Convergence of approximate solutions for Stationary compressible Stokes and Navier-Stokes equations

T. Gallouët

joint work with
R. Eymard, R. Herbin and J.-C. Latché

Vittel, october 2009

Fisrt step for proving the convergence of approximate solutions for the evolution compressible Navier-Stokes equations (which gives, in particular, the existence of solutions for compressible Navier Stokes equations, $\left.d=3, p=\rho^{\gamma}, \gamma>\frac{3}{2}\right)$.

Existence of (weak) solutions is already known since the works of P. L. Lions, E. Feirsel, A. Novotny. . .

No uniqueness result.
Aim : to prove the existence of solutions, passing to the limit on approximate solutions given by efficient numerical schemes (in particular, with schemes used in industrial codes).

Stationary compressible Stokes equations

Ω is a bounded open set of $\mathbb{R}^{d}, d=2$ or 3 , with a Lipschitz continuous boundary, $\gamma \geq 1, f \in L^{2}(\Omega)^{d}$ and $M>0$

$$
\begin{gathered}
-\Delta u+\nabla p=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \\
\operatorname{div}(\rho u)=0 \text { in } \Omega, \rho \geq 0 \text { in } \Omega, \int_{\Omega} \rho(x) d x=M \\
p=\rho^{\gamma} \text { in } \Omega
\end{gathered}
$$

Functional spaces : $u \in H_{0}^{1}(\Omega), p \in L^{2}(\Omega), \rho \in L^{2 \gamma}(\Omega)$
(different spaces for p and ρ in the case of Navier-Stokes if $d=3$ and $\gamma<3$)

Weak solution of the stationary compressible Stokes

 problemFunctional spaces : $u \in H_{0}^{1}(\Omega)^{d}, p \in L^{2}(\Omega), \rho \in L^{2 \gamma}(\Omega)$

- Momentum equation:

$$
\int_{\Omega} \nabla u: \nabla v d x-\int_{\Omega} p \operatorname{div}(v) d x=\int_{\Omega} f \cdot v d x \text { for all } v \in H_{0}^{1}(\Omega)^{d}
$$

- Mass equation:

$$
\begin{gathered}
\int_{\Omega} \rho u \cdot \nabla \varphi d x=0 \text { for all } \varphi \in C_{c}^{\infty}(\Omega) \\
\rho \geq 0 \text { a.e., } \quad \int_{\Omega} \rho d x=M
\end{gathered}
$$

- EOS: $p=\rho^{\gamma}$

Main result

- Two possible discretizations for the momentum equation : \rightsquigarrow MAC scheme (most commonly used scheme for incompressible Navier Stokes equations) \rightsquigarrow Crouzeix-Raviart Finite Element
- Discretization of the mass equation (and total mass constraint) by classical upwind Finite Volume
- Existence of solution for the discrete problem
- Proof of the convergence (up to subsequence) of the solution of the discrete problem towards a weak solution of the continuous problem (no uniqueness result for this problem) as the mesh size goes to 0

Simpler result: "continuity" with respect to the data

$$
\begin{gathered}
-\Delta u_{n}+\nabla p_{n}=f_{n} \text { in } \Omega, \quad u_{n}=0 \text { on } \partial \Omega \\
\operatorname{div}\left(\rho_{n} u_{n}\right)=0 \text { in } \Omega, \rho \geq 0 \text { in } \Omega, \int_{\Omega} \rho_{n}(x) d x=M_{n}, \\
p_{n}=\rho_{n}^{\gamma} \text { in } \Omega
\end{gathered}
$$

$\gamma>1, f_{n} \rightarrow f$ weakly in $\left(L^{2}(\Omega)\right)^{d}$ and $M_{n} \rightarrow M$. Then, up to a subsequence,

