C6, systèmes non linéaires, méthodes de points fixes

$$g \in C(\mathbb{R}^n, \mathbb{R}^n)$$
, on cherche $x \in \mathbb{R}^n$ t.q. $g(x) = 0$
Cas linéaire, $g(x) = Ax - b$, $A \in \mathcal{M}_n(\mathbb{R})$ et $b \in \mathbb{R}^n$
 $f(x) = x - g(x)$, $g(x) = 0 \Leftrightarrow x = f(x)$

- 1. Point fixe de contraction (C6)
- 2. Contraction obtenue grâce à une relaxation (C6)
- 3. Point fixe de monotonie (C6)
- 4. Monotonie obtenue grâce à une relaxation (td et projet)
- 5. Méthodes de Newton et quasi-Newton (C8)

Rappel de Calcul Différentiel, dérivée

E, F e.v. normés sur \mathbb{R} . Exemple : $E = \mathbb{R}^p$, $F = \mathbb{R}^n$ $f \in C(E,F)$, $x \in E$ f est dérivable au point x si il existe $T \in \mathcal{L}(E,F)$ t.q; $f(x+h) = f(x) + T(h) + \varepsilon(h) \|h\|_E, \text{ pour tout } h \in E$ avec $\lim_{h \to 0} \varepsilon(h) = 0$

- 1. Si T existe, T est unique. On note T = Df(x) = df(x)Df(x) dérivée (de Fréchet) de f au point x
- 2. Dans le cas $E = \mathbb{R}^p$, $F = \mathbb{R}^n$, $T \in \mathcal{L}(\mathbb{R}^p, \mathbb{R}^n)$, il existe une unique matrice $A \in \mathcal{M}_{n,p}(\mathbb{R})$ t.q. T(h) = Ah. On note $A = J_f(x)$ $J_f(x) \text{ est la matrice jacobienne de } f \text{ au point } x$ $Df(x)(h) = J_f(x)h$

Gradient

- 1. Cas particulier n=1. $f\in C(\mathbb{R}^p,\mathbb{R})$ dérivable au point x. $J_f(x)\in \mathcal{M}_{1,p}(\mathbb{R})$. On pose $\nabla f(x)=J_f(x)^t\in \mathcal{M}_{p,1}(\mathbb{R})=\mathbb{R}^p$ $Df(x)(h)=J_f(x)h=\nabla f(x)\cdot h$
- 2. Cas particulier n=p=1, $J_f(x)=\nabla f(x)=f'(x)$ Df(x)(h)=f'(x)h $Df(x)=\mathcal{L}(\mathbb{R},\mathbb{R}),\ f'(x)\in\mathbb{R}$

 $f \in C(E, \mathbb{R})$, f dérivable au point x. Si E est un espace de Hilbert, on peut aussi définir $\nabla f(x) \in E$ (alors que $Df(x) \in E'$)

Lien entre dérivée et dérivées partielles

$$f \in C(\mathbb{R}^p, \mathbb{R}^n), x = \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix}, f = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}$$

f dérivable au point \bar{x} , $\bar{A} = J_f(\bar{x})$. Alors

$$a_{i,j} = \frac{\partial f_i}{\partial x_j}(x) = \partial_j f_i(x)$$

 $\frac{\partial f_i}{\partial x_j}(x)$ désigne la dérivée au point x_j de l'application de $\mathbb R$ dans $\mathbb R$ $s\mapsto f_i(x(s)),\ x(s)_k=x_k$ pour $k\neq j,\ x(s)_j=s$

Exemple:
$$i = 1, j = 2, p = 3, x(s) = \begin{bmatrix} x_1 \\ s \\ x_3 \end{bmatrix}$$

Démonstration facile. . .

