Université de Marseille Licence de Mathématiques, 3eme année, probabilités-Statistique Examen du 30 juin 2016

Le polycopié du cours, les notes de cours et les notes de TD sont autorisés. L'examen contient 3 exercices. Le barème est sur 28 points.

Exercice 1 (Indépendance et inégalité. Barème : 10 points) Soit (Ω, T, P) un espace probabilisé et X, Y deux v.a.r..

- 1. On suppose dans cette question que X et Y sont indépendantes et que Y > X p.s..
- (a) Montrer que pour tout $t \in \mathbb{R}$, on a $P(\{Y < t\})(1 P(\{X < t\})) = 0$.
- (b) Montrer qu'il existe $t \in \mathbb{R}$ tel que $P(\{Y < t\}) = 0$.
- (c) On pose $a = \sup\{t \in \mathbb{R}; P(\{Y < t\}) = 0\}$. Montrer que $a \in \mathbb{R}, P(\{Y < a\}) = 0$ et $P(\{X > a\}) = 0$.
- 2. On suppose que X modélise la durée de vie d'un moustique et Y la durée de vie d'un éléphant.
- (a) Le web suggère de prendre comme loi pour X une loi exponentielle de paramètre α et comme loi pour Y une loi exponentielle de paramètre β , avec $0<\beta<\alpha$. (On rappelle que la loi exponentielle de paramètre λ est la loi de densité f_{λ} avec $f_{\lambda}(x)=\lambda e^{-\lambda x}$ pour $x\geq 0$ et $f_{\lambda}(x)=0$ pour x<0.)
 - Peut-on considèrer que X et Y sont indépendantes et que Y > X p.s. (c'est-à-dire que l'éléphant vit presque sûrement plus longtemps que le moustique...)?
- (b) On choisit maintenant pour X une loi de densité dont la densité a pour support l'intervalle]0,a] et pour Y une loi de densité dont la densité a pour support l'intervalle]b,c], avec 0 < a < b < c (on ne s'intéresse pas à la mortalité infantile des éléphants). A t-on Y > X p.s. ? Peut-on supposer que X et Y sont indépendantes ?

Exercice 2 (Exponentielle d'une v.a. gaussienne, barème 3 points) Soit (Ω, \mathcal{A}, P) un espace probabilisé et X une v.a.r. t.q. $X \sim \mathcal{N}(0, 1)$. Soit $Y = \exp(X)$. Calculer l'espérance et la variance de Y.

Exercice 3 (Statistique. Barème : 15 points) Soit X une variable aléatoire dont la loi a pour densité

$$f_{\mu,\lambda}(x) := \frac{\lambda}{2} e^{-\lambda|x-\mu|}$$

où $\lambda > 0$ et $\mu \in \mathbb{R}$ sont deux paramètres. Soit X_1, \ldots, X_n un échantillon de taille n de X.

- 1. Vérifier que $f_{\mu,\lambda}$ est une fonction de densité, et la représenter graphiquement (on pourra éventuellement prendre $\mu = 3$ et $\lambda = 1$, par exemple, pour effectuer le dessin).
- 2. Calculer E(X) et expliquer le résultat à l'aide de la question précédente. En déduire un estimateur $\hat{\mu}$ de μ par la méthode des moments.
- 3. On pose $Y = |X \mu|$.
- (a) Quelles sont la valeurs possibles de Y? Calculer la fonction de répartition de Y.
- (b) En déduire la loi de Y, et donner sans calcul E(Y) et V(Y), puis $E(Y^2)$.
- (c) En déduire que $V(X)=\frac{2}{\lambda^2}$. Donner alors un estimateur $\hat{\lambda}$ de λ par la méthode des moments (i.e. en supposant que l'estimateur $\hat{\lambda}$ est la valeur de λ qui permet d'avoir l'égalité $V(X)=S_n^2(X_1,\ldots,X_n)$ où $S_n^2(X_1,\ldots,X_1)$ est la variance empirique de l'échantillon).
- 4. On cherche à estimer λ et μ par la méthode du maximum de vraisemblance.
- (a) Donner l'expression de la vraisemblance $L(x_1, \ldots, x_n, \mu, \lambda)$ et de son logarithme $\ln(L(x_1, \ldots, x_n, \mu, \lambda))$, où x_1, \ldots, x_n sont des réalisations de X_1, \ldots, X_n
- (b) On suppose que la valeur de μ est connue, et on veut estimer λ . Calculer l'estimateur $\hat{\lambda}'$ de λ par la méthode du maximum de vraisemblance.
- (c) On suppose que la valeur de λ est connue. Montrer qu'une valeur $\hat{\mu}'$ de μ maximisant la vraisemblance est une valeur minimisant la fonction

$$\varphi: y \mapsto |x_1 - y| + \dots + |x_n - y|.$$

(d) Déterminer les points où φ est continue et dérivable. Quitte à effectuer une permutation des x_i on pourra supposer $x_1 \leq x_2 \leq \ldots \leq x_n$. Calculer alors la dérivée de φ aux points où elle est définie, et étudier les variations de φ sur \mathbb{R} . En déduire qu'une valeur $\hat{\mu}'$ de μ maximisant la vraisemblance est une médiane des x_i , i.e. une valeur $\hat{\mu}'$ telle que

$$Card\{i \mid x_i \leq \hat{\mu}'\} = Card\{i \mid x_i \geq \hat{\mu}'\}.$$

5. On dispose des observations x_1, \ldots, x_{15} suivantes :

$$7,7, ; 6,7; 7,0; 8,1; 7,0; 6,9; 6,9; 7,0; 5,7; 9,0; 7,2; 6,7; 7,0; 6,7; 6,9.$$

- (a) Calculer la moyenne, la médiane et la variance de ces données.
- (b) On suppose que ces données proviennent d'une expérience qui a une densité $f_{\mu,\lambda}$ avec μ et λ inconnus. Calculer les estimations de μ et λ issues des estimateurs donnés aux questions 2, 3 et 4.