- $u_{n} \rightarrow u$ in $L^{2}(\Omega)^{d}$ and weakly in $H_{0}^{1}(\Omega)^{d}$,
- $p_{n} \rightarrow p$ in $L^{q}(\Omega)$ for any $1 \leq q<2$ and weakly in $L^{2}(\Omega)$,
- $\rho_{n} \rightarrow \rho$ in $L^{q}(\Omega)$ for any $1 \leq q<2 \gamma$ and weakly in $L^{2 \gamma}(\Omega)$, where (u, p, ρ) is a weak solution of the compressible Stokes equations (with f and M as data)

Preliminary lemma

$\rho \in L^{2 \gamma}(\Omega), \rho \geq 0$ a.e. in $\Omega, u \in\left(H_{0}^{1}(\Omega)\right)^{d}, \operatorname{div}(\rho u)=0$, then:

$$
\begin{aligned}
& \int_{\Omega} \rho \operatorname{div}(u) d x=0 \\
& \int_{\Omega} \rho^{\gamma} \operatorname{div}(u) d x=0
\end{aligned}
$$

The second part is used in order to obtain some estimates on the approximate solutions

The first part is crucial for passing to the limit on the EOS (if $\gamma>1$)

Proof of the preliminary result, ρ regular

For simplicity : $\rho \in C^{1}(\bar{\Omega}), \rho \geq \alpha$ a.e. in Ω.
$1<\beta \leq \gamma$. Take $\varphi=\rho^{\beta-1}$ as test function in $\operatorname{div}(\rho u)=0$:

$$
\int_{\Omega} \rho u \cdot \nabla \rho^{\beta-1} d x=(\beta-1) \int_{\Omega} \rho^{\beta-1} u \cdot \nabla \rho d x=0
$$

Then

$$
0=\int_{\Omega} u \cdot \nabla \rho^{\beta} d x
$$

and finally

$$
\int_{\Omega} \rho^{\beta} \operatorname{div}(u) d x=0
$$

Two cases :
$\beta=\gamma$
$\beta=1+\frac{1}{n}$ and $n \rightarrow \infty($ or $\varphi=\ln (\rho))$

Proof of the preliminary result, non regular ρ

One uses a "classical" lemma
$\gamma>1, \rho \in L^{2 \gamma}\left(\mathbb{R}^{d}\right)$, and $u \in H^{1}\left(\mathbb{R}^{d}\right)^{d}$.
Let $\left(r_{n}\right)_{n \in \mathbb{N}^{\star}}$ be a sequence of mollifiers and, for $n \in \mathbb{N}^{\star}$,
$\rho_{n}=\rho \star r_{n}$ and $(\rho u)_{n}=(\rho u) \star r_{n}$.
Then, $\left[(\rho u)_{n}-\rho_{n} u\right] \rightarrow 0$ weakly in $W^{1,(2 \gamma) /(\gamma+1)}\left(\mathbb{R}^{d}\right)^{d}$ (which gives, in particular, that $\operatorname{div}\left((\rho u)_{n}-\rho_{n} u\right) \rightarrow 0$ weakly in $\left.L^{(2 \gamma) /(\gamma+1)}\left(\mathbb{R}^{d}\right)\right)$.

$$
\begin{align*}
& r \in C_{c}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right), \int_{\mathbb{R}^{d}} r d x=1, r \geq 0 \text { in } \mathbb{R}^{d} \tag{1}\\
& \text { and, for } n \in \mathbb{N}^{\star}, x \in \mathbb{R}^{d}, r_{n}(x)=n^{d} r(n x) .
\end{align*}
$$

Estimates on u

Taking u_{n} as test function in $-\Delta u_{n}+\nabla p_{n}=f_{n}$:

$$
\int_{\Omega} \nabla u_{n}: \nabla u_{n} d x-\int_{\Omega} p_{n} \operatorname{div}\left(u_{n}\right) d x=\int_{\Omega} f_{n} \cdot u_{n} d x
$$

