continuous equality. This is possible with an
additional regularization term in the mass equation (not
needed from the numerical point of view, only needed to
prove the convergence)
–Discretize

∫
Ω(div(u)div(v) + curl(u) · curl(v))dx instead of∫

Ω∇u : ∇vdx . Better for passing to the limit in the EOS but
the discretized momentum equation is not coercive (with
Crouzeix-Raviart Finite Element). One needs a penalization
term in the discrete momentum equation (crucial from the
numerical point of view)