Lien entre dérivée et dérivées partielles, fin

$$f \in C(\mathbb{R}^p, \mathbb{R}^n), x = \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix}, f = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}$$

On suppose que les dérivées partielles existent pour tout les points dans un voisinage de x et dépendent continûment de x, c'est-à-dire que les applications (de \mathbb{R}^p dans \mathbb{R})

$$y \mapsto \partial_j f_i(y)$$

sont continues au point x

Alors, f est dérivable au point x, $J_f(x) = A$ avec $a_{i,j} = \partial_j f_i(x)$ Démonstration moins facile...

$$f \in C^1(\mathbb{R}^p, \mathbb{R}^n)$$
 si $\partial_j f_i \in C^1(\mathbb{R}^p, \mathbb{R})$ pour tout i, j

Théorème des Accroissements Finis (TAF)

 $f \in C^1(\mathbb{R}^p, \mathbb{R}^n)$. On munit \mathbb{R}^n et \mathbb{R}^p de normes et $\mathcal{M}_{n,p}(\mathbb{R})$ de la norme induite. Les trois normes sont notées $\|\cdot\|$. Pour tout $x, y \in \mathbb{R}^p$

$$||f(y) - f(x)|| \le (\sup_{t \in]0,1[} ||J_f(x + t(y - x))||)||y - x||$$

Démonstration
$$\varphi(t) = f(x + t(y - x), f(y) - f(x)) = \varphi(1) - \varphi(0)$$

 $\varphi \in C^{1}(\mathbb{R}, \mathbb{R}^{n}), \varphi'(t) = J_{f}(x + t(y - x))(y - x)$
 $f(y) - f(x) = \int_{0}^{1} \varphi'(t)dt = \int_{0}^{1} J_{f}(x + t(y - x))(y - x)dt$
 $\|f(y) - f(x)\| \le \int_{0}^{1} \|J_{f}(x + t(y - x))(y - x)\|dt$
 $\le (\int_{0}^{1} \|J_{f}(x + t(y - x))\|dt)\|y - x\|$

Si
$$n = 1$$
, il existe $c \in]0, 1[$ t.q. $f(y) - f(x) = J_f(x + c(y - x))(y - x) = \nabla f(x + c(y - x)) \cdot (y - x)$
Si $n > 1$, c peut ne pas exister (exemple avec $n = 2$ $p = 1$)

Point fixe de contraction

B un ensemble muni d'une distance d. On suppose B complet

Exemple fondamental : B partie fermée de \mathbb{R}^n , d(x,y) = ||x-y||

- 1. f envoie B dans B
- 2. f strictement contractante, c'est-à-dire qu'il existe L < 1 t.q. $d(f(x), f(y)) \le Ld(x, y)$ pour tout $x, y \in B$

Alors

- 1. Il existe un unique $\bar{x} \in B$ t.q. $f(\bar{x}) = \bar{x}$
- 2. $\bar{x} = \lim_{k \to +\infty} x^{(k)}$ avec la suite $(x^{(k)})_{k \in \mathbb{N}}$ définie par Initialisation : $x^{(0)} \in B$ Itération : $k \ge 0$, $x^{(k+1)} = f(x^{(k)})$

Remarque : Ce théorème donne une condition suffisante pour l'existence d'un point fixe mais ce n'est pas une condition nécessaire

Point fixe de contraction. Démonstration

B un ensemble muni d'une distance d. On suppose B complet

- 1. f envoie B dans B
- 2. L < 1, $d(f(x), f(y)) \le Ld(x, y)$ pour tout $x, y \in B$

Unicité du point fixe : x = f(x), $\bar{x} = f(\bar{x})$, $x, \bar{x} \in B$,

 $d(x,\bar{x}) = d(f(x),f(\bar{x})) \le Ld(x,\bar{x})$ et donc $x = \bar{x}$

Existence du point fixe et convergence de la suite $(x^{(k)})_{k \in \mathbb{N}}$:

Initialisation : $x^{(0)} \in B$

Itération : $k \ge 0$, $x^{(k+1)} = f(x^{(k)})$

- 1. $d(x^{(k+1)}, x^{(k)}) \le Ld(x^{(k)}, x^{(k-1)}) \le \ldots \le L^k d(x^{(1)}, x^{(0)})$
- 2. $d(x^{(k+\ell)}, x^{(k)}) \le \sum_{i=1}^{\ell} d(x^{(k+i)}, x^{(k+i-1)}) \le \frac{L^k}{1-L} d(x^{(1)}, x^{(0)})$

On en déduit que la suite $(x^{(k)})_{k \in \mathbb{N}}$ est de Cauchy et donc converge (car B est complet)

On pose $x = \lim_{k \to +\infty} x^{(k)}$. On a x = f(x) en passant à la limite sur $x^{(k+1)} = f(x^{(k)})$.

