3.5 Algorithmes d'optimisation sous contraintes

3.5.1 Méthodes de gradient avec projection

On rappelle le résultat suivant de projection sur un convexe fermé :

Proposition 3.40 (Projection sur un convexe fermé). Soit E un espace de Hilbert, muni d'une norme $\|.\|$ induite par un produit scalaire (.,.), et soit K un convexe fermé non vide de E. Alors, tout $x \in E$, il existe un unique $x_0 \in K$ tel que $\|x - x_0\| \le \|x - y\|$ pour tout $y \in K$. On note $x_0 = p_K(x)$ la projection orthogonale de x sur K. Soient $x \in E$ et $x_0 \in K$. On a également :

$$x_0 = p_K(x)$$
 si et seulement si $(x - x_0, x_0 - y) \ge 0$, $\forall y \in K$.

Dans le cadre des algorithmes de minimisation avec contraintes que nous allons développer maintenant, nous considèrerons $E = \mathbb{R}^n$, $f \in C^1(\mathbb{R}^n, \mathbb{R})$ une fonction convexe, et K fermé convexe non vide. On cherche à calculer une solution approchée de \bar{x} , solution du problème (3.48).

Algorithme du gradient à pas fixe avec projection sur K (GPFK) Soit $\rho > 0$ donné, on considère l'algorithme suivant :

Algorithme (GPFK)

Initialisation: $x_0 \in K$

Itération :

 x_k connu $x_{k+1} = p_K(x_k - \rho \nabla f(x_k))$

où p_K est la projection sur K définie par la proposition 3.40.

Lemme 3.41. Soit $(x_k)_k$ construite par l'algorithme (GPFK). On suppose que $x_k \to x$ quand $n + \infty$. Alors x est solution de (3.48).

DÉMONSTRATION – Soit $p_K: \mathbb{R}^n \to K \subset \mathbb{R}^n$ la projection sur K définie par la proposition 3.40. Alors p_K est continue. Donc si

 $x_k \to x$ quand $n \to +\infty$ alors $x = p_K(x - \rho \nabla f(x))$ et $x \in K$ (car $x_k \in K$ et K est fermé).

La caractérisation de $p_K(x - \rho \nabla f(x))$ donnée dans la proposition 3.40 donne alors :

 $(x-\rho \nabla f(x)-x/x-y) \geq 0$ pour tout $y \in K$, et comme $\rho > 0$, ceci entraı̂ne $(\nabla f(x)/x-y) \leq 0$ pour tout $y \in K$. Or f est convexe donc $f(y) \geq f(x) + \nabla f(x)(y-x)$ pour tout $y \in K$, et donc $f(y) \geq f(x)$ pour tout $y \in K$, ce qui termine la démonstration.

Théorème 3.42 (Convergence de l'algorithme GPFK).

Soit $f \in C^1(\mathbb{R}^n, \mathbb{R})$, et K convexe fermé non vide. On suppose que :

- 1. il existe $\alpha > 0$ tel que $(\nabla f(x) \nabla f(y)|x-y) \ge \alpha |x-y|^2$, pour tout $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n$,
- 2. il existe M > 0 tel que $|\nabla f(x) \nabla f(y)| \le M|x-y|$ pour tout $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n$,

alors:

- 1. il existe un unique élément $\bar{x} \in K$ solution de (3.48),
- 2. $si \ 0 < \rho < \frac{2\alpha}{M^2}$, la suite (x_k) définie par l'algorithme (GPFK) converge vers \bar{x} lorsque $n \to +\infty$.

Analyse numérique I, télé-enseignement, L3 271 Université d'Aix-Marseille, R. Herbin, 16 septembre 2016

DÉMONSTRATION -

- 1. La condition 1. donne que f est strictement convexe et que $f(x) \to +\infty$ quand $|x| \to +\infty$. Comme K est convexe fermé non vide, il existe donc un unique \bar{x} solution de (3.48).
- 2. On pose, pour $x \in \mathbb{R}^n$, $h(x) = p_K(x \rho \nabla f(x))$. On a donc $x_{k+1} = h(x_k)$. Pour montrer que la suite $(x_k)_{k \in \mathbb{N}}$ converge, il suffit donc de montrer que h est strictement contractante dès que

$$0 < \rho < \frac{2\alpha}{M^2}.\tag{3.61}$$

Grâce au lemme 3.43 démontré plus loin, on sait que p_K est contractante. Or h est définie par :

$$h(x) = p_K(\bar{h}(x))$$
 où $\bar{h}(x) = x - \rho \nabla f(x)$.