But $p_{n}=\rho_{n}^{\gamma}$ a.e. and $\operatorname{div}\left(\rho_{n} u_{n}\right)=0$, then $\int_{\Omega} p_{n} \operatorname{div}\left(u_{n}\right) d x=0$. This gives an estimate on u_{n} :

$$
\left\|u_{n}\right\|_{\left(H_{0}^{1}(\Omega)\right)^{d}} \leq C_{1} .
$$

Estimate on p, divergence Lemma

Let $q \in L^{2}(\Omega)$ s.t. $\int_{\Omega} q d x=0$.
Then, there exists $v \in\left(H_{0}^{1}(\Omega)\right)^{d}$ s.t.

$$
\operatorname{div}(v)=q \text { a.e. in } \Omega
$$

$$
\|v\|_{\left(H_{0}^{1}(\Omega)\right)^{d}} \leq C_{2}\|q\|_{L^{2}(\Omega)}
$$

where C_{2} only depends on Ω.

Estimate on p

$m_{n}=\frac{1}{|\Omega|} \int_{\Omega} p_{n} d x, v_{n} \in H_{0}^{1}(\Omega)^{d}, \operatorname{div}\left(v_{n}\right)=p_{n}-m_{n}$.
Taking v_{n} as test function in $-\Delta u_{n}+\nabla p_{n}=f_{n}$:

$$
\int_{\Omega} \nabla u_{n}: \nabla v_{n} d x-\int_{\Omega} p_{n} \operatorname{div}\left(v_{n}\right) d x=\int_{\Omega} f_{n} \cdot v_{n} d x
$$

Using $\int_{\Omega} \operatorname{div}\left(v_{n}\right) d x=0$:

$$
\int_{\Omega}\left(p_{n}-m_{n}\right)^{2} d x=\int_{\Omega}\left(f_{n} \cdot v_{n}-\nabla u_{n}: \nabla v_{n}\right) d x .
$$

Since $\left\|v_{n}\right\|_{\left(H_{0}^{1}(\Omega)\right)^{d}} \leq C_{2}\left\|p_{n}-m_{n}\right\|_{L^{2}(\Omega)}$ and $\left\|u_{n}\right\|_{\left(H_{0}^{1}(\Omega)\right)^{d}} \leq C_{1}$, the preceding inequality leads to:

$$
\left\|p_{n}-m_{n}\right\|_{L^{2}(\Omega)} \leq C_{3}
$$

where C_{3} only depends on the L^{2}-bound of $\left(f_{n}\right)_{n \in \mathbb{N}}$ and on Ω.

Estimate on p and ρ

$$
\begin{gathered}
\left\|p_{n}-m_{n}\right\|_{L^{2}(\Omega)} \leq C_{3} \\
\int_{\Omega} p_{n}^{\frac{1}{\gamma}} d x=\int_{\Omega} \rho_{n} d x \leq \sup \left\{M_{p}, p \in \mathbb{N}\right\} .
\end{gathered}
$$

Then:

$$
\left\|p_{n}\right\|_{L^{2}(\Omega)} \leq C_{4} ;
$$

where C_{4} only depends on the L^{2}-bound of $\left(f_{n}\right)_{n \in \mathbb{N}}$, the bound of $\left(M_{n}\right)_{n \in \mathbb{N}}, \gamma$ and Ω.
$p_{n}=\rho_{n}^{\gamma}$ a.e. in Ω, then:

$$
\left\|\rho_{n}\right\|_{L^{2 \gamma}(\Omega)} \leq C_{5}=C_{4}^{\frac{1}{\gamma}}
$$

Weak-convergence on u_{n}, p_{n}, ρ_{n}

Thanks to the estimates on u_{n}, p_{n}, ρ_{n}, it is possible to assume (up to a subsequence) that, as $n \rightarrow \infty$:

$$
u_{n} \rightarrow u \text { in } L^{2}(\Omega)^{d} \text { and weakly in } H_{0}^{1}(\Omega)^{d}
$$

$$
\begin{aligned}
& p_{n} \rightarrow p \text { weakly in } L^{2}(\Omega), \\
& \rho_{n} \rightarrow \rho \text { weakly in } L^{2 \gamma}(\Omega) .
\end{aligned}
$$

