Convergence of approximate solutions for Stationary compressible Stokes and Navier-Stokes equations

T. Gallouët

joint work with R. Eymard, R. Herbin and J.-C. Latché

Vittel, october 2009

Fisrt step for proving the convergence of approximate solutions for the evolution compressible Navier-Stokes equations (which gives, in particular, the existence of solutions for compressible Navier Stokes equations, d = 3, $p = \rho^{\gamma}$, $\gamma > \frac{3}{2}$).

Existence of (weak) solutions is already known since the works of P. L. Lions, E. Feirsel, A. Novotny... No uniqueness result.

Aim : to prove the existence of solutions, passing to the limit on approximate solutions given by efficient numerical schemes (in particular, with schemes used in industrial codes).

Stationary compressible Stokes equations

 Ω is a bounded open set of \mathbb{R}^d , d = 2 or 3, with a Lipschitz continuous boundary, $\gamma \ge 1$, $f \in L^2(\Omega)^d$ and M > 0

$$-\Delta u + \nabla \rho = f \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega,$$
$$\operatorname{div}(\rho u) = 0 \text{ in } \Omega, \ \rho \ge 0 \text{ in } \Omega, \ \int_{\Omega} \rho(x) dx = M,$$
$$\rho = \rho^{\gamma} \text{ in } \Omega$$

Functional spaces : $u \in H_0^1(\Omega)$, $p \in L^2(\Omega)$, $\rho \in L^{2\gamma}(\Omega)$

(different spaces for p and ρ in the case of Navier-Stokes if d=3 and $\gamma<3$)

Weak solution of the stationary compressible Stokes problem

Functional spaces : $u \in H^1_0(\Omega)^d$, $p \in L^2(\Omega)$, $\rho \in L^{2\gamma}(\Omega)$

Momentum equation:

$$\int_{\Omega} \nabla u : \nabla v \, dx - \int_{\Omega} p \operatorname{div}(v) \, dx = \int_{\Omega} f \cdot v \, dx \text{ for all } v \in H^1_0(\Omega)^d$$

Mass equation:

$$\int_{\Omega} \rho u \cdot \nabla \varphi \, dx = 0 \text{ for all } \varphi \in C_c^{\infty}(\Omega)$$
$$\rho \ge 0 \text{ a.e.}, \quad \int_{\Omega} \rho \, dx = M$$

• EOS: $p = \rho^{\gamma}$

Main result

- Two possible discretizations for the momentum equation :
 MAC scheme (most commonly used scheme for incompressible Navier Stokes equations)
 Crouzeix-Raviart Finite Element
- Discretization of the mass equation (and total mass constraint) by classical upwind Finite Volume
- Existence of solution for the discrete problem
- Proof of the convergence (up to subsequence) of the solution of the discrete problem towards a weak solution of the continuous problem (no uniqueness result for this problem) as the mesh size goes to 0

Simpler result: "continuity" with respect to the data

$$-\Delta u_n + \nabla p_n = f_n \text{ in } \Omega, \quad u_n = 0 \text{ on } \partial \Omega,$$
$$\operatorname{liv}(\rho_n u_n) = 0 \quad \text{in } \Omega, \quad \rho \ge 0 \quad \text{in } \Omega, \quad \int_{\Omega} \rho_n(x) dx = M_n,$$
$$p_n = \rho_n^{\gamma} \text{ in } \Omega$$

 $\gamma > 1$, $f_n \to f$ weakly in $(L^2(\Omega))^d$ and $M_n \to M$. Then, up to a subsequence,

•
$$u_n \to u$$
 in $L^2(\Omega)^d$ and weakly in $H_0^1(\Omega)^d$,
• $p_n \to p$ in $L^q(\Omega)$ for any $1 \le q < 2$ and weakly in $L^2(\Omega)$,
• $\rho_n \to \rho$ in $L^q(\Omega)$ for any $1 \le q < 2\gamma$ and weakly in $L^{2\gamma}(\Omega)$,
where (u, p, ρ) is a weak solution of the compressible Stokes
equations (with f and M as data)