On a déjà vu que \bar{h} est strictement contractante si la condition (3.61) est vérifiée (voir théorème 3.19 page 226), et plus précisément :

$$|\bar{h}(x) - \bar{h}(y)| \le (1 - 2\alpha\rho + M^2\rho^2)|x - y|^2.$$

On en déduit que :

$$|h(x) - h(y)|^2 \le |p_K(\bar{h}(x)) - p_K(\bar{h}(y))|^2 \le |\bar{h}(x) - \bar{h}(y))|^2 \le (1 - 2\alpha\rho + \rho^2 M^2)|x - y|^2.$$

L'application h est donc strictement contractante dès que $0 < \frac{2\alpha}{M^2}$. La suite $(x_k)_{k \in \mathbb{N}}$ converge donc bien vers $x = \bar{x}$

Lemme 3.43 (Propriété de contraction de la projection orthogonale). Soit E un espace de Hilbert, $\|\cdot\|$ la norme et (\cdot,\cdot) le produit scalaire, K un convexe fermé non vide de E et p_K la projection orthogonale sur K définie par la proposition 3.40, alors $\|p_K(x) - p_K(y)\| \le \|x - y\|$ pour tout $(x,y) \in E^2$.

DÉMONSTRATION - Comme E est un espace de Hilbert,

$$||p_K(x) - p_K(y)||^2 = (p_K(x) - p_K(y)|p_K(x) - p_K(y)).$$

On a donc

$$||p_{K}(x) - p_{K}(y)||^{2} = (p_{K}(x) - x + x - y + y - p_{K}(y)|p_{K}(x) - p_{K}(y))$$

$$= (p_{K}(x) - x|p_{K}(x) - p_{K}(y))_{E} + (x - y|p_{K}(x) - p_{K}(y)) + (y - p_{K}(y)|p_{K}(x) - p_{K}(y)).$$

Or $(p_K(x) - x | p_K(x) - p_K(y)) \le 0$ et $(y - p_K(y) | p_K(x) - p_K(y)) \le 0$, d'où :

$$||p_K(x) - p_K(y)||^2 \le (x - y|p_K(x) - p_K(y)),$$

et donc, grâce à l'inégalité de Cauchy-Schwarz,

$$||p_K(x) - p_K(y)||^2 \le ||x - y|| ||p_K(x) - p_K(y)||,$$

ce qui permet de conclure.

Algorithme du gradient à pas optimal avec projection sur K (GPOK)

L'algorithme du gradient à pas optimal avec projection sur K s'écrit :

Initialisation $x_0 \in K$ Itération x_k connu

 $w_k = -\nabla f(x_k)$; calculer α_k optimal dans la direction w_k

 $x_{k+1} = p_K(x_k + \alpha_k \boldsymbol{w}^{(k)})$

La démonstration de convergence de cet algorithme se déduit de celle de l'algorithme à pas fixe.

Remarque 3.44. On pourrait aussi utiliser un algorithme de type Quasi-Newton avec projection sur K.

Les algorithmes de projection sont simples à décrire, mais ils soulèvent deux questions :

- 1. Comment calcule-t-on p_K ?
- 2. Que faire si K n'est pas convexe?

