3.3.5 Exercices (algorithmes pour l'optimisation sans contraintes)

Exercice 112 (Mise en oeuvre de GPF, GPO). Corrigé en page 244.

On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x_1, x_2) = 2x_1^2 + x_2^2 - x_1x_2 - 3x_1 - x_2 + 4$.

- 1. Montrer qu'il existe un unique $\bar{x} \in \mathbb{R}^2$ tel que $\bar{x} = \min_{x \in \mathbb{R}^2} f(x)$ et le calculer.
- 2. Calculer le premier itéré donné par l'algorithme du gradient à pas fixe (GPF) et du gradient à pas optimal (GPO), en partant de $(x_1^{(0)}, x_2^{(0)}) = (0, 0)$, pour un pas de $\alpha = .5$ dans le cas de GPF.

Exercice 113 (Convergence de l'algorithme du gradient à pas optimal). *Suggestions en page 244. Corrigé détaillé en page 245*

Soit $f \in C^2(\mathbb{R}^n, \mathbb{R})$ t.q. $f(x) \to \infty$ quand $|x| \to \infty$. Soit $x_0 \in \mathbb{R}^n$. On va démontrer dans cet exercice la convergence de l'algorithme du gradient à pas optimal.

- 1. Montrer qu'il existe R > 0 t.q. $f(x) > f(x_0)$ pour tout $x \notin B_R$, avec $B_R = \{x \in \mathbb{R}^n, |x| \le R\}$.
- 2. Montrer qu'il existe M > 0 t.q. $|H(x)y \cdot y| \le M|y|^2$ pour tout $y \in \mathbb{R}^n$ et tout $x \in B_{R+1}$ (H(x)) est la matrice hessienne de f au point x, R est donné à la question 1).
- 3. (Construction de "la" suite $(x_k)_{k\in\mathbb{N}}$ de l'algorithme du gradient à pas optimal.) On suppose x_k connu $(k\in\mathbb{N})$. On pose $w_k=-\nabla f(x_k)$. Si $w_k=0$, on pose $x_{k+1}=x_k$. Si $w_k\neq 0$, montrer qu'il existe $\overline{\rho}>0$ t.q. $f(x_k+\rho w_k)\leq f(x_k+\rho w_k)$ pour tout $\rho\geq 0$. On choisit alors un $\rho_k>0$ t.q. $f(x_k+\rho_k w_k)\leq f(x_k+\rho w_k)$ pour tout $\rho\geq 0$ et on pose $x_{k+1}=x_k+\rho_k w_k$.

On considère, dans les questions suivantes, la suite $(x_k)_{k\in\mathbb{N}}$ ainsi construite.

- 4. Montrer que (avec R et M donnés aux questions précédentes)
 - (a) la suite $(f(x_k))_{k\in\mathbb{N}}$ est une suite convergente,
- (b) $x_k \in B_R$ pour tout $k \in \mathbb{N}$,
- (c) $f(x_k + \rho w_k) \le f(x_k) \rho |w_k|^2 + (\rho^2/2)M|w_k|^2$ pour tout $\rho \in [0, 1/|w_k|]$.
- (d) $f(x_{k+1}) \le f(x_k) |w_k|^2/(2M)$, si $|w_k| \le M$.
- (e) $-f(x_{k+1}) + f(x_k) \ge |w_k|^2/(2\overline{M})$, avec $\overline{M} = \sup(M, \tilde{M})$, $\tilde{M} = \sup\{|\nabla f(x)|, x \in B_R\}$.
- 5. Montrer que $\nabla f(x_k) \to 0$ (quand $k \to \infty$) et qu'il existe une sous suite $(n_k)_{k \in \mathbb{N}}$ t.q. $x_{n_k} \to x$ quand $k \to \infty$ et $\nabla f(x) = 0$.
- 6. On suppose qu'il existe un unique $\overline{x} \in \mathbb{R}^n$ t.q. $\nabla f(\overline{x}) = 0$. Montrer que $f(\overline{x}) \leq f(x)$ pour tout $x \in \mathbb{R}^n$ et que $x_k \to \overline{x}$ quand $k \to \infty$.

Exercice 114 (Jacobi et optimisation). Corrigé détaillé en page 248

Rappel Soit $f \in C^1(\mathbb{R}^n, \mathbb{R})$; on appelle **méthode de descente à pas fixe** $\alpha \in \mathbb{R}_+^*$ pour la minimisation de f, une suite définie par

$$oldsymbol{x}^{(0)} \in {
m I\!R}^n \ {
m donn\'e}, \ oldsymbol{x}^{(k+1)} = oldsymbol{x}^{(k)} + lpha oldsymbol{w}^{(k)}$$

où $\boldsymbol{w}^{(k)}$ est une direction de descente stricte en $\boldsymbol{x}^{(k)}$, c.à.d. $\boldsymbol{w}^{(k)} \in \mathbb{R}^n$ vérifie la condition $\boldsymbol{w}^{(k)} \cdot \nabla f(x^{(k)}) < 0$. Dans toute la suite, on considère la fonction f de \mathbb{R}^n dans \mathbb{R} définie par

$$f(\mathbf{x}) = \frac{1}{2}A\mathbf{x} \cdot \mathbf{x} - \mathbf{b} \cdot \mathbf{x},\tag{3.36}$$

où A une matrice carrée d'ordre n, symétrique définie positive, et $b \in \mathbb{R}^n$. On pose $\bar{x} = A^{-1}b$.