Preliminary lemma

 $\rho \in L^{2\gamma}(\Omega)$, $\rho \ge 0$ a.e. in Ω , $u \in (H_0^1(\Omega))^d$, $\operatorname{div}(\rho u) = 0$, then:

$$\int_{\Omega} \rho \operatorname{div}(u) dx = 0$$
$$\int_{\Omega} \rho^{\gamma} \operatorname{div}(u) dx = 0$$

The second part is used in order to obtain some estimates on the approximate solutions

The first part is crucial for passing to the limit on the EOS (if $\gamma>1)$

Proof of the preliminary result, ρ regular

For simplicity : $\rho \in C^1(\overline{\Omega})$, $\rho \ge \alpha$ a.e. in Ω . $1 < \beta \le \gamma$. Take $\varphi = \rho^{\beta-1}$ as test function in $\operatorname{div}(\rho u) = 0$:

$$\int_{\Omega} \rho u \cdot \nabla \rho^{\beta-1} dx = (\beta-1) \int_{\Omega} \rho^{\beta-1} u \cdot \nabla \rho dx = 0.$$

Then

$$0=\int_{\Omega}u\cdot\nabla\rho^{\beta}dx,$$

and finally

$$\int_{\Omega} \rho^{\beta} \mathrm{div}(u) dx = 0.$$

Two cases : $\beta = \gamma$ $\beta = 1 + \frac{1}{n} \text{ and } n \to \infty \text{ (or } \varphi = \ln(\rho)\text{)}$

Proof of the preliminary result, non regular ρ

One uses a "classical" lemma

 $\gamma > 1$, $\rho \in L^{2\gamma}(\mathbb{R}^d)$, and $u \in H^1(\mathbb{R}^d)^d$. Let $(r_n)_{n \in \mathbb{N}^*}$ be a sequence of mollifiers and, for $n \in \mathbb{N}^*$, $\rho_n = \rho \star r_n$ and $(\rho u)_n = (\rho u) \star r_n$.

Then, $[(\rho u)_n - \rho_n u] \to 0$ weakly in $W^{1,(2\gamma)/(\gamma+1)}(\mathbb{R}^d)^d$ (which gives, in particular, that $\operatorname{div}((\rho u)_n - \rho_n u) \to 0$ weakly in $L^{(2\gamma)/(\gamma+1)}(\mathbb{R}^d)$).

$$r \in C_c^{\infty}(\mathbb{R}^d, \mathbb{R}), \quad \int_{\mathbb{R}^d} r dx = 1, \ r \ge 0 \text{ in } \mathbb{R}^d$$

and, for $n \in \mathbb{N}^*, x \in \mathbb{R}^d, \ r_n(x) = n^d r(nx).$ (1)

Estimates on u

Taking u_n as test function in $-\Delta u_n + \nabla p_n = f_n$:

$$\int_{\Omega} \nabla u_n : \nabla u_n \, dx - \int_{\Omega} p_n \mathrm{div}(u_n) \, dx = \int_{\Omega} f_n \cdot u_n \, dx.$$

But $p_n = \rho_n^{\gamma}$ a.e. and $\operatorname{div}(\rho_n u_n) = 0$, then $\int_{\Omega} p_n \operatorname{div}(u_n) dx = 0$. This gives an estimate on u_n :

 $\|u_n\|_{(H_0^1(\Omega))^d}\leq C_1.$

Estimate on *p*, divergence Lemma

Let $q \in L^2(\Omega)$ s.t. $\int_{\Omega} q dx = 0$. Then, there exists $v \in (H_0^1(\Omega))^d$ s.t.

 $\operatorname{div}(v) = q \text{ a.e. in } \Omega,$

 $\|v\|_{(H_0^1(\Omega))^d} \leq C_2 \|q\|_{L^2(\Omega)},$

where C_2 only depends on Ω .