On peut donner une réponse à la première question dans les cas simples :

Cas 1. On suppose ici que $K = C^+ = \{x \in \mathbb{R}^n, x = (x_1, \dots, x_k)^t \mid x_i \ge 0 \ \forall i\}.$

Si $y \in \mathbb{R}^n \ y = (y_1 \dots y_n)^t$, on peut montrer (exercice 132 page 267) que

$$(p_K(y))_i = y_i^+ = \max(y_i, 0), \ \forall i \in \{1, \dots, n\}$$

Cas 2. Soit $(\alpha_i)_{i=1,\ldots,n} \subset \mathbb{R}^n$ et $(\beta_i)_{i=1,\ldots,n} \subset \mathbb{R}^n$ tels que $\alpha_i \leq \beta_i$ pour tout $i=1,\ldots,n$. Si

$$K = \prod_{i=1,n} [\alpha_i, \beta_i],$$

alors

$$(p_K(y))_i = \max(\alpha_i, \min(y_i, \beta_i)), \quad \forall i = 1, \dots, n$$

Dans le cas d'un convexe K plus "compliqué", ou dans le cas où K n'est pas convexe, on peut utiliser des méthodes de dualité introduites dans le paragraphe suivant.

3.5.2 Méthodes de dualité

Supposons que les hypothèses suivantes sont vérifiées :

$$\begin{cases}
f \in C^{1}(\mathbb{R}^{n}, \mathbb{R}), \\
g_{i} \in C^{1}(\mathbb{R}^{n}, \mathbb{R}), \\
K = \{x \in \mathbb{R}^{n}, g_{i}(x) \leq 0 \ i = 1, \dots, p\}, \text{ et } K \text{ est non vide.}
\end{cases}$$
(3.62)

On définit un problème "primal" comme étant le problème de minimisation d'origine, c'est-à-dire

$$\begin{cases}
\bar{x} \in K, \\
f(\bar{x}) \le f(x), \text{ pour tout } x \in K,
\end{cases}$$
(3.63)

On définit le "lagrangien" comme étant la fonction L définie de $\mathbb{R}^n \times \mathbb{R}^p$ dans \mathbb{R} par :

$$L(x,\lambda) = f(x) + \lambda \cdot g(x) = f(x) + \sum_{i=1}^{p} \lambda_i g_i(x), \tag{3.64}$$

avec $g(x) = (g_1(x), \dots, g_p(x))^t$ et $\lambda = (\lambda_1, \dots, \lambda_p)^t$. On note C^+ l'ensemble défini par

$$C^+ = \{\lambda \in \mathbb{R}^p, \ \lambda = (\lambda_1, \dots, \lambda_p)^t, \lambda_i \ge 0 \text{ pour tout } i = 1, \dots, p\}.$$

Remarque 3.45. Le théorème de Kuhn-Tucker entraı̂ne que si \bar{x} est solution du problème primal (3.63) alors il existe $\lambda \in C^+$ tel que $D_1L(\bar{x},\lambda) = 0$ (c'est-à-dire $Df(\bar{x}) + \lambda \cdot Dg(\bar{x}) = 0$) et $\lambda \cdot g(\bar{x}) = 0$.

On définit alors l'application M de \mathbb{R}^p dans \mathbb{R} par :

$$M(\lambda) = \inf_{x \in \mathbb{R}^n} L(x, \lambda), \text{ pour tout } \lambda \in \mathbb{R}^p.$$
 (3.65)

On peut donc remarquer que $M(\lambda)$ réalise le minimum (en x) du problème sans contrainte, qui s'écrit, pour $\lambda \in \mathbb{R}^p$ fixé :

$$\begin{cases} x \in \mathbb{R}^n \\ L(x,\lambda) \le L(y,\lambda) \text{ pour tout } x \in \mathbb{R}^n, \end{cases}$$
 (3.66)

Lemme 3.46. L'application M de \mathbb{R}^p dans \mathbb{R} définie par (3.65) est concave (ou encore l'application -M est convexe), c'est-à-dire que pour tous $\lambda, \mu \in \mathbb{R}^p$ et pour tout $t \in]0,1[$ on a $M(t\lambda+(1-t)\mu) \geq tM(\lambda)+(1-t)M(u)$

DÉMONSTRATION – Soit $\lambda, \mu \in \mathbb{R}^p$ et $t \in]0,1[$; on veut montrer que $M(t\lambda + (1-t)\mu) \geq tM(\lambda) + (1-t)M(\mu)$. Soit $x \in \mathbb{R}^n$, alors :

$$\begin{array}{ll} L(x,t\lambda + (1-t)\mu) &= f(x) + (t\lambda + (1-t)\mu)g(x) \\ &= tf(x) + (1-t)f(x) + (t\lambda + (1-t)\mu)g(x). \end{array}$$

