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1 Introduction

Let p ∈ N? and A be a real p× p matrix. One considers the following Cauchy
problem, where the unknown is the function W from R× R+ to Rp:

∂tW(x, t) +A∂xW(x, t) = 0, (x, t) ∈ R× R+,
W(x, 0) = W0(x), x ∈ R. (1)

A weak solution of Problem (1), for W0 ∈ L1
loc(R,Rp), is a function u ∈

L1
loc(R× R+,Rp) such that, for all ϕ ∈ C∞c (R× R+,Rp),∫ ∞

0

∫
R
(W · ∂tϕ +AW∂xϕ)(x, t)dxdt+

∫
R
W0(x)ϕ(x, 0)dx = 0. (2)

If A is diagonalizable in R, we will say that the first equation of Problem
(1) is a linear genuinely hyperbolic system. In this case, if q ∈ [1,∞] and
W0 ∈ Lq(R,Rp) (the Lebesgue space on R with value in Rp)), Problem (1)
has a unique weak solution W, and W(·, t) ∈ Lq(R,Rp) for a.e. t ∈ R+.

If the matrix A has only real eigenvalues but is not diagonalizable, the first
equation of Problem (1) is said to be a linear hyperbolic resonant system. In
this case, Problem (1) is ill posed in the sense that if W0 ∈ Lq(R,Rp) (for
some q ∈ [1,∞]), it has, in general, no weak solution W (and, in particular, no
weak solution with W(·, t) ∈ Lq(R,Rp) for a.e. t ∈ R+). (However, Problem
(1) is well posed in C∞, it has a unique solution in C∞(R × R+,Rp) if the
initial datum W0 belongs to C∞(R,Rp).) This ill posedness is due to the fact
that there is a lack of regularity between W(·, t) (for t > 0) and W0. For
instance, the Riemann problem, that is Problem (1) with W0(x) = wl for
x < 0 and W0(x) = wr for x > 0 (and wl, wr ∈ Rp), does not have a weak
solution (in the sense given before) except for very particular choices of W0,
but it has a solution in a greater space. In the case p = 2, it has a (unique)
solution in a space allowing W(·, t) to be, for t > 0, a measure on the bounded
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sets of R, see Section 2 below (in the case p ≥ 3, the solution W(·, t) may
even be less regular).

One considers now that the matrix A in (1) is depending on w, leading to the
following nonlinear system:

∂tW(x, t) +A(W(x, t))∂xW(x, t) = 0, (x, t) ∈ R× R+,
W(x, 0) = W0(x), x ∈ R. (3)

The unknown W is supposed to take values in an admissible set D ⊂ Rp.

If the matrix A(w) is diagonalizable in R for all w ∈ D, we say that the first
equation of Problem (3) is a nonlinear genuinely hyperbolic system. Prob-
lem (3) is expected to be have a unique solution, with W(·, t) belonging to a
Lebesgue space, in a convenient sense (including, for instance, an entropy con-
dition). This result could be suggested by the fact that the linear problem (1)
with A = A(w) is well posed in Lebesgue spaces for any w ∈ D.

Assume now that there exists R ⊂ D, R 6= ∅, such that the matrix A(w) is
diagonalizable in R for all w ∈ D \ R and has only real eigenvalues but is
not diagonalizable if w ∈ R. Then, the first equation of Problem (3) is said
to be a nonlinear resonant hyperbolic system. The linear problem (1) has, in
general, no weak solution (in the sense given before) if A = A(w), for any
w ∈ R (since it corresponds to a linear resonant hyperbolic system). In this
case, two questions seem of interest:

1. Is it possible to have an existence and uniqueness result (in Lebesgue
spaces) for this nonlinear resonant hyperbolic system ?

2. What is the behaviour of numerical schemes using a linearization of the
system (and then, possibly, using some linear resonant systems) ?