Point fixe de contraction. Vérifier que f envoie B dans B

$$B = [0,1], f(x) = \frac{x^2}{4} + 1$$

$$x, y \in B$$

$$d(f(x), f(y)) = \frac{1}{4}|x^2 - y^2| = \frac{x+y}{4}|x-y| \le \frac{1}{2}d(x,y)$$

f est strictement contractante mais f n'envoie pas B dans B Le théorème du point fixe de contraction ne s'applique pas

On peut d'ailleurs voir qu'il n'existe pas $x \in B$, ni $x \in \mathbb{R}$, t.q. f(x) = x

Vitesse de convergence, définitions

 $f \in C^1(\mathbb{R}^n, \mathbb{R}^n)$. On munit \mathbb{R}^n d'une norme. On suppose que la suite $(x^{(k)})_{k \in \mathbb{N}}$ converge et on pose $x = \lim_{k \to +\infty} x^{(k)}$. On suppose $x^{(k)} \neq x$ pour tout k

- 1. La convergence est au moins linéaire si II existe $\beta < 1$ t.q., pour tout $k \ge 0$, $\|x^{(k+1)} x\| \le \beta \|x^{(k)} x\|$ (si non, la convergence est sous-linéaire)
- 2. La convergence est au moins superlinéaire si $\lim_{k\to+\infty} \frac{\|x^{(k+1)}-x\|}{\|x^{(k)}-x\|}=0$
- 3. La convergence est au moins quadratique si II existe $\beta \in \mathbb{R}$ t.q., pour tout $k \geq 0$, $\|x^{(k+1)} x\| \leq \beta \|x^{(k)} x\|^2$

Exemples avec
$$n = 1$$
: $x^{(k)} = \frac{1}{(k+1)^2}$, $x^{(k)} = \frac{1}{2^k}$, $0 < x^{(0)} < 1$, $x^{(k+1)} = (x^{(k)})^2$

Vitesse de convergence pour le point fixe de contraction

On munit \mathbb{R}^n d'une norme. B partie fermée de \mathbb{R}^n , $f \in C(B,B)$

- 1. f envoie B dans B
- 2. f strictement contractante, c'est-à-dire qu'il existe L < 1 t.q. $||f(y) f(x)|| \le L||y x||$ pour tout $x, y \in B$

Initialisation : $x^{(0)} \in B$

Itération : $k \ge 0$, $x^{(k+1)} = f(x^{(k)})$

On sait que $\lim_{k\to+\infty} x^{(k)} = \bar{x}$ et $\bar{x} = f(\bar{x})$

Question : Vitesse de convergence ? Réponse : Au moins linéaire, car L < 1

Démonstration :

$$||x^{(k+1)} - \bar{x}|| = ||f(x^{(k)}) - f(\bar{x})|| \le L||x^{(k)} - \bar{x}||$$

Point fixe de contraction avec relaxation

$$g \in C(\mathbb{R}^n, \mathbb{R}^n)$$
, on cherche $\bar{x} \in \mathbb{R}^n$ t.q. $g(\bar{x}) = 0$
 $f(x) = x - g(x)$, $g(x) = 0 \Leftrightarrow x = f(x)$

Algorithme du point fixe :

Initialisation : $x^{(0)} \in \mathbb{R}^n$

Itération : $k \ge 0$, $x^{(k+1)} = f(x^{(k)})$

Algorithme du point fixe avec relaxation : Soit $0<\omega$ (<1)

Initialisation : $x^{(0)} \in \mathbb{R}^n$

Itération : $k \ge 0$, $\tilde{x}^{(k+1)} = f(x^{(k)})$, $x^{(k+1)} = \omega \tilde{x}^{(k+1)} + (1-\omega)x^{(k)}$

Ecriture équivalente : $f_{\omega}(x) = x - \omega g(x)$

Initialisation : $x^{(0)} \in \mathbb{R}^n$

Itération : $k \ge 0$, $x^{(k+1)} = f_{\omega}(x^{(k)})$

Démonstration :

$$x^{(k+1)} = f_{\omega}(x^{(k)}) = x^{(k)} - \omega g(x^{(k)}) = (1 - \omega) x^{(k)} + \omega (x^{(k)} - g(x^{(k)}))$$
$$= (1 - \omega) x^{(k)} + \omega f(x^{(k)}) = (1 - \omega) x^{(k)} + \omega \tilde{x}^{(k+1)}$$