Estimate on p

 $m_n = \frac{1}{|\Omega|} \int_{\Omega} p_n dx, \ v_n \in H_0^1(\Omega)^d, \ \mathrm{div}(v_n) = p_n - m_n.$ Taking v_n as test function in $-\Delta u_n + \nabla p_n = f_n$:

$$\int_{\Omega} \nabla u_n : \nabla v_n \, dx - \int_{\Omega} p_n \operatorname{div}(v_n) \, dx = \int_{\Omega} f_n \cdot v_n \, dx.$$

Using $\int_{\Omega} \operatorname{div}(v_n) dx = 0$:

$$\int_{\Omega} (p_n - m_n)^2 dx = \int_{\Omega} (f_n \cdot v_n - \nabla u_n : \nabla v_n) dx.$$

Since $\|v_n\|_{(H_0^1(\Omega))^d} \leq C_2 \|p_n - m_n\|_{L^2(\Omega)}$ and $\|u_n\|_{(H_0^1(\Omega))^d} \leq C_1$, the preceding inequality leads to:

$$\|p_n-m_n\|_{L^2(\Omega)}\leq C_3.$$

where C_3 only depends on the L^2 -bound of $(f_n)_{n \in \mathbb{N}}$ and on Ω .

Estimate on p and ρ

 $\|p_n-m_n\|_{L^2(\Omega)}\leq C_3.$

$$\int_{\Omega} p_n^{\frac{1}{\gamma}} dx = \int_{\Omega} \rho_n dx \leq \sup\{M_p, p \in \mathbb{N}\}.$$

Then:

 $\|p_n\|_{L^2(\Omega)} \leq C_4;$

where C_4 only depends on the L^2 -bound of $(f_n)_{n \in \mathbb{N}}$, the bound of $(M_n)_{n \in \mathbb{N}}$, γ and Ω .

 $p_n = \rho_n^{\gamma}$ a.e. in Ω , then:

$$\|\rho_n\|_{L^{2\gamma}(\Omega)}\leq C_5=C_4^{\frac{1}{\gamma}}.$$

Thanks to the estimates on u_n , p_n , ρ_n , it is possible to assume (up to a subsequence) that, as $n \to \infty$:

 $u_n \to u$ in $L^2(\Omega)^d$ and weakly in $H^1_0(\Omega)^d$,

 $p_n \to p$ weakly in $L^2(\Omega)$,

 $\rho_n \to \rho$ weakly in $L^{2\gamma}(\Omega)$.

Passage to the limit on the equations, except EOS

Linear equation :

$$-\Delta u + \nabla p = f$$
 in Ω , $u = 0$ on $\partial \Omega$,

Strong times weak convergence

 $\operatorname{div}(\rho u) = 0 \text{ in } \Omega,$

 L^1 -weak convergence of ρ_n gives positivity of ρ and convergence of mass:

$$\rho \geq 0$$
 in Ω , $\int_{\Omega} \rho(x) dx = M$.

Passage to the limit in EOS

- No problem if $\gamma = 1$, $p = \rho$
- If $\gamma > 1$, question:

 $p = \rho^{\gamma}$ in Ω ?

 p_n and ρ_n converge only weakly...

Idea : prove $\int_{\Omega} p_n \rho_n \to \int_{\Omega} p\rho$ and deduce a.e. convergence (of p_n and ρ_n) and $p = \rho^{\gamma}$.

 $\nabla: \nabla = \operatorname{divdiv} + \operatorname{curl} \cdot \operatorname{curl}$

For all \bar{u}, \bar{v} in $H_0^1(\Omega)^d$, $\int_{\Omega} \nabla \bar{u} : \nabla \bar{v} = \int_{\Omega} \operatorname{div}(\bar{u}) \operatorname{div}(\bar{v}) + \int_{\Omega} \operatorname{curl}(\bar{u}) \cdot \operatorname{curl}(\bar{v}).$

Then, for all \bar{v} in $H_0^1(\Omega)^d$

$$\int_{\Omega} \operatorname{div}(u_n) \operatorname{div}(\bar{v}) + \int_{\Omega} \operatorname{curl}(u_n) \cdot \operatorname{curl}(\bar{v}) - \int_{\Omega} p_n \operatorname{div}(\bar{v}) = \int_{\Omega} f_n \cdot \bar{v}.$$

Choice of \bar{v} ? $\bar{v} = \bar{v}_n$ with $\operatorname{curl}(\bar{v}_n) = 0$, $\operatorname{div}(\bar{v}_n) = \rho_n$ and \bar{v}_n bounded in H_0^1 (unfortunately, 0 is impossible).

Then, up to a subsequence,

$$\bar{v}_n \to v$$
 in $L^2(\Omega)$ and weakly in $H_0^1(\Omega)$,
curl $(v) = 0$, div $(v) = \rho$.