Passage to the limit on the equations, except EOS

Linear equation :

$$
-\Delta u+\nabla p=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
$$

Strong times weak convergence

$$
\operatorname{div}(\rho u)=0 \text { in } \Omega
$$

L^{1}-weak convergence of ρ_{n} gives positivity of ρ and convergence of mass:

$$
\rho \geq 0 \text { in } \Omega, \int_{\Omega} \rho(x) d x=M
$$

Passage to the limit in EOS

- No problem if $\gamma=1, p=\rho$
- If $\gamma>1$, question:

$$
p=\rho^{\gamma} \text { in } \Omega \text { ? }
$$

p_{n} and ρ_{n} converge only weakly...
Idea : prove $\int_{\Omega} p_{n} \rho_{n} \rightarrow \int_{\Omega} p \rho$ and deduce a.e. convergence (of p_{n} and ρ_{n}) and $p=\rho^{\gamma}$.

$\nabla: \nabla=$ divdiv + curl \cdot curl

For all \bar{u}, \bar{v} in $H_{0}^{1}(\Omega)^{d}$,

$$
\int_{\Omega} \nabla \bar{u}: \nabla \bar{v}=\int_{\Omega} \operatorname{div}(\bar{u}) \operatorname{div}(\bar{v})+\int_{\Omega} \operatorname{curl}(\bar{u}) \cdot \operatorname{curl}(\bar{v}) .
$$

Then, for all \bar{v} in $H_{0}^{1}(\Omega)^{d}$
$\int_{\Omega} \operatorname{div}\left(u_{n}\right) \operatorname{div}(\bar{v})+\int_{\Omega} \operatorname{curl}\left(u_{n}\right) \cdot \operatorname{curl}(\bar{v})-\int_{\Omega} p_{n} \operatorname{div}(\bar{v})=\int_{\Omega} f_{n} \cdot \bar{v}$.
Choice of $\bar{v} ? \bar{v}=\bar{v}_{n}$ with $\operatorname{curl}\left(\bar{v}_{n}\right)=0, \operatorname{div}\left(\bar{v}_{n}\right)=\rho_{n}$ and \bar{v}_{n} bounded in H_{0}^{1} (unfortunately, 0 is impossible).
Then, up to a subsequence,
$\bar{v}_{n} \rightarrow v$ in $L^{2}(\Omega)$ and weakly in $H_{0}^{1}(\Omega)$,
$\operatorname{curl}(v)=0, \operatorname{div}(v)=\rho$.

Proof using $\bar{v}_{n}(1)$

$\int_{\Omega} \operatorname{div}\left(u_{n}\right) \operatorname{div}\left(\bar{v}_{n}\right)+\int_{\Omega} \operatorname{curl}\left(u_{n}\right) \cdot \operatorname{curl}\left(\bar{v}_{n}\right)-\int_{\Omega} p_{n} \operatorname{div}\left(\bar{v}_{n}\right)=\int_{\Omega} f_{n} \cdot \bar{v}_{n}$.
But, $\operatorname{div}\left(\bar{v}_{n}\right)=\rho_{n}$ and $\operatorname{curl}\left(\bar{v}_{n}\right)=0$. Then:

$$
\int_{\Omega}\left(\operatorname{div}\left(u_{n}\right)-p_{n}\right) \rho_{n}=\int_{\Omega} f_{n} \cdot \bar{v}_{n} .
$$

Weak convergence of f_{n} in $L^{2}(\Omega)^{d}$ to f and convergence of \bar{v}_{n} in $L^{2}(\Omega)^{d}$ to v :

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left(\operatorname{div}\left(u_{n}\right)-p_{n}\right) \rho_{n}=\int_{\Omega} f \cdot v .
$$

Proof using $\bar{v}_{n}(2)$

But, since $-\Delta u+\nabla p=f$:

$$
\int_{\Omega} \operatorname{div}(u) \operatorname{div}(v)+\int_{\Omega} \operatorname{curl}(u) \cdot \operatorname{curl}(v)-\int_{\Omega} p \operatorname{div}(v)=\int_{\Omega} f \cdot v .
$$

which gives (using $\operatorname{div}(v)=\rho$ and $\operatorname{curl}(v)=0$):
$\int_{\Omega}(\operatorname{div}(u)-p) \rho=\int_{\Omega} f \cdot v$. Then:

