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Summary. Different types of boundary conditions in industrial numerical simulators involving
the discretization of hyperbolic systems are presented. For some of them, one may determine
the problem to which the limit of approximate solutions (as the discretization parameters tend
to 0) is the unique solution. In turn, this convergence result may suggest other ways to take into
account the boundary conditions.

1 Introduction

In the industrial context, efficient numerical simulators are often developped after a
long “trial and error” procedure. The efficiency of the simulators may be evaluated,
for instance, by the fact that the solution satisfies some natural constraints and that it
is in agreement with experimental data. In some cases, estimates on the approximate
solutions allow to obtain the convergence of some sequences of approximate solutions
as the discretization size tends to 0. However, it is not easy to give the answer to the
following question: “Which problem is the limit of the approximate solutions the unique
solution to ?”.

This paper will focus on the problem of boundary conditions needed in the discretiza-
tion of non linear hyperbolic equations or systems of equations; this problem is not yet
clearly understood in many cases. Two different cases will be presented: a two phase flow
in a pipeline and a two phase flow in a porous medium.

2 A two phase flow in a pipeline

2.1 Description of the system

A “simple” model for a two phase flow in a pipeline (see [8], for instance) leads to a
3×3 system of conservations laws. The unknown w is a function from (0, 1)×R+ in R3,
solution of the following system:

wt + (F (w))x = 0, x ∈ (0, 1), t ∈ R+, (1)

where (·)t and (·)x denote the derivatives with respect to t and x variables. The first
two equations of (1) give the mass conservation of the 2 phases (gas and liquid) and
the third one is the momentum equation for the mixture. The expression of the given
function F : R3 → R3 is quite complicated. It takes into account thermodynamical
laws and a hydrodynamical law. System (1) is hyperbolic: for any w ∈ R3, the Jacobian
matrix DF (w) is diagonalizable in R. The three eigenvalues can be ordered: λ1(w) <
λ2(w) < λ3(w). In real situations, the first eigenvalue, λ1(w) is negative and the third,
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λ3(w), is positive (they correspond to some “pressure waves” which are related to a
“sound velocity”). The second eigenvalue, λ2(w), corresponds to some mean velocity
between the two phases and can change sign. One can also note that the field related to
this second eigenvalue is quite complicated because it is not, in general, a genuinely non
linear field or a linearly degenerate field. In petroleum engineering, the wave associated to
this second eigenvalue is a “void fraction wave”; engineers require a good representation
of this wave in the numerical simulations.

Remark 1. In real situations, the function F in System (1) also depends on x, in order to
take into account, for instance, the variation in the slope of the pipeline. Moreover, some
source terms have to be added to the system, in order to take into account, for instance,
some friction terms.

In order to complete System (1), an initial condition is prescribed:

w(x, 0) = w0(x), x ∈ (0, 1), (2)

and it is also necessary to give some boundary conditions. This appears to be not so easy.
Indeed, classically, a general principle is that the number of boundary conditions needs
to be equal to the number of positive eigenvalues of the Jacobian matrix at x = 0 and to
the number of negative eigenvalues of the Jacobian matrix at x = 1 (and these boundary
conditions have to satisfy some compatibility conditions). However, this principle is not
so easy to understand when an eigenvalue changes sign during the simulation (or in the
case of a null eigenvalue). A very interesting case is the so called “severe slugging” case
in a pipeline. For this case, there are always two positive eigenvalues at x = 0 and two
natural boundary conditions are prescribed at x = 0, namely the fluxes of gas and liquid;
these boundary conditions can be taken constant in time. At x = 1, there is one natural
boundary condition, namely the pressure (which is the same for the two phases, in this
model), to be prescribed. It can also be constant in time. The true physical solution,
which is measured by experiments (and the aim is to modelize these experiments), is
periodical in time and it appears that, at x = 1, the first eigenvalue is always positive
and the third one is always negative but the second eigenvalue changes sign during the
simulation. In the sequel, one presents different ways to take into account the boundary
conditions and one gives a convergence result in a simplified case.