There are many recent works on nonlinear resonant hyperbolic systems, in
particular for proving an existence and uniqueness result for the Riemann
problem. See, for instance, [GL04], [GS06] (for an exemple in phase transi-
tion), [CLS04] (for the case of shallow water with topography). There are also
papers devoted to the study of numerical schemes for nonlinear resonant hy-
perbolic systems. See [AGG04] for a quite general study and, for the case of
shallow water with topography, [CLS04], [KL02], [ABB04], [GHS03]. In this
latter case, it seems possible to use linearized Riemann problems for the de-
sign of numerical schemes, even if the linearized system is resonant for the
computation of some fluxes (see [GHS03]).
In this paper, we focus on a simple example, coming from the modelization
of a two phase flow in an heterogeneous porous medium. It leads to a scalar
equation with a flux function discontinuously depending on the spatial vari-
able. Then, it can be seen as a nonlinear hyperbolic system and this system
is resonant for some values of the unknown. For this problem, it is possible to
prove, for a large class of initial data, an existence and uniqueness result of an
entropy weak solution (including cases where the initial datum belongs to R,
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the set corresponding to resonant systems, for all x ∈ R), along with the con-
vergence of numerical schemes, following [SV03], [BV06], [Bac04], [Bac05] (for
an existence and uniqueness result) and [Bac05], [Bac06] (for the convergence
of numerical schemes). Many other papers are devoted to this case of a scalar
conservation law with discontinuous coefficients, see, for instance, [Tow00],
[KRT03]. Some contributions on this problem are in the present proceedings.

One considers in this paper that the space variable x belongs to R, but some
extensions to x ∈ Rd, d = 2 or 3, are possible.

2 Linear resonant systems

Let p = 2 and A be a real 2× 2 matrix which has only real eigenvalues but is
not diagonalizable. Then, using a change of unknown, the Riemann problem
for the linear problem (1) can be put under the following form, with some
λ ∈ R (which is the unique eigenvalue of A):[

u
v

]
t

+
[
λ 1
0 λ

] [
u
v

]
x

= 0,[
u(x, 0)
v(x, 0)

]
=

[
ul

vl

]
, if x < 0, and

[
ur

vr

]
, if x > 0,

with ul, ur, vl, vr ∈ R. The second equation of the system and the second
initial condition are decoupled from the first ones. Then, the unique solution
for v (uniqueness holds even in the larger possible space of distributions) is
v(·, t) = v(· − λt, 0) for all t > 0. It is now possible to give the solution for u
(which is also unique in in the larger possible space of distributions), it is, for
all t > 0:

u(·, t) = ul1{x∈R, x<λt} + ur1{x∈R, x>λt} + t(vl − vr)δλt,

where 1B is the characteristic function of B, for B ⊂ R, and δa is the Dirac
mass at point a, for a ∈ R. In this example, the problem has no weak solution
with u(·, t) in a Lebesgue space but it has a unique solution in a space allowing
u(·, t) to be a measure on the bounded sets of R.

If p > 2, the (unique) solution of the Riemann problem for a linear hyperbolic
resonant system may be even less regular. Indeed, the regularity of the solution
depends on the difference between the algebraic and the geometric multiplicity
of the eigenvalues.

To conclude this section, one also presents the Riemann problem for the sim-
plest example of nonlinear resonnant hyperbolic system:

ut + (au)x = 0,
at = 0, (4)
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u(x, 0)
a(x, 0)

]
=

[
ul

al

]
, if x < 0, and

[
ur

ar

]
, if x > 0, (5)

Problem (4)-(5) has no weak solution (in the natural sense, similar to (2),
and even in a weaker sense allowing the solution to takes values, for t > 0,
in a distribution space) if al > 0, ar < 0 and alul 6= arur and has infinitely
many weak solution with u(·, t) ∈ L∞(R) for a.e. t, if al < 0 and ar > 0. See
[BJ98] for the study of such problems.

Problem (4)-(5) correspond to a nonlinear hyperbolic resonant system since
the system is equivalent (for regular solution) to:[

u
a

]
t

+
[
a u
0 0

] [
u
a

]
x

= 0.