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n}=\int_{\Omega}(p-\operatorname{div}(u)) \rho
$$

Finally, the preliminary lemma gives, thanks to the mass equations, $\int_{\Omega} \rho_{n} \operatorname{div}\left(u_{n}\right)=0$ and $\int_{\Omega} \rho \operatorname{div}(u)=0$. Then,

$$
\lim _{n \rightarrow \infty} \int_{\Omega} p_{n} \rho_{n}=\int_{\Omega} p \rho
$$

Unfortunately, it is impossible to have $\bar{v}_{n} \in H_{0}^{1}$

Curl-free test function

Let $w_{n} \in H_{0}^{1}(\Omega),-\Delta w_{n}=\rho_{n}$,
One has $w_{n} \in H_{\text {loc }}^{2}(\Omega)$ since, for $\varphi \in C_{c}^{\infty}(\Omega)$, one has $\Delta\left(w_{n} \varphi\right) \in L^{2}(\Omega)$ and

$$
\begin{gathered}
\sum_{i, j=1}^{d} \int_{\Omega} \partial_{i} \partial_{j}\left(w_{n} \varphi\right) \partial_{i} \partial_{j}\left(w_{n} \varphi\right)=\sum_{i, j=1}^{d} \int_{\Omega} \partial_{i} \partial_{i}\left(w_{n} \varphi\right) \partial_{j} \partial_{j}\left(w_{n} \varphi\right) \\
=\int_{\Omega}\left(\Delta\left(w_{n} \varphi\right)\right)^{2}=C_{\varphi}<\infty
\end{gathered}
$$

Then, taking $v_{n}=\nabla w_{n}$

- $v_{n} \in\left(H_{l o c}^{1}(\Omega)\right)^{d}$,
- $\operatorname{div}\left(v_{n}\right)=\rho_{n}$ a.e. in Ω,
- $\operatorname{curl}\left(v_{n}\right)=0$ a.e. in Ω,
- $H_{l o c}^{1}(\Omega)$-estimate on v_{n} with respect to $\left\|\rho_{n}\right\|_{L^{2}(\Omega)}$.

Then, up to a subsequence, as $n \rightarrow \infty, v_{n} \rightarrow v$ in $L_{l o c}^{2}(\Omega)$ and weakly in $H_{l o c}^{1}(\Omega), \operatorname{curl}(v)=0, \operatorname{div}(v)=\rho$.

Proof of $\int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n} \varphi \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi$

Let $\varphi \in C_{c}^{\infty}(\Omega)$ (so that $\left.v_{n} \varphi \in H_{0}^{1}(\Omega)^{d}\right)$). Taking $\bar{v}=v_{n} \varphi$:

$$
\begin{gathered}
\int_{\Omega} \operatorname{div}\left(u_{n}\right) \operatorname{div}\left(v_{n} \varphi\right)+\int_{\Omega} \operatorname{curl}\left(u_{n}\right) \cdot \operatorname{curl}\left(v_{n} \varphi\right)-\int_{\Omega} p_{n} \operatorname{div}\left(v_{n} \varphi\right) \\
=\int_{\Omega} f_{n} \cdot\left(v_{n} \varphi\right) .
\end{gathered}
$$

Using a proof similar to that given if $\varphi=1$ (with additionnal terms involving φ), we obtain :

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n} \varphi=\int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi,
$$

Proving $\int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n} \varphi \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi$