Proof using $\bar{v}_n(1)$

$$\int_{\Omega} \operatorname{div}(u_n) \operatorname{div}(\bar{v}_n) + \int_{\Omega} \operatorname{curl}(u_n) \cdot \operatorname{curl}(\bar{v}_n) - \int_{\Omega} p_n \operatorname{div}(\bar{v}_n) = \int_{\Omega} f_n \cdot \bar{v}_n.$$

But, $\operatorname{div}(\bar{v}_n) = \rho_n$ and $\operatorname{curl}(\bar{v}_n) = 0$. Then:

$$\int_{\Omega} (\operatorname{div}(u_n) - p_n) \rho_n = \int_{\Omega} f_n \cdot \bar{v}_n$$

Weak convergence of f_n in $L^2(\Omega)^d$ to f and convergence of \bar{v}_n in $L^2(\Omega)^d$ to v:

$$\lim_{n\to\infty}\int_{\Omega}(\operatorname{div}(u_n)-p_n)\rho_n=\int_{\Omega}f\cdot v.$$

Proof using \bar{v}_n (2)

But, since $-\Delta u + \nabla p = f$:

$$\int_{\Omega} \operatorname{div}(u) \operatorname{div}(v) + \int_{\Omega} \operatorname{curl}(u) \cdot \operatorname{curl}(v) - \int_{\Omega} p \operatorname{div}(v) = \int_{\Omega} f \cdot v.$$

which gives (using div(v) = ρ and curl(v) = 0): $\int_{\Omega} (\operatorname{div}(u) - \rho)\rho = \int_{\Omega} f \cdot v. \text{ Then:}$

$$\lim_{n\to\infty}\int_{\Omega}(p_n-\operatorname{div}(u_n))\rho_n=\int_{\Omega}(p-\operatorname{div}(u))\rho.$$

Finally, the preliminary lemma gives, thanks to the mass equations, $\int_{\Omega} \rho_n \operatorname{div}(u_n) = 0$ and $\int_{\Omega} \rho \operatorname{div}(u) = 0$. Then,

$$\lim_{n\to\infty}\int_{\Omega}p_n\rho_n=\int_{\Omega}p\rho.$$

Unfortunately, it is impossible to have $\bar{\nu}_n \in H^1_0$

Curl-free test function

Let $w_n \in H^1_0(\Omega)$, $-\Delta w_n = \rho_n$, One has $w_n \in H^2_{loc}(\Omega)$ since, for $\varphi \in C^{\infty}_c(\Omega)$, one has $\Delta(w_n \varphi) \in L^2(\Omega)$ and

$$\begin{split} \sum_{i,j=1}^{d} \int_{\Omega} \partial_{i} \partial_{j}(w_{n}\varphi) \partial_{i} \partial_{j}(w_{n}\varphi) &= \sum_{i,j=1}^{d} \int_{\Omega} \partial_{i} \partial_{i}(w_{n}\varphi) \partial_{j} \partial_{j}(w_{n}\varphi) \\ &= \int_{\Omega} (\Delta(w_{n}\varphi))^{2} = C_{\varphi} < \infty \end{split}$$

Then, taking $v_n = \nabla w_n$

- ► $v_n \in (H^1_{loc}(\Omega))^d$,
- $\operatorname{div}(v_n) = \rho_n$ a.e. in Ω ,
- $\operatorname{curl}(v_n) = 0$ a.e. in Ω ,
- $H^1_{loc}(\Omega)$ -estimate on v_n with respect to $\|\rho_n\|_{L^2(\Omega)}$.

Then, up to a subsequence, as $n \to \infty$, $v_n \to v$ in $L^2_{loc}(\Omega)$ and weakly in $H^1_{loc}(\Omega)$, $\operatorname{curl}(v) = 0$, $\operatorname{div}(v) = \rho$.

