Universités de Marseille, Master 1 de mathématiques Analyse de Fourier, TD 1, Septembre 2007

Exercice 1 (Suites de Cauchy dans S_d)

Soit E un espace vectoriel sur K, avec $K = \mathbb{R}$ ou \mathbb{C} , et $\mathcal{P} = \{p_n, n \in \mathbb{N}\}$ une famille de semi-normes sur E. On rappelle les deux définitions suivantes :

- Une partie O de E est un ouvert de E, muni de la famille \mathcal{P} , si pour tout $u \in O$ il existe $n \in \mathbb{N}$ et $\varepsilon > 0$ t.q. $\bigcap_{i=0}^{n} \{v, p_i(v-u) \leq \varepsilon\} \subset O$.
- Une suite $(u_n)_{n\in\mathbb{N}}$ de E est de Cauchy pour \mathcal{P} si pour tout ouvert O de E, contenant 0, il existe n_0 t.q. :

$$p, q \ge n_0 \Rightarrow u_p - u_q \in O.$$

On rappelle aussi qu'un espace topologique est la donnée d'un ensemble et d'une famille de parties de cet ensemble, appelée "famille des ouverts". Cette famille peut être définie à partir d'une norme, d'une distance, d'une famille de semi-normes etc...

- 1. Soit d une distance sur E, invariante par translation, induisant sur E les mêmes ouverts que \mathcal{P} . Soit $(u_n)_{n\in\mathbb{N}}$ une suite de E. Montrer que $(u_n)_{n\in\mathbb{N}}$ est de Cauchy pour \mathcal{P} si et seulement si $(u_n)_{n\in\mathbb{N}}$ est de Cauchy pour d. (Ceci peut être faux sans l'hypothèse d'invariance par translation, comme le montre l'exercice 2.)
- 2. On suppose que E, muni de la topologie induite par \mathcal{P} , est séparé. Donner sur E une distance invariante par translation induisant sur E les mêmes ouverts que ceux donnés par \mathcal{P} .
- 3. Soit $d \geq 1$. On prend ici $E = \mathcal{S}_d$ (vu en cours) et pour \mathcal{P} la famille de semi-normes vue en cours. Montrer que \mathcal{S}_d est complet (i.e. que toute suite de Cauchy est convergente). [On pourra commencer par montrer le résultat suivant : Soit $(f_n)_{n\in\mathbb{N}} \subset C^1(\mathbb{R},\mathbb{R})$ et $f,g:\mathbb{R} \to \mathbb{R}$ t.q. $f_n \to f$ et $f'_n \to g$ uniformément sur \mathbb{R} . Montrer que $f \in C^1(\mathbb{R},\mathbb{R})$ et g = f'.]

Exercice 2 (la complétude n'est pas une notion topologique)

Soit φ une fonction continue strictement croissante de \mathbb{R} dans \mathbb{R} . Pour $x, y \in \mathbb{R}$, on pose $d_1(x, y) = |x - y|$ et $d_2(x, y) = |\varphi(x) - \varphi(y)|$.

- 1. Montrer que d_1 et d_2 induisent la même topologie sur \mathbb{R} (c'est-à-dire les mêmes ouverts).
- 2. On suppose ici φ a une limite finie en $+\infty$. Montrer que \mathbb{R} n'est pas complet avec la distance d_2 (on rappelle qu'il est coimplet avec la distance d_1). [On pourra donner explicitement une suite de Cauchy non convergente.]

Exercice 3 (Caractérisation de S_d)

Soit $d \ge 1$ et $f \in C^{\infty}(\mathbb{R}^d, \mathbb{C})$. Montrer que les trois propriétés suivantes sont équivalentes :

- 1. $f \in \mathcal{S}_d$,
- 2. pour tout $\alpha, \beta \in \mathbb{N}^d$, la fonction $x \mapsto x^{\beta} D^{\alpha} f(x)$ est bornée,
- 3. pour tout $\alpha, \beta \in \mathbb{N}^d$, la fonction $x \mapsto D^{\alpha}(x^{\beta} f(x))$ est bornée.

Exercice 4 (Quelques propriétés de S_d)

- 1. Montrer que $C_c^{\infty}(\mathbb{R}^d, \mathbb{C}) \subset \mathcal{S}_d \subset L^1_{\mathbb{C}}(\mathbb{R}^d)$. A-t-on densité de $C_c^{\infty}(\mathbb{R}^d, \mathbb{C})$ dans \mathcal{S}_d (pour la topologie de \mathcal{S}_d) et densité de \mathcal{S}_d dans $L^1_{\mathbb{C}}(\mathbb{R}^d)$ (pour la topologie de $L^1_{\mathbb{C}}(\mathbb{R}^d)$)?
- 2. Soit $f, g \in \mathcal{S}_d$ et P un polynôme.