Let $\varphi \in C_{c}^{\infty}(\Omega)$ (so that $\left.v_{n} \varphi \in H_{0}^{1}(\Omega)^{d}\right)$). Taking $\bar{v}=v_{n} \varphi$:

$$
\begin{gathered}
\int_{\Omega} \operatorname{div}\left(u_{n}\right) \operatorname{div}\left(v_{n} \varphi\right)+\int_{\Omega} \operatorname{curl}\left(u_{n}\right) \cdot \operatorname{curl}\left(v_{n} \varphi\right)-\int_{\Omega} p_{n} \operatorname{div}\left(v_{n} \varphi\right) \\
=\int_{\Omega} f_{n} \cdot\left(v_{n} \varphi\right) .
\end{gathered}
$$

But, $\operatorname{div}\left(v_{n} \varphi\right)=\rho_{n} \varphi+v_{n} \cdot \nabla \varphi$ and $\operatorname{curl}\left(v_{n} \varphi\right)=L(\varphi) v_{n}$, where $L(\varphi)$ is a matrix involving the first order derivatives of φ. Then:

$$
\begin{aligned}
& \int_{\Omega}\left(\operatorname{div}\left(u_{n}\right)-p_{n}\right) \rho_{n} \varphi=\int_{\Omega} f_{n} \cdot\left(v_{n} \varphi\right) \\
& -\int_{\Omega} \operatorname{div}\left(u_{n}\right) v_{n} \cdot \nabla \varphi-\int \operatorname{curl}\left(u_{n}\right) \cdot L(\varphi) v_{n}+\int_{\Omega} p_{n} v_{n} \cdot \nabla \varphi .
\end{aligned}
$$

Weak convergence of u_{n} in $H_{0}^{1}(\Omega)^{d}$, weak convergence of p_{n} and f_{n} in $L^{2}(\Omega)$ and convergence of v_{n} in $L_{l o c}^{2}(\Omega)^{d}$:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{\Omega}\left(\operatorname{div}\left(u_{n}\right)-p_{n}\right) \rho_{n} \varphi=\int_{\Omega} f \cdot(v \varphi) \\
& -\int_{\Omega} \operatorname{div}(u) v \cdot \nabla \varphi-\int \operatorname{curl}(u) \cdot L(\varphi) v+\int_{\Omega} p v \cdot \nabla \varphi .
\end{aligned}
$$

Proof of $\int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n} \varphi \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi$

But, since $-\Delta u+\nabla p=f$:

$$
\begin{gathered}
\int_{\Omega} \operatorname{div}(u) \operatorname{div}(v \varphi)+\int_{\Omega} \operatorname{curl}(u) \cdot \operatorname{curl}(v \varphi)-\int_{\Omega} p \operatorname{div}(v \varphi) \\
=\int_{\Omega} f \cdot(v \varphi) .
\end{gathered}
$$

which gives (using $\operatorname{div}(v)=\rho$ and $\operatorname{curl}(v)=0$):

$$
\begin{aligned}
& \int_{\Omega}(\operatorname{div}(u)-p) \rho \varphi=\int_{\Omega} f \cdot(v \varphi) \\
& -\int_{\Omega} \operatorname{div}(u) v \cdot \nabla \varphi-\int \operatorname{curl}(u) \cdot L(\varphi) v+\int_{\Omega} p v \cdot \nabla \varphi .
\end{aligned}
$$

Then:

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n} \varphi=\int_{\Omega}(p-\operatorname{div}(u)) \rho \varphi
$$

Proof of $\int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n} \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho$

Lemma : $F_{n} \rightarrow F$ in $D^{\prime}(\Omega),\left(F_{n}\right)_{n \in \mathbb{N}}$ bounded in L^{q} for some $q>1$. Then $F_{n} \rightarrow F$ weakly in L^{1}.