Proof of $\int_{\Omega} (p_n - \operatorname{div}(u_n)) \rho_n \varphi \to \int_{\Omega} (p - \operatorname{div}(u)) \rho \varphi$

Let $\varphi \in C_c^{\infty}(\Omega)$ (so that $v_n \varphi \in H_0^1(\Omega)^d$)). Taking $\bar{v} = v_n \varphi$:

$$\begin{split} \int_{\Omega} \operatorname{div}(u_n) \operatorname{div}(v_n \varphi) &+ \int_{\Omega} \operatorname{curl}(u_n) \cdot \operatorname{curl}(v_n \varphi) - \int_{\Omega} p_n \operatorname{div}(v_n \varphi) \\ &= \int_{\Omega} f_n \cdot (v_n \varphi). \end{split}$$

Using a proof similar to that given if $\varphi = 1$ (with additionnal terms involving φ), we obtain :

$$\lim_{n\to\infty}\int_{\Omega}(p_n-\operatorname{div}(u_n))\rho_n\varphi=\int_{\Omega}(p-\operatorname{div}(u))\rho\varphi,$$

Proving $\int_{\Omega} (p_n - \operatorname{div}(u_n)) \rho_n \varphi \to \int_{\Omega} (p - \operatorname{div}(u)) \rho \varphi$ Let $\varphi \in C_c^{\infty}(\Omega)$ (so that $v_n \varphi \in H_0^1(\Omega)^d$)). Taking $\bar{v} = v_n \varphi$: $\int_{\Omega} \operatorname{div}(u_n) \operatorname{div}(v_n \varphi) + \int_{\Omega} \operatorname{curl}(u_n) \cdot \operatorname{curl}(v_n \varphi) - \int_{\Omega} p_n \operatorname{div}(v_n \varphi)$ $= \int_{\Omega} f_n \cdot (v_n \varphi).$

But, $\operatorname{div}(v_n\varphi) = \rho_n\varphi + v_n \cdot \nabla\varphi$ and $\operatorname{curl}(v_n\varphi) = L(\varphi)v_n$, where $L(\varphi)$ is a matrix involving the first order derivatives of φ . Then:

$$\int_{\Omega} (\operatorname{div}(u_n) - p_n) \rho_n \varphi = \int_{\Omega} f_n \cdot (v_n \varphi) - \int_{\Omega} \operatorname{div}(u_n) v_n \cdot \nabla \varphi - \int \operatorname{curl}(u_n) \cdot L(\varphi) v_n + \int_{\Omega} p_n v_n \cdot \nabla \varphi.$$

Weak convergence of u_n in $H_0^1(\Omega)^d$, weak convergence of p_n and f_n in $L^2(\Omega)$ and convergence of v_n in $L_{loc}^2(\Omega)^d$:

$$\begin{split} \lim_{n\to\infty} \int_{\Omega} (\operatorname{div}(u_n) - p_n) \rho_n \varphi &= \int_{\Omega} f \cdot (v\varphi) \\ - \int_{\Omega} \operatorname{div}(u) v \cdot \nabla \varphi - \int \operatorname{curl}(u) \cdot L(\varphi) v + \int_{\Omega} p v \cdot \nabla \varphi. \end{split}$$

Proof of $\int_{\Omega} (p_n - \operatorname{div}(u_n)) \rho_n \varphi \to \int_{\Omega} (p - \operatorname{div}(u)) \rho \varphi$

But, since $-\Delta u + \nabla p = f$:

 $\int_{\Omega} \operatorname{div}(u) \operatorname{div}(v\varphi) + \int_{\Omega} \operatorname{curl}(u) \cdot \operatorname{curl}(v\varphi) - \int_{\Omega} p \operatorname{div}(v\varphi) \\ = \int_{\Omega} f \cdot (v\varphi).$

which gives (using $\operatorname{div}(v) = \rho$ and $\operatorname{curl}(v) = 0$):

$$\int_{\Omega} (\operatorname{div}(u) - p) \rho \varphi = \int_{\Omega} f \cdot (v\varphi) - \int_{\Omega} \operatorname{div}(u) v \cdot \nabla \varphi - \int \operatorname{curl}(u) \cdot L(\varphi) v + \int_{\Omega} p v \cdot \nabla \varphi.$$

Then:

$$\lim_{n\to\infty}\int_{\Omega}(p_n-\operatorname{div}(u_n))\rho_n\varphi=\int_{\Omega}(p-\operatorname{div}(u))\rho\varphi.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Proof of $\int_{\Omega} (p_n - \operatorname{div}(u_n)) \rho_n \to \int_{\Omega} (p - \operatorname{div}(u)) \rho$

Lemma : $F_n \to F$ in $D'(\Omega)$, $(F_n)_{n \in \mathbb{N}}$ bounded in L^q for some q > 1. Then $F_n \to F$ weakly in L^1 .