Then, resonance occurs, for this system, when a = 0 and u 6= 0 and, as it
is said before, an existence and uniqueness result of a weak solution for the
Riemann problem does not hold for this nonlinear system provided that 0 is
between ar and al (except for some particular data).

3 Hyperbolic equation with a discontinuous coefficient

The example of a nonlinear resonant hyperbolic system studied in this paper
is given by a two phase flow in an heterogeneous porous medium, considering
only gravity effect (without capillarity and with a total flux equal to zero).
The unknown is the saturation, which is a function u : R×R+ → [0, 1] ⊂ R.
The equation is (forgetting the variable (x, t)):

∂tu+ ∂x(kg(u)) = 0, in R× R+, (6)

where k(x) = kl, for x < 0, and k(x) = kr, for x > 0, kl, kr > 0, kl 6= kr,
the function g : [0, 1] → R is Lipschitz continuous, nonnegative and such
that g(0) = g(1) = 0. A typical example, studied in [SV03], is g(u) = u(1−u).

This hyperbolic equation with a discontinuous coefficient can be viewed has a
conservative 2×2 system, adding k has an unknown and the equation kt = 0:

ut + (kg(u))x = 0,
kt = 0.

Then, with W =
[
u
k

]
and F (W) =

[
kg(u)
0

]
, this system is:

Wt + (F (W))x = 0,

or equivalently (for regular solutions), with A(w) = DF (w) for w ∈ R2:

Wt +A(W)Wx = 0.
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This leads to problem (3) with p = 2, W =
[
u
k

]
, A(W) =

[
kg′(u) g(u)

0 0

]
.

The admissibility domain isD = {(u, k)t, u ∈ [0, 1], k > 0}. Assuming that g ∈
C1 (which is not a necessary hypothesis for this problem), let R = {(u, k)t ∈
D, g′(u) = 0, g(u) 6= 0}. The matrix A(w) is diagonalizable in R for w =
(u, k)t ∈ D \ R and has only 0 as eigenvalue but is not diagonalizable if
w ∈ R. In the case g(u) = u(1 − u), R = {1/2} × R?

+. But the domain
R corresponding to resonance may be larger. In the case corresponding to
Figure 1, R = {(u, k)t ∈ D, g′(u) = 0, g(u) 6= 0} contains (1/4, 3/4)× R?

+.
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Fig. 1. Resonance occurs for all (k, u) with u ∈ ( 1
4
, 3

4
)

Despite this resonance phenomenon, it is possible to prove existence and
uniqueness of an “entropy weak solution” of (6) with an initial condition
u0, provided that u0 ∈ L∞(R) takes its values in [0, 1]. Actually, it is proven
in [BV06] (previous partial results were, for instance, in [SV03], [KRT03] and
[Bac04]) that there exists a unique solution of the following weak entropic
formulation of (6) with the initial condition u0:

u ∈ L∞(R+ × R), 0 ≤ u ≤ 1 a.e.,∫
R+

∫
R

[|u(x, t)− κ|∂tϕ(x, t) + k(x)φ(u(x, t), κ)∂xϕ(x, t)] dxdt

+
∫

R
|u0(x)− κ|ϕ(x, 0)dx+ |kr − kl|

∫
R+

g(κ)ϕ(0, t)dt ≥ 0,

∀κ ∈ [0, 1], ∀ϕ ∈ C∞c (R× R+,R+),

(7)

where φ(s, κ) = sign(s−k)(g(s)−g(κ)) for s ∈ [0, 1]. This definition of entropy
weak solution was previously given in [Tow00]. Of course, as usual, an entropy
weak solution of (6) with the initial condition u0 (that is a solution of (7)) is
a weak solution, that is satisfies:
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u ∈ L∞(R+ × R), 0 ≤ u ≤ 1 a.e.,∫
R+

∫
R
(u(x, t)∂tϕ(x, t) + k(x)g(u(x, t)))∂xϕ(x, t))dxdt

+
∫

R
(u0(x)ϕ(x, 0)dx ≥ 0, ∀ϕ ∈ C∞c (R× R+,R+).