2.2 Discretization of the problem

In order to discretize Problem (1), (2) and some boundary conditions, which will be
introduced later, let h = 1

N (with N ∈ N?) be the mesh size and k > 0 be the time step
(assumed to be constant, for the sake of simplicity). The discrete unknown are the values
wn

i ∈ R3 for i ∈ {1, . . . , N} and n ∈ N. The discretization of the initial condition leads
to

w0
i =

1
h

∫ ih

(i−1)h

w0(x)dx, i ∈ {1, . . . , N}. (3)

For the computation of wn
i for n > 0, one uses an explicit, 3-points scheme:

h

k
(wn+1

i − wn
i ) + Fn

i+ 1
2
− Fn

i− 1
2

= 0, i ∈ {1, . . . , N}, n ∈ N. (4)
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For i ∈ 1, . . . , N − 1, one takes Fn
i+ 1

2
= g(wn

i , w
n
i+1), where g is the numerical flux. It

has to satisfy, in particular, the classical consistency condition, namely g(a, a) = F (a),
and needs to be chosen in order to obtain some stability properties for the numerical
scheme under a so called CFL condition on the time step (see Sect. 3 for the study of a
scalar model). In the case of two phase flow in a pipeline, the classical numerical fluxes
such as the Godunov flux (see [9]) or the Roe flux (see [11]) may not be implemented,
because of computational difficulties. A convenient choice is obtained with a simplified
Roe flux, namely g(a, b) = g(a)+g(b)

2 + 1
2 |A(a, b)|(a−b), where A(a, b) is some appoximation

of the Jacobian matrix, depending on a and b, but not satisfying the so called Roe
condition, see [8].

Remark 2. In fact, for the simulation of a two phase flow in a pipeline, the magnitude of
the so-called fast eigenvalues, λ1 and λ3, is much greater than that of λ2; the choice in [8]
is to use an implicit scheme with respect to the fast eigenvalues, whereas the eingevalue
λ2, which corresponds to the void fraction wave, is handled with an explicit second order
discretization, since the void fraction wave needs to be simulated precisely (see [8] for
details).

Let us now define the fluxes Fn
1
2

and Fn
N+ 1

2
at the boundary.

2.3 Boundary conditions for the discretized problem

In order to compute Fn
1
2

(and similarily Fn
N+ 1

2
) a good way is to know, or to determine,

some artificial value wn
0 ∈ R3 (and wn

N+1 ∈ R3) and to take Fn
1
2

= g0(wn
0 , w

n
1 ) (and

Fn
N+ 1

2
= g1(wn

N , w
n
N+1)). The numerical fluxes g0 and g1 can be chosen equal to g, but this

is not at all necessary (see the convergence result of Sect. 3); in fact, there are numerous
situations where one should take g0 and g1 different from g. Indeed, the scheme is often
very sensitive to the computation of the boundary fluxes and it is often worthwhile to
use a more precise, but also more expensive numerical flux (such as the Godunov flux,
for instance) for the computation of the boundary fluxes than for the computation of the
interior fluxes. The difficulty is now to determine these artificial values, wn

0 and wn
N+1.

Remark 3. In some cases, the choice of wn
0 and wn

N+1 is quite easy. A well known example
is given by the wall-boundary condition for the Euler equations (with a perfect gas state
law or a more general state law). For the sake of simplicity, let us mention the one-
dimensional case; the generalization to a multi-dimensional case is quite easy. The Euler
equations may be written the form (1), corresponding to conservation of mass, momentum
and energy, with w = (ρ, ρu,E)t, where ρ is the density of the fluid, u its velocity, and
E its energy. The wall-boundary condition at x = 0 is u = 0, and the only component to
compute for the boundary condition is the second component of Fn