With $F_n = (p_n - \operatorname{div}(u_n))\rho_n$, $F = (p - \operatorname{div}(u))\rho$ and since $\gamma > 1$, the lemma gives

$$\int_{\Omega} (p_n - \operatorname{div}(u_n)) \rho_n \to \int_{\Omega} (p - \operatorname{div}(u)) \rho$$

Proving $\int_{\Omega} p_n \rho_n \to \int_{\Omega} p \rho$

$$\int_{\Omega} (p_n - \operatorname{div}(u_n)) \rho_n \to \int_{\Omega} (p - \operatorname{div}(u)) \rho_n$$

But thanks to the mass equations, the preliminary lemma gives:

$$\int_{\Omega} \operatorname{div}(u_n)\rho_n = 0, \ \int_{\Omega} \operatorname{div}(u)\rho = 0;$$

Then:

$$\lim_{n\to\infty}\int_{\Omega}p_n\rho_n=\int_{\Omega}p\rho.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○ ○

a.e. convergence of ρ_n and p_n

Let $G_n = (\rho_n^{\gamma} - \rho^{\gamma})(\rho_n - \rho) \in L^1(\Omega)$ and $G_n \ge 0$ a.e. in Ω . Futhermore $G_n = (p_n - \rho^{\gamma})(\rho_n - \rho) = p_n\rho_n - p_n\rho - \rho^{\gamma}\rho_n + \rho^{\gamma}\rho$ and:

$$\int_{\Omega} G_n = \int_{\Omega} p_n \rho_n - \int_{\Omega} p_n \rho - \int_{\Omega} \rho^{\gamma} \rho_n + \int_{\Omega} \rho^{\gamma} \rho_n$$

Using the weak convergence in $L^2(\Omega)$ of p_n and ρ_n and $\lim_{n\to\infty} \int_{\Omega} p_n \rho_n = \int_{\Omega} p\rho$:

$$\lim_{n\to\infty}\int_{\Omega}G_n=0$$

Then (up to a subsequence), $G_n \to 0$ a.e. and then $\rho_n \to \rho$ a.e. (since $y \mapsto y^{\gamma}$ is an increasing function on \mathbb{R}_+). Finally: $\rho_n \to \rho$ in $L^q(\Omega)$ for all $1 \le q < 2\gamma$, $p_n = \rho_n^{\gamma} \to \rho^{\gamma}$ in $L^q(\Omega)$ for all $1 \le q < 2$, and $p = \rho^{\gamma}$.

Generalizations

- ► (Easy) Complete Stokes problem: $-\mu\Delta u - \frac{\mu}{3}\nabla(\operatorname{div} u) + \nabla P = f$, with $\mu \in \mathbb{R}^{\star}_{+}$ given
- Ongoing work) Navier-Stokes Equations with γ > 1 if d = 2 and γ > ³/₂ if d = 3 (probably sharp result with respect to γ without changing the diffusion term or the EOS)
- (Open question) Other boundary condition. Addition of an energy equation

 (Open question) Evolution equation (Stokes and Navier-Stokes) Additional difficulty for stat. comp. NS equations

 Ω is a bounded open set of \mathbb{R}^d , d = 2 or 3, with a Lipschitz continuous boundary, $\gamma > 1$, $f \in L^2(\Omega)^d$ and M > 0

$$\begin{aligned} -\Delta u + \operatorname{div}(\rho u \otimes u) + \nabla p &= f \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega, \\ \operatorname{div}(\rho u) &= 0 \quad \text{in } \Omega, \ \rho \geq 0 \quad \text{in } \Omega, \ \int_{\Omega} \rho(x) = M, \\ p &= \rho^{\gamma} \text{ in } \Omega \end{aligned}$$

d = 2: no aditional difficulty d = 3: no additional difficulty if $\gamma \ge 3$. But for $\gamma < 3$, no estimate on p in $L^2(\Omega)$. Estimates in the case of NS equations, $\frac{3}{2} < \gamma < 3$

Estimate on u: Taking u as test function in the momentum leads to an estimate on u in $(H_0^1(\Omega)^d$ since

$$\int_{\Omega} \rho u \otimes u : \nabla u = 0.$$

Then, we have also an estimate on u in $L^6(\Omega)^d$ (using Sobolev embedding).

