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Fisrt step for proving the convergence of approximate solutions for
the evolution compressible Navier-Stokes equations (which gives, in
particular, the existence of solutions for compressible Navier Stokes
equations, d =3, p=p?, v > %)

Existence of (weak) solutions is already known since the works of
P. L. Lions, E. Feirsel, A. Novotny. ..
No uniqueness result.

Aim : to prove the existence of solutions, passing to the limit on
approximate solutions given by efficient numerical schemes (in
particular, with schemes used in industrial codes).



Stationary compressible Stokes equations

Q is a bounded open set of RY, d = 2 or 3, with a Lipschitz
continuous boundary, v > 1, f € L2(Q)d and M >0

—Au+Vp=FfinQ, u=0on 02,
div(pu) =0 in Q, p>0 in Q, /p(x)dx:M,
Q
p=p’inQ

Functional spaces : u € H}(Q), p € L?(Q), p € L(Q)

(different spaces for p and p in the case of Navier-Stokes if d =3
and v < 3)



Weak solution of the stationary compressible Stokes
problem

Functional spaces : u € H}(Q)9, p € L3(Q), p € L?7(Q)

» Momentum equation:

/ Vu:Vv dx—/ pdiv(v) dx :/ f-vdx for all v € H}(Q)?
Q Q Q

» Mass equation:

/pu-V«pdx: 0 for all ¢ € CZ°(Q)
Q

p >0 a.e., /pdx:M
Q

» EOS: p=p7



Main result

» Two possible discretizations for the momentum equation :
~» MAC scheme (most commonly used scheme for
incompressible Navier Stokes equations)
~ Crouzeix-Raviart Finite Element

» Discretization of the mass equation (and total mass
constraint) by classical upwind Finite Volume

» Existence of solution for the discrete problem

» Proof of the convergence (up to subsequence) of the solution
of the discrete problem towards a weak solution of the
continuous problem (no uniqueness result for this problem) as
the mesh size goes to 0



Simpler result: “continuity” with respect to the data

—Au,+Vp, =1 in Q, u, =0 on 02,
div(ppup) =0 in Q, p>0 in Q, / pn(x)dx = Mp,
Q

pn = py in Q

v >1, f, — f weakly in (L2(Q))¢ and M, — M. Then, up to a
subsequence,

> u, — uin L?(Q)? and weakly in H}(Q)“,

> p, — pin LI(Q) for any 1 < g < 2 and weakly in L2(Q),

> pn — pin L9(Q) for any 1 < g < 27 and weakly in L27(Q),
where (u, p, p) is a weak solution of the compressible Stokes
equations (with f and M as data)



Preliminary lemma

p€LY(Q), p>0ae inQ ue (H}Q), div(pu) = 0, then:
/ pdiv(u)dx =0
Q
/ p’div(u)dx =0
Q

The second part is used in order to obtain some estimates on the
approximate solutions

The first part is crucial for passing to the limit on the EOS (if
v >1)



Proof of the preliminary result, p regular

For simplicity : p € CY(Q), p > a a.e. in Q.
1 < B <. Take ¢ = p?1 as test function in div(pu) = 0:

/pu-Vpﬁ1dx:(6—1)/pﬁlu~v,odx:0.
Q Q

Then
0= / u-Vpldx,
Q
and finally
/ pPdiv(u)dx = 0.
Q
Two cases :
B=7

ﬁzl—k%and n — oo (or ¢ = In(p))



Proof of the preliminary result, non regular p

One uses a “classical” lemma

v >1, pe L2(RY), and u € HY(RY)“.
Let (r,)nen+ be a sequence of mollifiers and, for n € N*,
pn = p*ryand (pu), = (pu) * rp.

Then, [(pu)n — pau] — 0 weakly in WL(0)/GF)(R)9 (which

gives, in particular, that div((pu), — pnu) — 0 weakly in
1_(27)/(7+1)(Rd)),

r e C(RYR), / rdx =1, r >0 in RY (1)
and, for n € N*, x € RY, r,y(x) = n9r(nx).