(8)

A crucial property (see Section 4 for a sketch of proof) is that the constant
functions 0 and 1 are solutions of (6). Without this hypothesis, it is sometimes
possible to obtain an existence (and, possibly, with uniqueness) result for (6)
with the initial condition u0, but the solution does not takes (in general) its
values in [0, 1] and is not a weak solution of (6) (actually, the jump condition
at point x = 0 is not the jump condition implicitely given in (8)). Some
contributions in this direction are in the present proceedings.

The fact that the flux function has, with respect to u, the same form for
x < 0 and x > 0 (namely klg(u) and krg(u)) is not necessary. A similar result
of existence and uniqueness was proven recently in [Bac05] when k(x)g(u) is
replaced by g(x, u) with g(x, u) = gl(u) pour x < 0 and g(x, u) = gr(u), where
gl and gr are some Lipschitz continuous functions from [[0, 1] to R. But, for
this generalization, a main hypothesis is still that g(·, 0) and g(·, 1) are some
constants functions, that is to say gl(0) = gl(0) and gl(1) = gl(1) (and theses
values are not necessarily equal to zero).

In the following section, one gives a sketch of proof of this existence and
uniqueness result.

4 An existence and uniqueness result

In Section 3, we saw the following theorem (which is proven in [BV06] and
generalized in [Bac05] to a larger class of flux function):

Theorem 1. Let kl, kr > 0, k defined (from R to R) by k(x) = kl, for x < 0,
and k(x) = kr, for x > 0, and g : [0, 1] → R be a Lipschitz continuous
function, nonnegative and such that g(0) = g(1) = 0. Let u0 ∈ L∞(R) be such
that u0(x) ∈ [0, 1] for a.e. x ∈ R. Then, there exists a unique solution to (7).

One gives now a sketch of proof of this theorem.

There are similar methods for proving the existence part of Theorem 1. For
instance:

1. Replace, in (6), k by a regular function kε (then, existence and unique-
ness of the solution uε is classical, following Krushkov theory) converging
pointwise to k (as ε→ 0) and pass to limit as ε→ 0.

2. Add a viscous term −ε∂2
xu to (6) (with ε > 0, then existence and unique-

ness of the solution uε is also classical) and pass to limit as ε→ 0.
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3. Pass to the limit (as the discretization parameters go to 0) on the ap-
proximate solution given by “monotone” numerical schemes (such as the
Godunov sheme). We will call also uε the approximate solution.

The first method was used in [SV03], [Bac04] and [BV06]. The second and
third methods are very closed since the monotonicity of a numerical scheme
leads to some viscosity term in the approximate equation. The third method
is used in [Bac05] and [Bac06].

For these three methods, an L∞ estimate on uε is quite easy. Actually, it holds
0 ≤ uε ≤ 1 a.e.. Then, it is possible to assume, at least for a subsequence of
a sequence of approximate solutions, that uε → u for the weak-? topology of
L∞(R× R+) and 0 ≤ u ≤ 1 a.e..

The main difficulty (even if u0 is regular) in order to pass to the limit (as ε
goes to 0) and to obtain the existence part of Theorem 1 is to prove the a.e.
convergence of uε towards u, at least also for a subsequence of a sequence of
approximate solutions. This a.e. convergence is useful for proving that h(uε)
converges towards h(u) for all bounded continuous function h from R to R.

The main difficulty for the uniqueness part of Theorem 1 is to prove the
existence of traces for u on the line {(0, t), t > 0}.

In order to get rid of this two difficulties, some authors ([Tow00], [KRT03],
[SV03], [Bac04]. . . ) use the following hypothesis of genuine nonlinearity for
the flux function (where “meas” stands for the Lebesgue measure on R):

g ∈ C2 and meas({x ∈ [0, 1]; g′′(s) = 0}) = 0. (9)

With this hypothesis, the existence part of Theorem 1 follows by proving the
a.e. convergence of uε towards u, using some tools as “Temple function” or
“compensated compacness”. The uniqueness part of Theorem 1 is obtain using
the existence of traces for an entropy weak solution on the line {(0, t), t > 0}.