With $F_{n}=\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n}, F=(p-\operatorname{div}(u)) \rho$ and since $\gamma>1$, the lemma gives

$$
\int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n} \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho
$$

Proving $\int_{\Omega} p_{n} \rho_{n} \rightarrow \int_{\Omega} p \rho$

$$
\int_{\Omega}\left(p_{n}-\operatorname{div}\left(u_{n}\right)\right) \rho_{n} \rightarrow \int_{\Omega}(p-\operatorname{div}(u)) \rho
$$

But thanks to the mass equations, the preliminary lemma gives:

$$
\int_{\Omega} \operatorname{div}\left(u_{n}\right) \rho_{n}=0, \int_{\Omega} \operatorname{div}(u) \rho=0
$$

Then:

$$
\lim _{n \rightarrow \infty} \int_{\Omega} p_{n} \rho_{n}=\int_{\Omega} p \rho .
$$

a.e. convergence of ρ_{n} and p_{n}

Let $G_{n}=\left(\rho_{n}^{\gamma}-\rho^{\gamma}\right)\left(\rho_{n}-\rho\right) \in L^{1}(\Omega)$ and $G_{n} \geq 0$ a.e. in Ω.
Futhermore $G_{n}=\left(p_{n}-\rho^{\gamma}\right)\left(\rho_{n}-\rho\right)=p_{n} \rho_{n}-p_{n} \rho-\rho^{\gamma} \rho_{n}+\rho^{\gamma} \rho$ and:

$$
\int_{\Omega} G_{n}=\int_{\Omega} p_{n} \rho_{n}-\int_{\Omega} p_{n} \rho-\int_{\Omega} \rho^{\gamma} \rho_{n}+\int_{\Omega} \rho^{\gamma} \rho .
$$

Using the weak convergence in $L^{2}(\Omega)$ of p_{n} and ρ_{n} and $\lim _{n \rightarrow \infty} \int_{\Omega} p_{n} \rho_{n}=\int_{\Omega} p \rho:$

$$
\lim _{n \rightarrow \infty} \int_{\Omega} G_{n}=0,
$$

Then (up to a subsequence), $G_{n} \rightarrow 0$ a.e. and then $\rho_{n} \rightarrow \rho$ a.e. (since $y \mapsto y^{\gamma}$ is an increasing function on \mathbb{R}_{+}). Finally: $\rho_{n} \rightarrow \rho$ in $L^{q}(\Omega)$ for all $1 \leq q<2 \gamma$, $p_{n}=\rho_{n}^{\gamma} \rightarrow \rho^{\gamma}$ in $L^{q}(\Omega)$ for all $1 \leq q<2$, and $p=\rho^{\gamma}$.

Generalizations

- (Easy) Complete Stokes problem:

$$
-\mu \Delta u-\frac{\mu}{3} \dot{\nabla}(\operatorname{div} u)+\nabla P=f, \text { with } \mu \in \mathbb{R}_{+}^{\star} \text { given }
$$

- (Ongoing work) Navier-Stokes Equations with $\gamma>1$ if $d=2$ and $\gamma>\frac{3}{2}$ if $d=3$ (probably sharp result with respect to γ without changing the diffusion term or the EOS)
- (Open question) Other boundary condition. Addition of an energy equation
- (Open question) Evolution equation (Stokes and Navier-Stokes)

Additional difficulty for stat. comp. NS equations

Ω is a bounded open set of $\mathbb{R}^{d}, d=2$ or 3 , with a Lipschitz continuous boundary, $\gamma>1, f \in L^{2}(\Omega)^{d}$ and $M>0$

$$
\begin{gathered}
-\Delta u+\operatorname{div}(\rho u \otimes u)+\nabla p=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \\
\operatorname{div}(\rho u)=0 \text { in } \Omega, \rho \geq 0 \text { in } \Omega, \int_{\Omega} \rho(x)=M, \\
p=\rho^{\gamma} \text { in } \Omega
\end{gathered}
$$

$d=2$: no aditional difficulty
$d=3$: no additional difficulty if $\gamma \geq 3$. But for $\gamma<3$, no estimate on p in $L^{2}(\Omega)$.

Estimates in the case of NS equations, $\frac{3}{2}<\gamma<3$

Estimate on u : Taking u as test function in the momentum leads to an estimate on u in $\left(H_{0}^{1}(\Omega)^{d}\right.$ since

$$
\int_{\Omega} \rho u \otimes u: \nabla u=0 .
$$

Then, we have also an estimate on u in $L^{6}(\Omega)^{d}$ (using Sobolev embedding).

Estimate on p in $L^{q}(\Omega)$, with $1<q=\frac{3(\gamma-1)}{\gamma}<2$ and $q \rightarrow 1$ when $\gamma \rightarrow \frac{3}{2}$ (using the divergence lemma in L^{r} instead of $L^{2}, r=\frac{q}{q-1}$).

Estimate on ρ in $L^{q}(\Omega)$, with $\frac{3}{2}<q=3(\gamma-1)<6$ and $q \rightarrow \frac{3}{2}$ when $\gamma \rightarrow \frac{3}{2}$ (since $p=\rho^{\gamma}$).

Remark : $\rho u \otimes u \in L^{1}(\Omega)$, since $u \in L^{6}(\Omega)^{d}$ and $\rho \in L^{\frac{3}{2}}(\Omega)$ (and $\frac{1}{6}+\frac{1}{6}+\frac{2}{3}=1$).

NS equations, $\gamma<3$, how to pass to the limit in the EOS

We prove

$$
\lim _{n \rightarrow \infty} \int_{\Omega} p_{n} \rho_{n}^{\theta}=\int_{\Omega} p \rho^{\theta}
$$

with some convenient choice of $\theta>0$ instead of $\theta=1$.
This gives, as for $\theta=1$, the a.e. convergence (up to a subsequence) of p_{n} and ρ_{n}.

Preliminary lemma with the numerical scheme (1)

Roughly speaking, upwinding replaces $\operatorname{div}(\rho u)=0$ and $\int_{\Omega} \rho d x=M$ by

$$
\operatorname{div}(\rho u)-h \operatorname{div}(|u| \nabla \rho)+h^{\alpha}\left(\rho-\rho^{\star}\right)=0
$$

with $\rho^{\star}=\frac{M}{|\Omega|}$
This equation as (for a given u) a solution $\rho>0$ and we prove

$$
\begin{aligned}
& \int_{\Omega} \rho_{n}^{\gamma} \operatorname{div}_{n} u_{n} d x \leq C h^{\alpha} \\
& \int_{\Omega} \rho_{n} \operatorname{div}_{n} u_{n} d x \leq C h^{\alpha} .
\end{aligned}
$$

C depends on Ω, M and γ
$C h^{\alpha}$ is due to $h^{\alpha}\left(\rho-\rho^{\star}\right)$
\leq is due to upwinding
The first inequality leads to the estimate on the approx. solution.

Preliminary lemma with the numerical scheme (2)

For the passage to the limit on the EOS

$$
\begin{gathered}
\int_{\Omega} \rho_{n} \operatorname{div}_{n} u_{n} d x \leq C h^{\alpha} \\
\int_{\Omega} \rho \operatorname{div} u d x=0
\end{gathered}
$$

give $\lim _{n \rightarrow \infty} \int_{\Omega} p_{n} \rho_{n} d x \leq \int_{\Omega} p \rho d x=0$,
which is sufficient to prove the a.e. convergence (up to a subsequence) of p_{n} and ρ_{n}

Passage to the limit in the EOS with the numerical scheme

- Miracle with the Mac scheme. There exists a discrete counterpart of $\int_{\Omega} \nabla u: \nabla v d x=\int_{\Omega}(\operatorname{div}(u) \operatorname{div}(v)+\operatorname{curl}(u) \cdot \operatorname{curl}(v)) d x$
- No discrete counterpart with Crouzeix-Raviart. Two possible solutions
- Use the continuous equality. This is possible with an additional regularization term in the mass equation (not needed from the numerical point of view, only needed to prove the convergence)
- Discretize $\int_{\Omega}(\operatorname{div}(u) \operatorname{div}(v)+\operatorname{curl}(u) \cdot \operatorname{curl}(v)) d x$ instead of $\int_{\Omega} \nabla u: \nabla v d x$. Better for passing to the limit in the EOS but the discretized momentum equation is not coercive (with Crouzeix-Raviart Finite Element). One needs a penalization term in the discrete momentum equation (crucial from the numerical point of view)