Estimates on u

Taking u, as test function in —Au, + Vp, = f,:

/Vu,, :Vu, dx—/p,,div(un) dx:/ fn - up, dx.
Q Q Q

But p, = pj a.e. and div(pnup) = 0, then [, pydiv(u,) dx = 0.
This gives an estimate on up:

lunll(Hp)ye < G-



Estimate on p, divergence Lemma

Let g € [3(Q) s.t. [, qdx = 0.
Then, there exists v € (H3(Q))9 s.t.

div(v) = g a.e. in Q,

IVli(rr@ye < Collglliz),

where C only depends on 2.



Estimate on p

my = 1y Jo Padx, va € HY(Q)?, div(vi) = p — m.
Taking v, as test function in —Au, + Vp, = fp:

/Vu,, : Vv, dx—/p,,div(v,,) dx:/ fn - v, dx.
Q Q Q

Using [, div(v,)dx = 0:

/(p,1 — mn)zdx = /(f,, “vp — Vu, : Vv,)dx.
Q

Q

Since [|va|(a()ye < Callpn — malli2() and [lunll 41y < Ci, the
preceding inequality leads to:

”pn - mnHL2(Q) < Gs.

where Cz only depends on the L?>—bound of (f,)nen and on Q.



Estimate on p and p

lPn = mall2(@) < G-

1
/ pn dx = / pndx < sup{M,, p € N}.
Q Q

Then:
Pnlle2) < Cai

where C4 only depends on the L2—bound of (f,)aen, the bound of
(Mn)nEN: 7y and Q.

pn = pj a.e. in Q, then:

”PnHLQW <G= CV-



Weak-convergence on u,, pp, pn

Thanks to the estimates on up,, pp, pn, it is possible to assume (up
to a subsequence) that, as n — oc:

up — u in L?(Q)? and weakly in H3(Q)9,
pn — p weakly in LZ(Q),

pn — p weakly in [2(Q).



Passage to the limit on the equations, except EOS

Linear equation :
—Au+Vp=1finQ, uv=0on 09,

Strong times weak convergence

div(pu) =0 in Q,
L'-weak convergence of p, gives positivity of p and convergence of

mass:
p>0 in Q, / p(x)dx = M.
Q



Passage to the limit in EOS

» No problemifvy=1, p=p
» If v > 1, question:
p=p"in Q7
pn and p, converge only weakly. ..

Idea : prove fQ PnPn — fQ pp and deduce a.e. convergence (of p,
and pp) and p = p".



V : V = divdiv + curl - curl
For all &, v in H3(Q)¢,
/QVB Vv = /QdiV(El)div(V) + /chrl(D) - curl(v).

Then, for all ¥ in H3(Q)¢

/Qdiv(u,,)div(V)—F/chrl(u,,)-curl(V)—/Qp,,div(V):/Qf,,-V.

Choice of v ? v = v, with curl(v,) = 0, div(v,) = p, and v,
bounded in H} (unfortunately, 0 is impossible).

Then, up to a subsequence,

V, — v in L2(Q) and weakly in H}(9),

curl(v) = 0, div(v) = p.



Proof using v, (1)

/Q div () div(7a) + /Q curl(uy) -curl(7,) — /

Q

padiv(7s) = / =
Q
But, div(v,) = pn and curl(v,) = 0. Then:

[ @ivten) = pr)on= [ o

Weak convergence of f, in L?(2) to f and convergence of ¥, in
[2(Q) to v :

Jim [ (@ivtun) = pr)on = [ £ov.