Point fixe de contraction avec relaxation, choix de ω ?

$$g\in \mathcal{C}(\mathbb{R}^n,\mathbb{R}^n)$$
, on cherche $ar{x}\in\mathbb{R}^n$ t.q. $g(ar{x})=0$

Algorithme : $0 < \omega$, $f_{\omega}(x) = x - \omega g(x)$

Initialisation : $x^{(0)} \in \mathbb{R}^n$

Itération : $k \ge 0$, $x^{(k+1)} = f_{\omega}(x^{(k)})$

Idée simple : Choisir ω t.q. f_{ω} soit strictement contractante (et donc $\lim_{k\to+\infty} x^{(k)} = \bar{x}, \ \bar{x} = f_{\omega}(\bar{x}), \ g(\bar{x}) = 0$)

Hypthèses sur g. Il existe M, $\alpha > 0$ t.q. pour tout x, $y \in \mathbb{R}^n$

- 1. $|g(x) g(y)| \le M|x y|$ (g lipschitzienne, $|\cdot| = ||\cdot||_2$)
- 2. $(g(x) g(y)) \cdot (x y) \ge \alpha |x y|^2$ (si n = 1, g est "fortement" monotone)

Conséquence : Si $0 < \omega < \frac{2\alpha}{M^2}$, f_ω est strictement contractante

Choix de ω . Démonstration

$$g \in C(\mathbb{R}^n, \mathbb{R}^n)$$
1. $|g(x) - g(y)| \le M|x - y|$ (g lipschitzienne, $|\cdot| = ||\cdot||_2$)
2. $(g(x) - g(y)) \cdot (x - y) \ge \alpha |x - y|^2$

$$f_{\omega}(x) = x - \omega g(x), \ 0 < \omega < \frac{2\alpha}{M^2}, \ f_{\omega} \text{ est strictement contractante ?}$$

$$x, \ y \in \mathbb{R}^n \ (\omega > 0)$$

$$|f_{\omega}(x) - f_{\omega}(y)|^2 = (x - y - \omega g(x) + \omega g(y)) \cdot (x - y - \omega g(x) + \omega g(y))$$

$$= |x - y|^2 - 2\omega(x - y) \cdot (g(x) - g(y)) + \omega^2 |g(x) - g(y)|^2$$

$$\le |x - y|^2 (1 - 2\omega\alpha + M^2\omega^2) = |x - y|^2 (1 - \omega(2\alpha - M^2\omega))$$

Pour $0 < \omega < \frac{2\alpha}{M^2}$, $(1 - \omega(2\alpha - M^2\omega)) < 1$ et f_{ω} est bien strictement contractante

Point fixe de contraction avec relaxation, Exemple

$$g \in C^1(\mathbb{R}^n, \mathbb{R}^n)$$

Hypthèses sur g: On suppose que $J_g(x)$ est "uniformément s.d.p.", c'est-à-dire que $J_g(x)$ est symétrique et qu'il existe M, $\alpha>0$ t.q., pour tout $x,\ z\in\mathbb{R}^n$, $\alpha z\cdot z\leq J_g(x)z\cdot z\leq Mz\cdot z$

Conséquence :

- 1. $|g(x) g(y)| \le M|x y|$ (g lipschitzienne, $|\cdot| = ||\cdot||_2$)
- 2. $(g(x) g(y)) \cdot (x y) \ge \alpha |x y|^2$

Démonstration

1. Le théorème des accroissements finis donne $|g(y) - g(x)| \le M|y - x| \operatorname{car} \|J_g(x)\|_2 = \rho(J_g(x)) \le M$

2.
$$\varphi(t) = g(x + t(y - x), g(y) - g(x) = \varphi(1) - \varphi(0),$$

 $\varphi \in C^1(\mathbb{R}, \mathbb{R}^n), \varphi'(t) = J_{\sigma}(x + t(y - x))(y - x)$

$$(g(y)-g(x))\cdot(y-x) = \left(\int_{0}^{1} J_{g}(x+t(y-x))(y-x)dt\right)\cdot(y-x)$$
$$= \int_{0}^{1} J_{g}(x+t(y-x))(y-x)\cdot(y-x)dt \ge \int_{0}^{1} \alpha|y-x|^{2}dt = \alpha|y-x|^{2}$$