- (a) Montrer que toutes les dérivées de f sont dans S_d .
- (b) Montrer que $Pf \in \mathcal{S}_d$ et que $gf \in \mathcal{S}_d$.
- 3. Le polynôme P peut s'écrire $P(x) = \sum_{\alpha, |\alpha| \le m} a_{\alpha} x^{\alpha}$ (avec un certain $m \in \mathbb{N}$). Montrer que $P(D)f = \sum_{\alpha, |\alpha| \le m} a_{\alpha} D^{\alpha} f \in \mathcal{S}_d$.

Exercice 5 (la convolution est une opération interne dans S_d)

Soit $d \geq 1$ et $f, g \in \mathcal{S}_d$. Montrer que $f \star g \in \mathcal{S}_d$.

Exercice 6 (Petit lemme...)

Soit
$$d \ge 1$$
 et $f, g \in L^1_{\mathbb{C}}(\mathbb{R}^d)$. Montrer que $\int \hat{f}(x)g(x)dx = \int f(x)\hat{g}(x)dx$.

Exercice 7 (Inversion partielle dans L^1 de la transformée de Fourier)

Soit $d \geq 1$ et $f \in L^1_{\mathbb{C}}(\mathbb{R}^d)$ t.q. $\hat{f} \in L^1_{\mathbb{C}}(\mathbb{R}^d)$ (on rappelle que en général $\hat{f} \notin L^1_{\mathbb{C}}(\mathbb{R}^d)$ si $f \in L^1_{\mathbb{C}}(\mathbb{R}^d)$). On va démontrer dans cet exercice que $f = \hat{f}(-\cdot)$ p.p., c'est-à-dire :

$$f(t) = \int \hat{f}(x)e^{ixt}dm_d(x)$$
, pour presque tout $t \in \mathbb{R}^d$. (1)

On rappelle (voir cours) que $m_d = (2\pi)^{-\frac{d}{2}} \lambda_d$.

On prend ci dessous d=1 (pour simplifier...). Soit $H(t)=e^{-|t|}, t\in\mathbb{R}$. On pose, pour $\lambda>0$:

$$h_{\lambda}(x) = (2\pi)^{-\frac{1}{2}} \int_{\mathbb{R}} H(\lambda t) e^{itx} dt, x \in \mathbb{R}.$$

- $1. \ \text{Montrer que } h_{\lambda}(x)=(\frac{2}{\pi})^{\frac{1}{2}}\frac{\lambda}{\lambda^2+x^2},\, \text{et } \int_{\mathbb{R}}h_{\lambda}(x)dx=(2\pi)^{\frac{1}{2}}.$
- 2. Soit $f \in L^1_{\mathbbm{C}}(\mathbbm{R})$, montrer que, pour tout $x \in \mathbbm{R}$, on a :

$$f \star h_{\lambda}(x) = \int_{\mathbb{R}} H(\lambda t) \hat{f}(t) e^{ixt} dt.$$

- 3. Soit g une fonction bornée de \mathbb{R} dans \mathbb{C} , continue en 0; montrer que $g \star h_{\lambda}(0) \to \sqrt{2\pi}g(0)$ quand $\lambda \to 0$. [Utiliser 1. et le théorème de convergence dominée.]
- 4. Soit $f \in L^1_{\mathbb{C}}(\mathbb{R})$, montrer que :

$$||f \star h_{\lambda} - \sqrt{2\pi}f||_1 \to 0 \text{ lorsque } \lambda \to 0.$$

[Utiliser la continuité en moyenne et la question précédente avec $g(y) = \int |f(x+y) - f(x)| dx$.]

5. Déduire de ce qui précède le résultat annoncé (c'est-à-dire que $f = \hat{f}(-\cdot)$ p.p. si $f \in L^1_{\mathbb{C}}(\mathbb{R})$ et $\hat{f} \in L^1_{\mathbb{C}}(\mathbb{R})$).

Une conséquence de ce résultat est l'injectivité de la transformée de Fourier dans L^1 . En effet, soit $f, g \in L^1_{\mathbb{C}}(\mathbb{R}^d)$ t.q. $\hat{f} = \hat{g}$. On a alors, par linéarité, $\widehat{f-g} = 0$ et donc $\widehat{f-g} \in L^1_{\mathbb{C}}(\mathbb{R}^d)$. En appliquant le résultat démontré dans cet exercice, on a donc f = g p.p..