Without Assumption (9) on g, the proof of Theorem 1 is much more tricky
(see [BV06], [Bac05]). Passing to the limit as ε goes to 0 leads to the existence
of a solution in a very weak sense, namely it gives a “kinetic process solution”
(see the definition below). Then, an uniqueness result proves the fact that
this kinetic process solution is indeed an entropy weak solution (and that
this entropy weak solution is unique). This gives the existence part and the
uniqueness part of Theorem 1. A by product of the proof is that uε converges
towards u (as ε goes to 0) in Lp

loc(R× R+), for all 1 ≤ p <∞ (and then a.e.,
at least for subsequences of sequences of approximate solutions). One gives
now some details on this proof.

Since a sequence of approximate solutions is bounded in L∞(R × R+), one
can assume that, up to a subsequence, it converges towards a Young measure
(see, for instance, [DiP85]) or equivalently towards some u ∈ L∞(R × R+ ×
(0, 1)) in the “nonllnear weak-? sense”, using the following result (see [EGH00],
[EGH95]):
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Theorem 2. Let N ≥ 1, Ω be an open set of RN and (un)n∈N be a bounded
sequence of L∞(Ω). Then, there exists a subsequence, still denoted by (un)n∈N,
and there exists u ∈ L∞(Ω × (0, 1)) such that, for all ψ ∈ L1(Ω) and all
θ ∈ C(R,R):∫

Ω

θ(un(y))ψ(y)dy →
∫ 1

0

∫
Ω

θ(u(y, α))ψ(y)dydα, as n→∞.

Then, it is quite easy to prove that this function u is an entropy process
solution, that is a solution of:

u ∈ L∞(R+ × R× (0, 1)), 0 ≤ u ≤ 1 a.e.,∫ 1

0

∫
R+

∫
R

[|u(x, t, α)− κ|∂tϕ(x, t) + k(x)φ(u(x, t, α), κ)∂xϕ(x, t)] dxdtdα

+
∫

R
|u0(x)− κ|ϕ(x, 0)dx+ |kr − kl|

∫
R+

g(κ)ϕ(0, t)dt ≥ 0,

∀κ ∈ [0, 1], ∀ϕ ∈ C∞c (R× R+,R+).

If k is a regular function (then, with the hypotheseses of Theorem 1, k is
a constant function, but similar results are also true if k is not a constant
function), it is possible to prove an uniqueness result for this entropy process
solution and the fact that u does not depends on α, by using the doubling
variable technique of Krushkov (see [EGH00], for instance). This gives that
u is an entropy weak solution and concludes the proof of Theorem 1 for k
regular (i.e. constant). Unfortunately, the doubling variable technique does
not seem easily generalizable to the case of a discontinuous function k.

To overcome this difficulty, one introduces once again a new variable, denoted
ξ, and one remarks that u is also a “kinetic process solution”. It means that, for
all ξ ∈ R, there exist two positive Radon measures on R×R+, denoted mξ,±,
continuously depending on ξ in the sense that ξ 7→

∫
ϕdmξ,± is continuous

for all ϕ ∈ Cc(R× R+), such that, for all ϕ ∈ C∞c (R× R+ × R):

∫ 1

0

∫
R

∫
R+

∫
R
h±(x, t, α, ξ)(∂tϕ(x, t, ξ) + k(x)a(ξ)∂xϕ(x, t, ξ))dxdtdξdα

+
∫

R

∫
R
h

(0)
± (x, ξ)ϕ(x, 0, ξ)dxdξ +

∫
R

∫
R+

(kr − kl)±a(ξ)ϕ(0, t, ξ)dtdξ

=
∫

R
∫

R×R+
∂ξϕ(x, t, ξ)dmξ,±(x, t)dξ,

where a(ξ) = g′(ξ), h±(x, t, α, ξ) = sign±(u(t, x, α) − ξ) and h
(0)
± (x, ξ) =

sign±(u0(x) − ξ) (with sign+(s) = 1 if s > 0 and 0 if s < 0, sign−(s) = −1
if s < 0 and 0 if s > 0). The functions h± and h