Point fixe de monotonie

Relation d'ordre dans
$$\mathbb{R}^n$$
: $u = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$, $v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$ $u \ge v$ si $u_i \ge v_i$ pour tout $i \in \{1, \dots, n\}$

$$G \in C(\mathbb{R}^n, \mathbb{R}^n)$$
, $G(u) = u - F(u)$
On suppose que F est t.q.

- 1. Il existe $m, M \in \mathbb{R}^n$ t.q. $m \leq F(m), M \geq F(M)$
- 2. m < M

3.
$$m \le u \le v \le M \implies F(u) \le F(v)$$

Initialisation :
$$u^{(0)} = m$$

Itération : $k \ge 0$, $u^{(k+1)} = F(u^{(k)})$

Alors,
$$m \le u^{(k)} \le u^{(k+1)} \le M$$
 pour tout k , $\lim_{k \to +\infty} u^{(k)} = \overline{u}$, $\overline{u} = F(\overline{u})$ et donc $G(\overline{u}) = 0$

Démonstration en exercice

Vitesse de convergence, point fixe de contraction, n=1

$$f \in C^1(\mathbb{R}, \mathbb{R})$$
Initialisation: $x^{(0)} \in \mathbb{R}$
Itération: $k \geq 0$, $x^{(k+1)} = f(x^{(k)})$
On suppose que $\lim_{k \to +\infty} x^{(k)} = \bar{x}$ (et donc $\bar{x} = f(\bar{x})$) $x^{(k)} \neq \bar{x}$ pour tout k
Question: Vitesse de convergence?

Théorème des Accroissements Finis, il existe c_k entre \bar{x} et $x^{(k)}$ t.q.

$$|x^{(k+1)} - \bar{x}| = |f(x^{(k)}) - f(\bar{x})| = |f'(c_k)||x^{(k)} - \bar{x}|$$

$$\lim_{k \to +\infty} \frac{|x^{(k+1)} - \bar{x}|}{|x^{(k)} - \bar{x}|} = |f'(\bar{x})|$$

Si $f'(\bar{x}) \neq 0$ la convergence est exactement linéaire

Si
$$f'(\bar{x}) = 0$$
 et $f \in C^2(\mathbb{R}, \mathbb{R})$ la convergence est au moins quadratique, $\lim_{k \to +\infty} \frac{|x^{(k+1)} - \bar{x}|}{|x^{(k)} - \bar{x}|^2} = \frac{1}{2}f''(\bar{x})$ (exercice)

Méthode de Newton, 1ere idée pour n=1

Itération : $k \ge 0$, $x^{(k+1)} = x^{(k)} - \frac{g(x^{(k)})}{g'(x^{(k)})}$

$$g \in C(\mathbb{R}, \mathbb{R})$$
, on cherche $\bar{x} \in \mathbb{R}$ t.q. $g(\bar{x}) = 0$ $f(x) = x - h(x)g(x)$, avec $h(x) \neq 0$ pour tout x , donc $g(x) = 0 \Leftrightarrow x = f(x)$ Algorithme du point fixe : Initialisation : $x^{(0)} \in \mathbb{R}^n$ Itération : $k \geq 0$, $x^{(k+1)} = f(x^{(k)})$ On suppose que la suite $(x^{(k)})_{k \in \mathbb{N}}$ converge, on pose $\bar{x} = \lim_{k \to +\infty} x^{(k)}$ (donc $\bar{x} = f(\bar{x})$ et $g(\bar{x}) = 0$) Si on choisit h t.q. $f'(\bar{x}) = 0$, alors la convergence est quadratique $f'(x) = 1 - h'(x)g(x) - h(x)g'(x)$, $f'(\bar{x}) = 1 - h(\bar{x})g'(\bar{x})$ Un choix possible est donc $h(x) = \frac{1}{g'(x)}$ (à condition que g' ne s'annule pas) Algorithme de Newton pour $n = 1$: