Université de Marseille Licence de Mathématiques, 1ere année, 2007/8 Analyse, 2eme semestre, dm 3 (examen de mai 2007)

Devoir à rendre (en TD) pendant la dernière semaine d'avril.

Exercice 1 (Etude d'une fonction)

On définit la fonction f de \mathbb{R} dans \mathbb{R} par $f(x) = 3x + \frac{\cos(x)}{x^2 + 1}$.

1. Montrer que f est dérivable et calculer f'(x) pour tout $x \in \mathbb{R}$.

-corrigé

La fonction $x\mapsto \frac{\cos(x)}{x^2+1}$ est dérivable (et même de classe C^{∞}) car elle le quotient de deux fonctions dérivables (et de classe C^{∞}) et que la fonction au dénominateur ne s'annule pas. La fonction f est alors dérivable (et de classe C^{∞}) comme somme de fonctions dérivables (et de classe C^{∞}).

Pour tout $x \in \mathbb{R}$, on trouve $f'(x) = 3 - \frac{\sin(x)}{x^2 + 1} - \frac{2x \cos(x)}{(x^2 + 1)^2}$.

2. Montrer que f est strictement croissante.

-corrigé

Pour tout $x \in \mathbb{R}$, on a :

$$\frac{|\sin(x)|}{x^2 + 1} \le 1$$

et

$$\frac{2|x\cos(x)|}{(x^2+1)^2} \le \frac{2|x|}{(x^2+1)} \le 1$$

car $2|x| \le x^2 + 1$. On en déduit $f'(x) \ge 3 - 1 - 1 = 1 > 0$. Ce qui prouve que f est strictement croissante.

3. Montrer que f est une bijection de \mathbb{R} dans \mathbb{R} .

-corrigé

La fonction f est strictement croissante, c'est donc une bijection de \mathbb{R} sur son image, notée Im(f). Pour montrer que $\text{Im}(f) = \mathbb{R}$, il suffit de remarquer que f est continue et que :

$$\lim_{x \to \pm \infty} f(x) = \pm \infty.$$

Dans la suite, on note g la fonction réciproque de f (la fonction g est donc aussi une fonction de \mathbb{R} dans \mathbb{R}).

4. Montrer que f admet un développement limité d'ordre 2 en 0 et donner ce développement.

–corrigé

La fonction f est de classe \mathbb{C}^2 , elle admet donc un développement limité d'ordre 2 en 0. Pour le trouver, on remarque que :

$$\cos x = 1 - \frac{x^2}{2} + x^2 \varepsilon_1(x)$$
 et $\frac{1}{x^2 + 1} = 1 - x^2 + x^2 \varepsilon_2(x)$, avec $\lim_{x \to 0} \varepsilon_i(x) = 0$ pour $i = 1, 2$.

1

On en déduit $f(x)=1+3x-\frac{3}{2}x^2+x^2\varepsilon_3(x)$ avec $\lim_{x\to 0}\varepsilon_3(x)=0.$

Donner l'équation de la tangente (à la courbe de f) en 0 et la position locale de la courbe de f par rapport à cette tangente.

-corrigé-----

La tangente (à la courbe de f) en 0 est t(x) = 3x + 1. O remarque que $f(x) - t(x) = \frac{\cos(x)}{x^2 + 1} - 1 \le 0$ pour tout $x \in \mathbb{R}$. La courbe de f est donc localement (et même globalement) en dessous de sa tangente en 0.

5. Montrer que g admet un développement limité d'ordre 2 en 1 et donner ce développement.

La fonction f est de classe C^{∞} et f' ne s'annule pas, on en déduit que la fonction g est aussi de classe C^{∞} . Pour avoir le développement limité de g d'ordre 2 en 1, on calcul g(1), g'(1) et g''(1).

Comme f(0) = 1, on a g(1) = 0. puis f'(x)g'(f(x)) = 1 pour tout $x \in \mathbb{R}$. En prenant x = 0, comme f'(0) = 3, on a donc 3g'(1) = 1 et g'(1) = 1/3. Enfin, on a $f''(x)g'(f(x)) + f'(x)^2g''(f(x)) = 0$ pour tout $x \in \mathbb{R}$. En prenant x = 0, comme f''(0) = -3, on a donc -3g'(1) + 9g''(1) = 0, ce qui donne g''(1) = 1/9.

Le développement limité d'ordre 2 en 1 de g est donc $g(x) = \frac{1}{3}(x-1) + \frac{1}{18}(x-1)^2 + (x-1)^2 \varepsilon(x)$ avec $\lim_{x\to 1} \varepsilon(x) = 0$.

6. Donner les asymptotes de f en $\pm \infty$.

–corrigé–

Comme $\lim_{x\to\pm\infty} (f(x)-3x) = \lim_{x\to\pm\infty} \frac{\cos(x)}{x^2+1} = 0$, la fonction f admet pour asymptote en $\pm\infty$ la droite d'équation $x\mapsto 3x$.

7. montrer que $\lim_{x\to\infty} g(x) = \infty$ et donner les asymptotes de g en $\pm\infty$.

La fonction g est (comme f) une bijection strictement croissante de \mathbb{R} dans \mathbb{R} . Pour tout $A \in \mathbb{R}$, il existe donc $x_0 \in \mathbb{R}$ t.q. $g(x_0) = A$ et on a :

$$x \ge x_0 \Rightarrow g(x) \ge A$$
.

Ceci prouve que $\lim_{x\to+\infty} g(x) = +\infty$. De manière analogue, on a $\lim_{x\to-\infty} g(x) = -\infty$.