(0)
± are the equilibrium

functions associated to u and u0. This definition of a kinetic process solution
is a natural generalization of the definition of a kinetic solution for a nonlinear
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hyperbolic equation, see, for instance, [Per98] (the generalization appears in
the variable α and in the discontinuity of k). One can now adapt the proof of
uniqueness of the kinetic solution given in [Per98]. It gives here that u does not
depends on α and is the unique kinetic solution of our problem and then the
unique entropy weak solution (i.e. the unique solution of (7)). This concludes
the proof of Theorem 1. Note also that the preceding proof gives that uε

converges towards u (as ε goes to 0) in Lp
loc(R×R+), for all 1 ≤ p <∞ (and

then a.e., at least for subsequences of sequences of approximate solutions).

5 Numerical schemes and numerical results

The presentation of the numerical schemes is restricted here to the case of
a system under a conservative form, which is the case of the simple system
presented in Section 3. An additional work has to be done for a system with
a nonconservative term (this is the case for Shallow Water with topography,
see [GHS03] for instance). Then, the system reads, with the same notations
are before:

∂tW + ∂xF (W) = 0,
W(·, 0) = W0,

(10)

where F is a Lipschitz continuous function from D ⊂ Rp to Rp. Recall that
the unknown W is a function from R×R+ to D ⊂ Rp, where D is the so-called
admissible domain.

The time and space steps are denoted by δt and δx. For simplicity, they are
assumed to be constant. Let tn = nδt and xi+1/2 = ih for n ∈ N and i ∈ Z.
The approximate solution is defined by the family {wn

i , i ∈ Z, n ∈ N} ⊂ R,
where wn

i is the value of the approximate solution for t ∈ (tn, tn+1) and in
the control volume Mi = (xi−1/2, xi+1/2).

The initial condition is used to compute {w0
i , i ∈ Z}:

w0
i =

1
δx

∫ x
i+ 1

2

x
i− 1

2

W0(x)dx, for i ∈ Z. (11)

One describes now two possibilities for the computation of {wn+1
i , i ∈ Z}

using {wn
i , i ∈ Z}. The first one uses the resolution of the Riemann problem

associated to (10), it is the Godunov scheme. The second one uses a linearized
Riemann problem.

Godunov scheme

Let wl, wr ∈ D. The Riemann problem associated to wl and wr is (10) with
W(x, 0) = wl if x < 0 and W(x, 0) = wr if x > 0. One assumes that this
Riemann problem has a self similar function, which one denotes by W(x, t) =
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R(x/t,wl,wr) and that it is possible to compute this solution. This is the
case, in particular, for the three nonlinear resonant hyperbolic systems given
in Section 1 (phase transition [GS06], Shallow Water with topography [CLS04]
and two phase flow in an heterogeneous porous medium [Bac05]) although this
solution is sometimes not unique (in the case of shallow water, see [CLS04]).
One sets w?,±(wl,wr) = R(0±,wl,wr). The values w?,±(wl,wr) are always
well defined, even if {(0, t), t > 0} is a line of discontinuity for W. Then, the
Godunov scheme is defined by:

wn+1
i −wn

i

k
+ Fn

i+ 1
2
− Fn

i− 1
2

= 0, i ∈ Z, n ∈ N, (12)

with Fn
i+ 1

2
= F (wn,±

i+ 1
2
) and wn,±

i+ 1
2

= w?,±(wn
i ,w

n
i+1). The definition of Fn

i+ 1
2

is correct, since F (wn,+

i+ 1
2
) = F (wn,−

i+ 1
2
) even if wn,+

i+1/2 6= wn,−
i+1/2, thanks to

the Rankine-Hugoniot condition for the solution of the Riemann problem.
This scheme is very efficient. It uses, as usual for an explicit scheme, a CFL
condition which reads δt ≤ cδx where c is computed with the eigenvalues
of A(w) = DF (w) (DF (w) is the jacobian matrix of F at point w ∈ D,
assuming F continuously differentiable). It is sometimes too expansive and
it is the reason of the introduction of a modified scheme, using a linearized
Riemann problem.