1
2

which is equal here
to the pressure at x = 0 (since u = 0 at the wall), say pn

1
2
. The value wn

1 may be computed
from the values ρn

1 , un
1 and pn

1 . A natural choice for wn
0 is to take ρn

0 = ρn
1 , un

0 = −un
1 and

pn
0 = pn

1 . The flux Fn
1
2

(that is the value pn
1
2
) is then obtained with Fn

1
2

= g0(wn
0 , w

n
1 ) and

a convenient choice of the numerical flux g0. We suggest to choose g0 as the Godunov
flux (or as a linearized Godunov flux, see [3] for instance). Numerical tests which were
performed in [3] show that this choice is very satisfactory, even in the difficult case of a
strong depressurization at the boundary. These tests also show that the pressure obtained
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with the Roe flux is not so satisfactory and neither is the choice pn
1
2

= pn
1 which may

seem natural (in particular, in 2D simulations, using a dual mesh obtained with a finite
element primal mesh).

In most cases, however, the choice of wn
0 and wn

N+1 is not so easy. A possible method,
which is described in [4], is now layed out, for a fixed n and g0 given:

1. Compute DF (wn
1 ), its eigenvalues {λ1, λ2, λ3} and a basis of R3, {ϕ1, ϕ2, ϕ3}, such

that DF (wn
1 )ϕi = λiϕi, i = 1, 2, 3.

2. Write wn
1 on the basis {ϕ1, ϕ2, ϕ3}, namely wn

1 = α1ϕ1 + α2ϕ2 + α3ϕ3,
3. Let p be the number of positive eigenvalues, compute wn

0 = β1ϕ1 + β2ϕ2 + β3ϕ3 and
Fn

1
2

= g0(wn
0 , w

n
1 ), where the three unknowns β1, β2, and β3 are determined by the

p equations stating the boundary conditions (note that these equations involve the
components of Fn

1
2
) and by the 3− p equalities βi = αi for λi < 0.

This method leads, at each time step, to a non linear system of 3 equations with 3
unknowns (except if λi = 0 for some i), namely β1, β2 and β3; note that some compati-
bility conditions are needed in order that this non linear system has a solution. Several
variants of this method are possible. For instance, a boundary condition may be imposed
on wn

0 rather than Fn
1
2
. A similar method is, of course, possible at point x = 1 (changing

the role of positive and negative eigenvalues).
This method is not always satisfactory. In the case of severe slugging for the simulation

of two phase flow in a pipeline, the method seems to perform well at x = 0, where the
eigenvalues λ1 and λ2 are always positive and the two boundary conditions (gas and liquid
fluxes) are convenient. However, at x = 1, the second eigenvalue sometimes becomes
negative and one needs a second boundary condition (the first one is a condition on the
pressure). A natural condition seems to be Ql = 0, where Ql is the second component of
the flux F , that is the liquid flux, but this condition does not lead to good results. Other
possible choices of this additional boundary condition at x = 1 were tested and did not
give good results. A possible interpretation of this problem is the fact that the sign of λ2

is computed with wn
N . Roughly speaking, it is “too late” when λ2(wn

N ) becomes negative
(see Sect. 3 for the study of a simple scalar case). Indeed, good results (in agreement
with experiments) are obtained with the unilateral condition Ql ≥ 0 (whatever the sign
of λ2(wn

N )). It consists in using the preceeding method (for the boundary condition at
x = 1) and in replacing, in the numerical scheme (4), the second component of Fn

N+ 1
2

by its positive part. Then, if λ2(wn
N ) < 0, two boundary conditions are given at x = 1

(pressure and Ql = 0) and if λ2(wn
N ) ≥ 0, one boundary condition is given at x = 1

(pressure) but, in (4), the second component of Fn
N+ 1

2
is replaced by its positive part.

In the following section, we will try to understand the sense of this boundary condition
in a simplified scalar case.