Estimate on p in $L^q(\Omega)$, with $1 < q = \frac{3(\gamma-1)}{\gamma} < 2$ and $q \to 1$ when $\gamma \to \frac{3}{2}$ (using the divergence lemma in L^r instead of L^2 , $r = \frac{q}{q-1}$).

Estimate on ρ in $L^q(\Omega)$, with $\frac{3}{2} < q = 3(\gamma - 1) < 6$ and $q \rightarrow \frac{3}{2}$ when $\gamma \rightarrow \frac{3}{2}$ (since $p = \rho^{\gamma}$).

Remark : $\rho u \otimes u \in L^1(\Omega)$, since $u \in L^6(\Omega)^d$ and $\rho \in L^{\frac{3}{2}}(\Omega)$ (and $\frac{1}{6} + \frac{1}{6} + \frac{2}{3} = 1$).

NS equations, γ < 3, how to pass to the limit in the EOS

We prove

$$\lim_{n\to\infty}\int_{\Omega}p_n\rho_n^{\theta}=\int_{\Omega}p\rho^{\theta},$$

with some convenient choice of $\theta > 0$ instead of $\theta = 1$.

This gives, as for $\theta = 1$, the a.e. convergence (up to a subsequence) of p_n and ρ_n .

Preliminary lemma with the numerical scheme (1)

Roughly speaking, upwinding replaces $\operatorname{div}(\rho u) = 0$ and $\int_{\Omega} \rho dx = M$ by

$$\operatorname{div}(\rho u) - h \operatorname{div}(|u|\nabla \rho) + h^{\alpha}(\rho - \rho^{\star}) = 0$$

with $\rho^{\star} = \frac{M}{|\Omega|}$ This equation as (for a given *u*) a solution $\rho > 0$ and we prove

$$\int_{\Omega} \rho_n^{\gamma} \operatorname{div}_n u_n dx \leq C h^{\alpha},$$
$$\int_{\Omega} \rho_n \operatorname{div}_n u_n dx \leq C h^{\alpha}.$$

 $\begin{array}{l} {\it C} \mbox{ depends on } \Omega, \ {\it M} \ \mbox{and } \gamma \\ {\it Ch}^{\alpha} \mbox{ is due to } h^{\alpha}(\rho-\rho^{\star}) \\ \leq \mbox{ is due to upwinding} \end{array}$

The first inequality leads to the estimate on the approx. solution.

Preliminary lemma with the numerical scheme (2)

For the passage to the limit on the EOS

$$\int_{\Omega} \rho_n \operatorname{div}_n u_n dx \le Ch^{\alpha}$$
$$\int_{\Omega} \rho \operatorname{div} u dx = 0$$

give $\lim_{n\to\infty} \int_{\Omega} p_n \rho_n dx \leq \int_{\Omega} p\rho dx = 0$, which is sufficient to prove the a.e. convergence (up to a subsequence) of p_n and ρ_n Passage to the limit in the EOS with the numerical scheme

 Miracle with the Mac scheme. There exists a discrete counterpart of

 $\int_{\Omega} \nabla u : \nabla v dx = \int_{\Omega} (\operatorname{div}(u) \operatorname{div}(v) + \operatorname{curl}(u) \cdot \operatorname{curl}(v)) dx$

No discrete counterpart with Crouzeix-Raviart. Two possible solutions

- Use the continuous equality. This is possible with an additional regularization term in the mass equation (not needed from the numerical point of view, only needed to prove the convergence)

-Discretize $\int_{\Omega} (\operatorname{div}(u) \operatorname{div}(v) + \operatorname{curl}(u) \cdot \operatorname{curl}(v)) dx$ instead of $\int_{\Omega} \nabla u : \nabla v dx$. Better for passing to the limit in the EOS but the discretized momentum equation is not coercive (with Crouzeix-Raviart Finite Element). One needs a penalization term in the discrete momentum equation (crucial from the numerical point of view)