1. Montrer que la méthode de Jacobi pour la résolution du système Ax = b peut s'écrire comme une méthode de descente à pas fixe pour la minimisation de la fonction f définie par (3.36). Donner l'expression du pas α et de la direction de descente $w^{(k)}$ à chaque itération k et vérifier que c'est bien une direction de descente stricte si $x^{(k)} \neq A^{-1}b$.

2. On cherche maintenant à améliorer la méthode de Jacobi en prenant non plus un pas fixe dans l'algorithme de descente ci-dessus, mais un pas optimal qui est défini à l'itération *k* par

$$f(\mathbf{x}^{(k)} + \alpha_k \mathbf{w}^{(k)}) = \min_{\alpha > 0} f(\mathbf{x}^{(k)} + \alpha \mathbf{w}^{(k)}),$$
 (3.37)

où $m{w}^{(k)}$ est défini à la question précédente. On définit alors une méthode de descente à pas optimal par :

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{w}^{(k)}.$$

On appelle cette nouvelle méthode "méthode de Jacobi à pas optimal".

- (a) Justifier l'existence et l'unicité du pas optimal défini par (3.37), et donner son expression à chaque itération.
- (b) Montrer que $|f(x^{(k)}) f(x^{(k+1)})| = \frac{|r^{(k)} \cdot w^{(k)}|^2}{2 A n^{(k)} \cdot n^{(k)}}$ si $w^{(k)} \neq 0$.
- (c) Montrer que $r^{(k)} \to 0$ lorsque $k \to +\infty$, et en déduire que la suite donnée par la méthode de Jacobi à pas optimal converge vers la solution \bar{x} du système linéaire Ax = b.
- (d) On suppose que la diagonale extraite D de la matrice A (qui est symétrique définie positive) est de la forme $D=\alpha \mathrm{Id}$ avec $\alpha\in \mathbb{R}$.
 - i. Ecrire l'algorithme de descente à pas optimal dans ce cas.
 - ii. Comparer les algorithmes de descente obtenus par Jacobi et Jacobi à pas optimal avec les algorithmes de gradient que vous connaissez.

Exercice 115 (Fonction non croissante à l'infini). Suggestions en page 244.

Soient $n \ge 1$, $f \in C^2(\mathbb{R}^n, \mathbb{R})$ et $a \in \mathbb{R}$. On suppose que $A = \{x \in \mathbb{R}^n; f(x) \le f(a)\}$ est un ensemble borné de \mathbb{R}^n et qu'il existe $M \in \mathbb{R}$ t.q. $|H(x)y \cdot y| \le M|y|^2$ pour tout $x, y \in \mathbb{R}^n$ (où H(x) désigne la matrice hessienne de f au point x).

- 1. Montrer qu'il existe $\overline{x} \in A$ t.q. $f(\overline{x}) = \min\{f(x), x \in \mathbb{R}^n\}$ (noter qu'il n'y a pas nécessairement unicité de \overline{x}).
- 2. Soit $x \in A$ t.q. $\nabla f(x) \neq 0$. On pose $T(x) = \sup\{\alpha \geq 0; [x, x \alpha \nabla f(x)] \subset A\}$. Montrer que $0 < T(x) < +\infty$ et que $[x, x T(x)\nabla f(x)] \subset A\}$ (où $[x, x T(x)\nabla f(x)]$ désigne l'ensemble $\{tx + (1-t)(x T(x)\nabla f(x)), t \in [0,1]\}$.
- 3. Pour calculer une valeur appochée de \overline{x} (t.q. $f(\overline{x}) = \min\{f(x), x \in \mathbb{R}^n\}$), on propose l'algorithme suivant : **Initialisation :** $x_0 \in A$,

Itérations : Soit k > 0.

Si $\nabla f(x_k) = 0$, on pose $x_{k+1} = x_k$. Si $\nabla f(x_k) \neq 0$, on <u>choisit</u> $\alpha_k \in [0, T(x_k)]$ t.q. $f(x_k - \alpha_k \nabla f(x_k)) = \min\{f(x_k - \alpha \nabla f(x_k)), 0 \leq \alpha \leq T(x_k)\}$ (La fonction T est définie à la question 2) et on pose $x_{k+1} = x_k - \alpha_k \nabla f(x_k)$.

- (a) Montrer que, pour tout $x_0 \in A$, l'algorithme précédent définit une suite $(x_k)_{k \in \mathbb{N}} \subset A$ (c'est-à-dire que, pour $x_k \in A$, il existe bien au moins un élément de $[0, T(x_k)]$, noté α_k , t.q. $f(x_k \alpha_k \nabla f(x_k)) = \min\{f(x_k \alpha \nabla f(x_k)), 0 \le \alpha \le T(x_k)\}$).
- (b) Montrer que cet algorithme n'est pas nécessairement l'algorithme du gradient à pas optimal. [on pourra chercher un exemple avec n=1.]
- (c) Montrer que $f(x_k) f(x_{k+1}) \ge \frac{|\nabla f(x_k)|^2}{2M}$, pour tout $k \in \mathbb{N}$.
- 4. On montre maintenant la convergence de la suite $(x_k)_{k\in\mathbb{N}}$ construite à la question précédente.
 - (a) Montrer qu'il existe une sous suite $(x_{k_\ell})_{\ell \in \mathbb{N}}$ et $x \in A$ t.q. $x_{k_\ell} \to x$, quand $\ell \to \infty$, et $\nabla f(x) = 0$.
 - (b) On suppose, dans cette question, qu'il existe un et un seul élément $z \in A$ t.q. $\nabla f(z) = 0$. Montrer que $x_k \to z$, quand $k \to \infty$, et que $f(z) = \min\{f(x), x \in A\}$.