Proof using v, (2)
But, since —Au+ Vp = f:

div(u)div(v) + | curl(u) - curl(v) — [ pdiv(v)= [ f-v.
Q Q Q Q

which gives (using div(v) = p and curl(v) = 0):
/(div(u) —p)p = / f - v. Then:
Q Q

i (pa = iv(un))on = [ (p = div(@)p

n—oo

Finally, the preliminary lemma gives, thanks to the mass equations,
Jo pndiv(u,) = 0 and [, pdiv(u) = 0. Then,

lim /pnpnz/pp-
n—oo Q Q

Unfortunately, it is impossible to have v, € H&



Curl-free test function
Let w, € H} (), —Aw, = ph,
One has w, € H2 (Q) since, for p € C°(Q), one has

loc

A(wyp) € L2(Q) and

d d
> [ 00y(m) 0ds(wne) = - [ 001(0) 185 (wi)

if=1 ij=1

— [(Aw)? = ¢, < o
Q

Then, taking v, = Vw,
> v € (Hio ()7,
> div(v,) = pp a.e. in Q,
» curl(v,) =0 a.e. in Q,
> H; (Q)-estimate on v, with respect to lonll2(0)-

Then, up to a subsequence, as n — oo, v, — Vv in L%OC(Q) and
weakly in HE (Q), curl(v) = 0, div(v) = p.

loc



Proof of fQ(pn — div(up))pnp — fQ(P — div(u))pp

Let p € C°(R) (so that v € H}(Q)?)). Taking v = v,

/Q div(up)div(vae) + /Q curl(uy) - curl(vyp) — /Q Padiv(vaep)

= fn - (Vo).
Q

Using a proof similar to that given if ¢ = 1 (with additionnal terms
involving ), we obtain :

im /Q (Pn — div(un))pngp = /Q (p— div(u))py,

n—oo



Proving [o(pn — div(un))pne — [o(p — div(u))pe
Let p € CZ(R) (so that vy € HE(Q)9)). Taking v = vy
Jo div(un)div(vae) + [q curl( u,,) curl(vap) — [q pndiv(vay)
= fQ VnSD)

But, div(vap) = pn + va - Vi and curl(vayep) = L(p)v,, where
L(p) is a matrix involving the first order derivatives of . Then:

Jo(div(un) = pn)pne = o fn - (Vi)
— Jo div(up)vn - Voo — [ curl(up) - L(@)va + [q Pava - Ve

Weak convergence of u, in H}(2), weak convergence of p, and

fo in L2(Q) and convergence of v, in L2 ()%

limp_ o fQ(diV(Un) pn pn@ fQ VSO)
— Jodiv(u)v - Vo — [curl(u) - L(p)v + [o pv - Ve



Proof of fQ(pn — div(up))pnp — fQ(P — div(u))pp

But, since —Au+ Vp = f:

Jo div(u)div(ve) + [, curl(u) curl (vp) — [q pdiv(ve)

=Jaf-

which gives (using div(v) = p and curl(v) = 0):

Ja(div(u) = p)op = o f - (ve)
— Jodiv(u)v - Vo — [curl(u) - L(p)v + [o pv - Ve

Then:

n—oo

im /Q (Pn — div(un))pagp = /Q (p— div(u))pg.



Proof of [o(pn — div(us))pn — [o(p — div(w))p

Lemma : F, — F in D'(Q), (F,)nen bounded in L9 for some
q > 1. Then F, — F weakly in L.

With F, = (pn — div(un))pn, F = (p — div(u))p and since v > 1,
the lemma gives

[ o= aiv(anon [ (o= aivtu)o



Proving [o papn — Jq PP

/Q(Pn — div(un))pn — /Q(p — div(u))p.

But thanks to the mass equations, the preliminary lemma gives:

/Qdiv(u,,)p,, o, /Qdiv(u)p —0;

lim /pnpnz/pp-
n—oo Q Q

Then:



a.e. convergence of p, and p,

Let G, = (ph — p")(pn — p) € Ll(Q) and G, > 0 a.e. in Q.
Futhermore G, = (pn — p?)(pn — P) = Pnpn — Pap — P pn + p7p

and:
/n—/pnpn /Pnp /pp+/pp

Using the weak convergence in L?(Q) of p, and p, and
limp_o00 fQ Pnpn = fQ pp-

lim / G, =0,

n—oo Q

Then (up to a subsequence), G, — 0 a.e. and then p, — p a.e.
(since y +— y7 is an increasing function on R, ). Finally:

pn — pin L9(Q) for all 1 < g < 27,
pn = ph — p? in L9(Q) for all 1 < g < 2,
and p = p7.



Generalizations

» (Easy) Complete Stokes problem:
—pAu — 5V (divu) + VP = f, with € R given

» (Ongoing work) Navier-Stokes Equations with v > 1 if d =2
and v > % if d = 3 (probably sharp result with respect to
without changing the diffusion term or the EOS)

> (Open question) Other boundary condition. Addition of an
energy equation

» (Open question) Evolution equation (Stokes and
Navier-Stokes)



Additional difficulty for stat. comp. NS equations

Q is a bounded open set of RY, d = 2 or 3, with a Lipschitz
continuous boundary, v > 1, f € L2(Q)¢ and M > 0

—Au+div(pu®@u)+Vp=1Ffin Q, uv=0on 09,
div(pu) =0 in Q, p>0 in Q, / p(x) =M,
Q
p=p’in Q
d = 2 : no aditional difficulty

d = 3 : no additional difficulty if v > 3. But for v < 3, no
estimate on p in L?(9Q).



Estimates in the case of NS equations, % <v<3

Estimate on v : Taking u as test function in the momentum leads
to an estimate on u in (H3(Q)9 since

/pu®u:Vu—0.
Q

Then, we have also an estimate on v in L%(Q)? (using Sobolev
embedding).

Estimate on p in L9(Q2), with 1 < g = @ < 2 and g — 1 when
v — 3 (using the divergence lemma in L" instead of L2, r = q;ZI).

Estimate on p in L9(Q), with 3 <g=3(y—1)<6and g — 3

when v — 3 (since p = p?).

Remark : pu® u € LY(Q), since u € L%(Q)9 and p € L%(Q) (and
1,1, 2_
lylt+2=1)



NS equations, v < 3, how to pass to the limit in the EOS

We prove
lim / Pnply = / pr’,
n—oo Q Q
with some convenient choice of 6 > 0 instead of 6§ = 1.

This gives, as for § = 1, the a.e. convergence (up to a
subsequence) of p, and pj,.



Preliminary lemma with the numerical scheme (1)

Roughly speaking, upwinding replaces div(pu) = 0 and
fQ pdx = M by

div(pu) +h%(p—p*) =0
with p* = |—’§\2/’|

This equation as (for a given u) a solution p > 0 and we prove

/p’,fdiv,, updx<Ch®,
Q

/p,,div,7 updx<Ch®.
Q

C depends on 2, M and ~
Ch® is due to h*(p — p*)
is due to upwinding

The first inequality leads to the estimate on the approx. solution.



Preliminary lemma with the numerical scheme (2)

For the passage to the limit on the EOS

/ pndiv, updx < Ch®
Q

/ pdiv udx =0
Q

give lim,_o [q Prpndx < [ ppdx =0,
which is sufficient to prove the a.e. convergence (up to a
subsequence) of p, and p,



Passage to the limit in the EOS with the numerical scheme

» Miracle with the Mac scheme. There exists a discrete
counterpart of
Jo Vu: Vvdx = [o(div(u)div(v) + curl(u) - curl(v))dx

» No discrete counterpart with Crouzeix-Raviart. Two possible
solutions
— Use the continuous equality. This is possible with an
additional regularization term in the mass equation (not
needed from the numerical point of view, only needed to
prove the convergence)
—Discretize [q(div(u)div(v) + curl(u) - curl(v))dx instead of
fQ Vu : Vvdx. Better for passing to the limit in the EOS but
the discretized momentum equation is not coercive (with
Crouzeix-Raviart Finite Element). One needs a penalization
term in the discrete momentum equation (crucial from the
numerical point of view)



