Universités de Marseille, Analyse fonctionnelle, pb 4, octobre 2005 Théorème de point fixe, dû à F. E. Browder

Dans ce problème, on va, en particulier, démontrer le théorème suivant, dû à F. E. Browder (ne pas confondre ce théorème avec le théorème de point fixe de Brouwer) :

Théorème 1 Soit E un espace de Banach uniformément convexe, $C \subset E$ une partie convexe fermée bornée non vide et T une application de C dans C t.q. $||T(x) - T(y)|| \le ||x - y||$ pour tout $x, y \in C$. Alors, T admet un point fixe.

Soit E un espace de Banach (réel) et $C \subset E$ une partie convexe fermée non vide. On suppose que E est uniformément convexe , c'est-à-dire que :

Pour tout
$$\varepsilon > 0$$
, il existe $\delta > 0$ t.q. : $x, y \in E$, $||x|| \le 1$, $||y|| \le 1$, $||x - y|| \ge \varepsilon \Rightarrow ||\frac{x+y}{2}|| \le 1 - \delta$.

On rappelle (ou on admet...) qu'un espace de Banach uniformément convexe est réflexif.

Partie I

Montrer que pour tout R > 0 et tout $\varepsilon > 0$, il existe $\delta > 0$ t.q. :

$$(a, b \in E, ||a|| \le R, ||b|| \le R, ||a - b|| > \varepsilon) \Rightarrow (||\frac{a + b}{2}||^2 \le \frac{1}{2}||a||^2 + \frac{1}{2}||b||^2 - \delta).$$

[On pourra raisonner par l'absurde.]

Partie II

Soit $A \subset C$ un ensemble borné non vide. On définit φ de E dans \mathbb{R} par :

$$\varphi(x) = \sup_{y \in A} ||x - y|| \text{ pour } x \in E.$$

- 1. Montrer que φ est une fonction convexe et que $|\varphi(x_1) \varphi(x_2)| \le ||x_1 x_2||$ pour tout $x_1, x_2 \in E$.
- 2. Montrer qu'il existe un unique élément $c \in C$ t.q. $\varphi(c) = \inf_{x \in C} \varphi(x)$.

Cet élément c est appelé le centre de A. Dans la suite on note $\sigma(A)$ le centre de A.

3. Montrer que si A n'est pas réduit à un élément, on a alors :

$$\varphi(\sigma(A)) < \operatorname{diam}(A) = \sup_{x,y \in A} ||x - y||.$$

Partie III

Soit $(a_n)_{n\in\mathbb{N}}$ une suite bornée de C. Pour $n\in\mathbb{N}$, on pose :

$$A_n = \bigcup_{i=n}^{\infty} \{a_i\},\,$$

et on définit φ_n de E dans \mathbb{R} par :

$$\varphi_n(x) = \sup_{y \in A_n} ||x - y|| \text{ pour } x \in E.$$

1. Montrer que, pour tout $x \in E$, la suite $(\varphi_n(x))_{n \in \mathbb{N}}$ admet une limite dans \mathbb{R} .

On définit φ de E dans \mathbb{R} par $\varphi(x) = \lim_{n \to \infty} \varphi_n(x)$ pour $x \in E$.

- 2. Montrer que φ est continue sur E.
- 3. Montrer qu'il existe un unique $\overline{\sigma} \in C$ t.q. $\varphi(\overline{\sigma}) = \inf_{x \in C} \varphi(x)$.

On dit que $\overline{\sigma}$ est le centre asymptotique de la suite $(a_n)_{n\in\mathbb{N}}$.

4. Pour $n \in \mathbb{N}$, on pose $\sigma_n = \sigma(A_n)$ ($\sigma(A_n)$ est le centre de A_n , défini danas la partie II). Montrer que $\sigma_n \to \overline{\sigma}$ faiblement dans E (c'est-à-dire pour la topologie $\sigma(E, E')$), quand $n \to \infty$, et que :

$$\lim_{n\to\infty}\varphi_n(\sigma_n)=\lim_{n\to\infty}\varphi(\sigma_n)=\varphi(\overline{\sigma}).$$

- 5. Montrer que $\sigma_n \to \overline{\sigma}$ dans E. [on pourra raisonner par l'absurde et utiliser la partie I.]
- 6. On suppose, dans cette question, que $a_n \to a$ dans E, quand $n \to \infty$. Montrer que a est le centre asymptotique de la suite $(a_n)_{n \in \mathbb{N}}$.
- 7. On suppose, dans cette question, que E est une espace de Hilbert et que $a_n \to a$ faiblement dans E, quand $n \to \infty$. Montrer que a est le centre asymptotique de la suite $(a_n)_{n \in \mathbb{N}}$. [Penser à developper les carrés de normes...]

Partie IV

Soit T une application de C dans C t.q. $||T(x) - T(y)|| \le ||x - y||$ pour tout $x, y \in C$. (On dit que T est une contraction au sens large.)

- 1. Soit $a \in C$. On définit la suite $(a_n)_{n \in \mathbb{N}}$ déléments de C en posant $a_0 = a$ et $a_{n+1} = T(a_n)$ pour tout $n \in \mathbb{N}$. On suppose que la suite $(a_n)_{n \in \mathbb{N}}$ est bornée. Soit $\overline{\sigma}$ le centre asymptotique de la suite $(a_n)_{n \in \mathbb{N}}$. Montrer que $\overline{\sigma}$ est un point fixe de T (c'est-à-dire que $T(\overline{\sigma}) = \overline{\sigma}$).
- 2. En déduire le théorème 1.