On a donc $L(x, t\lambda + (1-t)\mu) = tL(x, \lambda) + (1-t)L(x, \mu)$. Par définition de M, on en déduit que pour tout $x \in \mathbb{R}^n$, $L(x, t\lambda + (1-t)\mu) > tM(\lambda) + (1-t)M(\mu)$

Or, toujours par définition de M,

$$M(t\lambda + (1-t)\mu) = \inf_{x \in \mathbb{R}^n} L(x, t\lambda + (1-t)\mu) \ge tM(\lambda) + (1-t)M(\mu).$$

On considère maintenant le problème d'optimisation dit "dual" suivant :

$$\begin{cases}
\mu \in C^+, \\
M(\mu) \ge M(\lambda) \quad \forall \lambda \in C^+.
\end{cases}$$
(3.67)

Définition 3.47. Soit $L: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}$ et $(x, \mu) \in \mathbb{R}^n \times C^+$. On dit que (x, μ) est un <u>point selle</u> de L sur $\mathbb{R}^n \times C^+$ si

$$L(x,\lambda) \leq L(x,\mu) \leq L(y,\mu)$$
 pour tout $y \in \mathbb{R}$ et pour tout $\lambda \in C^+$.

Proposition 3.48. Sous les hypothèses (3.62), soit L définie par $L(x,\lambda) = f(x) + \lambda g(x)$ et $(\bar{x},\mu) \in \mathbb{R}^n \times C^+$ un point selle de L sur $\mathbb{R}^n \times C^+$.

- 1. \bar{x} est solution du problème (3.63),
- 2. μ est solution de (3.67),
- 3. \bar{x} est solution du problème (3.66) avec $\lambda = \mu$.

On admettra cette proposition.

Réciproquement, on peut montrer que (sous des hypothèses convenables sur f et g), si μ est solution de (3.67), et si \bar{x} solution de (3.66) avec $\lambda = \mu$, alors (\bar{x}, μ) est un point selle de L, et donc \bar{x} est solution de (3.63).

De ces résultats découle l'idée de base des méthodes de dualité : on cherche μ solution de (3.67). On obtient ensuite une solution \bar{x} du problème (3.63), en cherchant \bar{x} comme solution du problème (3.66) avec $\lambda = \mu$ (qui est un problème de minimisation sans contraintes). La recherche de la solution μ du problème dual (3.67) peut se faire par exemple par l'algorithme très classique d'Uzawa, que nous décrivons maintenant.

Algorithme d'Uzawa L'algorithme d'Uzawa consiste à utiliser l'algorithme du gradient à pas fixe avec projection (qu'on a appelé "GPFK", voir page 271) pour résoudre de manière itérative le problème dual (3.67). On cherche donc $\mu \in C^+$ tel que $M(\mu) \ge M(\lambda)$ pour tout $\lambda \in C^+$. On se donne $\rho > 0$, et on note p_{C^+} la projection sur le convexe C^+ (voir proposition 3.40 page 271). L'algorithme (GPFK) pour la recherche de μ s'écrit donc :

Initialisation : $\mu_0 \in C_+$

Itération : $\mu_{k+1} = p_{C_+}(\mu_k + \rho \nabla M(\mu_k))$

Pour définir complètement l'algorithme d'Uzawa, il reste à préciser les points suivants :

- 1. Calcul de $\nabla M(\mu_k)$,
- 2. calcul de $p_{C^+}(\lambda)$ pour λ dans \mathbb{R}^n .

On peut également s'intéresser aux propriétés de convergence de l'algorithme.

La réponse au point 2 est simple (voir exercice 132 page 267) : pour $\lambda \in \mathbb{R}^p$, on calcule $p_{C_+}(\lambda) = \gamma$ avec $\gamma = (\gamma_1, \dots, \gamma_p)^t$ en posant $\gamma_i = \max(0, \lambda_i)$ pour $i = 1, \dots, p$, où $\lambda = (\lambda_1, \dots, \lambda_p)^t$.