Pour trouver les asymptotes de g, il suffit alors de remarquer que (comme $f\circ g(x)=x$) :

$$\lim_{x \to \pm \infty} (g(x) - \frac{1}{3}x) = \lim_{x \to \pm \infty} [g(x) - \frac{1}{3}f(g(x))] = \lim_{y \to \pm \infty} (y - \frac{1}{3}f(y)) = \frac{1}{3}\lim_{y \to \pm \infty} (3y - f(y)) = 0.$$

La fonction g admet donc pour asymptote en $\pm \infty$ la droite d'équation $x \mapsto \frac{1}{3}x$.

Exercice 2 (Points fixes de f, si $f \circ f = f$)

Soit $-\infty < a < b < +\infty$ et f une fonction continue de [a,b] dans [a,b]. On rappelle que $x \in [a,b]$ est un point fixe de f si f(x) = x.

1. Montrer que f admet au moins un point fixe. [On pourra considérer la fonction g définie sur [a,b] par g(x)=f(x)-x.]

On remarque que $g(a) = f(a) - a \ge 0$ (car $f(a) \ge a$) et $g(b) = f(b) - b \le 0$ (car $f(b) \le b$). Comme g est continue sur [a,b] et $g(a) \ge 0 \ge g(b)$, le théorème des valeurs intermédiaires donne l'existence de $c \in [a,b]$ t.q. g(c) = 0.

On suppose dans la suite que $f \circ f = f$. On pose $\text{Im}(f) = \{f(x), x \in [a, b]\}$.

2. Montrer que tout élément de Im(f) est un point fixe de f.

-corrigé

Soit $y \in \text{Im}(f)$. Il existe $x \in [a, b]$ t.q. y = f(x). On a donc $f(y) = f(f(x)) = f \circ f(x) = f(x) = y$. Ce qui prouve que y est un point fixe de f.

Puisque f admet un seul point fixe, la question précédente donne que Im(f) ne peut contenir que un seul point. Ce qui prouve que f est constante.

On suppose dans la suite que f admet au moins 2 points fixes (disctints) et que f est dérivable (c'est-à-dire dérivable en tout point de]a,b[).

4. Montrer qu'il existe $m, M \in [a, b]$ t.q. $\mathrm{Im}(f) = [m, M]$ et m < M.

----corrigé-----

L'image d'un intervalle fermé borné par une fonction continue est encore un intervalle fermé borné. Il existe donc $m, M \in \mathbb{R}$ t.q. $m \le M$ et $\mathrm{Im}(f) = [m, M]$. Comme f admet au moins 2 points fixes, $\mathrm{Im}(f)$ contient au moins deux points. Donc, m < M.

5. Montrer que f'(x) = 1 pour tout $x \in]m, M[$ (ici et dans la suite, m et M sont donnés par la question précédente).

–corrigé—

Pour tout $x \in]m, M[$, on a f(x) = x (car $]m, M[\subset \text{Im}(f))$). On a donc, pour tout $x \in]m, M[$, f'(x) = 1.

- 6. On suppose, dans cette question, que m > a.
 - (a) Montrer que f'(m) = 1.

—corrigé—

On a $a < m < M \le b$. La fonction f est donc dérivable en m. Pour 0 < h < M - m, on a f(m)=m et f(m+h) = m+h (car m et (m+h) sont dans Im(f) et sont donc des points fixes de f). On a donc :

$$\frac{f(m+h) - f(m)}{h} = 1.$$

On en déduit que :

$$f'(m) = \lim_{h \to 0} \frac{f(m+h) - f(m)}{h} = \lim_{h \to 0, h > 0} \frac{f(m+h) - f(m)}{h} = 1.$$

(b) Montrer qu'il existe $x \in]a, m[$ t.q. f(x) < m.

Le DL1 de f est m donne $f(x) = f(m) + (x - m) + (x - m)\varepsilon(x)$ avec $\lim_{x\to m} \varepsilon(x) = 0$. Il existe donc $\eta > 0$ t.q. :

$$|x-m| < \eta \Rightarrow |\varepsilon(x)| < 1.$$

Pour $x \in [a, m[$ avec $m - x < \eta$ on a donc :

$$f(x) < f(m) + (x - m) + |x - m| = f(m).$$

(c) En déduire que l'hypothèse m>a est en contradiction avec la définition de m.

—corrigé

Si m > a, on vient de montrer l'existence de $x \in [a,b]$ t.q. f(x) < f(m), ce qui impossible car $f(x) \in \text{Im}(f) = [m,M]$ et f(m) = m (car $m \in \text{Im}(f)$ et donc m est un point fixe de f).

7. Montrer que $m=a,\,M=b$ et f(x)=x pour tout $x\in[a,b].$

-corrigé-

La question précédente donne $m \leq a$ et donc finalement m = a (car $[m, M] = \text{Im}(f) \subset [a, b]$). De manière analogue, on peut montrer que M = b. On a donc Im(f) = [a, b] et donc f(x) = x pour tout $x \in [a, b]$.

8. Montrer que le résultat de la question précédente peut être faux si on retire l'hypothèse "f dérivable". [On cherche donc f continue de [a,b] dans [a,b] t.q. $f \circ f = f$, f admet au moins deux points fixes distincts et il existe $x \in [a,b]$ t.q. $f(x) \neq x$.]

–corrigé–

On peut prendre, par exemple, $a=0,\,b=3,\,f(x)=1$ si $0\leq x<1,\,f(x)=x$ si $1\leq x\leq 2,\,f(x)=2$ si $2< x\leq 3.$