The VFRoe-ncv scheme

Assuming, for simplicity, that F is continuously differentiable, one setsA(w) =
DF (w) for w ∈ D, where DF (w) is the jacobian matrix of F at point w ∈ D.
Let φ be a regular function of D ⊂ Rp to Rp. It is not necessary to assume
that φ is one-to-one from D to Ra(φ) = {φ(w), w ∈ D}, but one assumes
that there exists a continuous function C, from D to the set of p × p matrix
with real entries, and a continuous function F̃ , from Ra(φ) to Rp such that
Dφ(w)A(w) = C(w)Dφ(w) and F (w) = F̃ (φ(w)) for all w ∈ D.

Let W : R × R+ → D be a regular solution of ∂tW + A(W)∂xW = 0.
Then, Y = φ(W) satisfy ∂tY + Dφ(W)A(W)∂xW = 0 and, thanks to the
hypothesis on φ, the function Y satisfies:

∂tY + C(W)∂xY = 0. (13)

It is now possible to describes the VFRoe-ncv scheme associated to φ. For
wl, wr ∈ Rp, one sets wl,r = (wr + wl)/2 (it is possible to take another
mean value between wl and wr) and considers the following linear Riemann
problem:

∂tY + C(wl,r)∂xY = 0,

Y(x, 0) =
{

yl = φ(wl) if x < 0,
yr = φ(wr) if x > 0.

(14)

If C(wl,r) is diagonalizable in R, Problem (14) has a unique solution. It is a
self similar function: Y(x, t) = Rφ(x

t ,yl,yr). Then one sets:
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y?,±(wl,wr) = Rφ(0±,yl,yr).

If C(wl,r) has only real eigenvalues but is not diagonalizable in R, the first
equation of (14) is a linear resonant hyperbolic system. In this case, Problem
(14) has also a unique solution but it is not, in general, a function (in the
example of Section 2, if λ = 0, there is a Dirac mass at x = 0 for any
t > 0). However, Rφ(0±,yl,yr) is always well defined (forgetting the Dirac
mass in the example of Section 2) and it is also possible to set y?,±(wl,wr) =
Rφ(0±,yl,yr). The VFRoe-ncv scheme associated to φ is (11)-(12) but with
Fn

i+ 1
2

= (1/2)(F̃ (yn,+

i+ 1
2
) + F̃ (yn,−

i+ 1
2
)) (assuming that yn,±

i+ 1
2
∈ Ra(φ)), yn,±

i+ 1
2

=

y?,±(wn
i ,w

n
i+1). A possible drawback of the method seems to be the fact

that the numerical flux of the scheme is not a continuous function of its
arguments when an eigenvalue changes sign (namely, Fn

i+1/2 does not depends
continuously of wn

i and wn
i+1). In practice, this drawback does not seem to be

so important. As for the Godunov scheme, the scheme uses a CFL condition
which reads δt ≤ cδx.

In the case studied in Section 3, for w = (u, k)t ∈ D = [0, 1] × R?
+, one has

F (w) = (kg(u), 0)t. A simple choice of φ is φ(w) = (kg(u), k)t for w = (u, k)t.
With this choice of φ, the matrix C(w) is, for any w ∈ D, diagonal and
System (13) is not a resonant system.

One presents in Figure 2 a numerical result (given in [Bac05]) with this two
schemes, the function g given in Figure 1, and u0(x) = 3/8, for x < 0, u0(x) =
5/8 for x > 0. This result shows the good behaviour of the two schemes (with
only one “wrong point” with the VFRoe-ncv scheme).
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God
Ex. Sol

Fig. 2. Numerical results for the Godunov scheme and the VFRoe-ncv scheme
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[EGH95] Eymard, R., Gallouët, T., Herbin, R.: Existence and uniqueness of the
entropy solution to a nonlinear hyperbolic equation. Chin. Ann. of Math.,
16B: 1, 1–14 (1995)
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