La réponse au point 1. est une conséquence de la proposition suivante (qu'on admettra ici) :

Proposition 3.49. Sous les hypothèses (3.62), on suppose que pour tout $\lambda \in \mathbb{R}^n$, le problème (3.66) admet une solution unique, notée x_λ et on suppose que l'application définie de \mathbb{R}^p dans \mathbb{R}^n par $\lambda \mapsto x_\lambda$ est différentiable. Alors $M(\lambda) = L(x_\lambda, \lambda)$, M est différentiable en λ pour tout λ , et $\nabla M(\lambda) = g(x_\lambda)$.

En conséquence, pour calculer $\nabla M(\lambda)$, on est ramené à chercher x_{λ} solution du problème de minimisation sans contrainte (3.66). On peut dont maintenant donner le détail de l'itération générale de l'algorithme d'Uzawa :

Itération de l'algorithme d'Uzawa. Soit $\mu_k \in C^+$ connu ;

- 1. On cherche $x_k \in \mathbb{R}^n$ solution de $\left\{ \begin{array}{l} x_k \in \mathbb{R}^n, \\ L(x_k, \mu_k) \leq L(x, \mu_k), \ \, \forall x \in \mathbb{R}^n \end{array} \right. \mbox{ (On a donc } x_k = x_{\mu_k})$
- 2. On calcule $\nabla M(\mu_k) = g(x_k)$
- 3. $\overline{\mu}_{k+1} = \mu_k + \rho \nabla M(\mu_k) = \mu_k + \rho g(x_k) = ((\overline{\mu}_{k+1})_1, \dots, (\overline{\mu}_{k+1})_p)^t$
- 4. $\mu_{k+1} = p_{C^+}(\overline{\mu}_{k+1})$, c'est-à-dire $\mu_{k+1} = ((\mu_{k+1})_1, \dots, (\mu_{k+1})_p)^t$ avec $(\mu_{k+1})_i = \max(0, (\overline{\mu}_{k+1})_i)$ pour tout $i = 1, \dots, p$.

On a alors le résultat suivant de convergence de l'algorithme :

Proposition 3.50 (Convergence de l'algorithme d'Uzawa). Sous les hypothèses (3.62), on suppose de plus que :

- 1. il existe $\alpha > 0$ tel que $(\nabla f(x) \nabla f(y)) \cdot (x y) \ge \alpha |x y|^2$ pour tout $(x, y) \in (\mathbb{R}^n)^2$,
- 2. il existe $M_f > 0 |\nabla f(x) \nabla f(y)| \le M_f |x y|$ pour tout $(x, y) \in (\mathbb{R}^n)^2$,
- 3. pour tout $\lambda \in C^+$, il existe un unique $x_{\lambda} \in \mathbb{R}^n$ tel que $L(x_{\lambda}, \lambda) \leq L(x, \lambda)$ pour tout $x \in \mathbb{R}^n$.

Alors si $0 < \rho < \frac{2\alpha}{{M_f}^2}$, la suite $((x_k, \mu_k))_k \in \mathbb{R}^n \times C^+$ donnée par l'algorithme d'Uzawa vérifie :

- 1. $x_k \to \bar{x}$ quand $k \to +\infty$, où \bar{x} est la solution du problème (3.63),
- 2. $(\mu_k)_{k\in\mathbb{N}}$ est bornée.

Remarque 3.51 (Sur l'algorithme d'Uzawa).

- 1. L'algorithme est très efficace si les contraintes sont affines : (i.e. si $g_i(x) = \alpha_i \cdot x + \beta_i$ pour tout i = 1, ..., p, avec $\alpha_i \in \mathbb{R}^n$ et $\beta_i \in \mathbb{R}$).
- 2. Pour avoir l'hypothèse 3 du théorème, il suffit que les fonctions g_i soient convexes. (On a dans ce cas existence et unicité de la solution x_{λ} du problème (3.66) et existence et unicité de la solution \bar{x} du problème (3.63).)