3 The scalar case

A general convergence result is presented here in the case of a scalar equation. Then, this
result will be applied to understand the sense of the boundary condition, described at
x = 1 in the previous section, in a simplified scalar case.
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3.1 A general convergence result

The unknown is now a function u : (0, 1)×R+ → R. The flux is a function f ∈ C1(R,R)
(or f : R → R Lipschitz continuous) and the initial datum is u0 ∈ L∞((0, 1)). Let
A,B ∈ R be such that A ≤ u0 ≤ B a.e.. The problem to solve is:

ut + (f(u))x = 0, x ∈ (0, 1), t ∈ R+, (5)

with the initial condition :

u(x, 0) = u0(x), x ∈ (0, 1), (6)

and some boundary conditions which will be prescribed later.
As in the previous section, let h = 1

N (withN ∈ N?) be the mesh size and k > 0 be the
time step (assumed to be constant, for the sake of simplicity). The discrete unknowns are
now the values un

i ∈ R for i ∈ {1, . . . , N} and n ∈ N. In order to define the approximate
solution a.e. in (0, 1)×R, one sets uh,k(x, t) = un

i for x ∈ ((i−1)h, ih), t ∈ (nk, (n+1)k),
i ∈ {1, . . . , N}, n ∈ N.

The discretization of the initial condition leads to

u0
i =

1
h

∫ ih

(i−1)h

u0(x)dx, i ∈ {1, . . . , N}. (7)

For the computation of un
i for n > 0, one uses, as before, an explicit, 3-points scheme:

h

k
(un+1

i − un
i ) + fn

i+ 1
2
− fn

i− 1
2

= 0, i ∈ {1, . . . , N}, n ∈ N. (8)

For i ∈ 1, . . . , N − 1, one takes

fn
i+ 1

2
= g(un

i , u
n
i+1), (9)

where g is the numerical flux. Sufficient conditions on g : [A,B]2 → R, in order to
have a convergent scheme if x ∈ R instead of (0, 1), are:

C1: g is non decreasing with respect to its first argument and nonincreasing with respect
to its second argument,

C2: g(s, s) = f(s), for all s ∈ [A,B],
C3: g is Lipschitz continuous.

Let L be a Lipschitz constant for g (on [A,B]2) and ζ > 0. If (0, 1) is replaced by R,
it is well known (see e.g. [4]) that, if k ≤ (1 − ζ) h

L , the approximate solution uh,k, that
is the solution defined by (7)-(9) (with i ∈ Z), takes its values in [A,B] and converges
towards the unique entropy weak solution of (5)-(6) in Lp

loc(R×R+) as h→ 0.
In the case x ∈ (0, 1) instead of x ∈ R, one assumes the same conditions on g, namely

(C1)-(C3). In order to complete the scheme, one has to define fn
1
2

and fn
N+ 1

2
.

Let u, u ∈ L∞(R+) be such that A ≤ u, u ≤ B, a.e. on R+, let g0, g1 : [A,B]2 → R,
satisfying (C1)-(C3), and define:

fn
1
2

= g0(un, un
1 ); un = 1

k

∫ (n+1)k

nk
u(t)dt

fn
N+ 1

2
= g1(un

N , u
n
, ); u = 1

k

∫ (n+1)k

nk
u(t)dt,

(10)
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Then, a convergence theorem can be proven as in the case x ∈ R, see [13]:

Theorem 1. Let f ∈ C1(R,R) (or f : R → R Lipschitz continuous). Let u0 ∈
L∞((0, 1)), u, u ∈ L∞(R+) and A,B ∈ R be such that A ≤ u0 ≤ B a.e. on (0, 1),
A ≤ u, u ≤ B a.e. on R+. Let g0, g1 : [A,B]2 → R, satisfying (C1)-(C3). Let L
be a common Lipschitz constant for g, g0 and g1 (on [A,B]2) and let ζ > 0. Then, if
k ≤ (1− ζ) h

L , the equations (7)-(10) define an approximate solution uh,k which takes its
values in [A,B] and converges towards the unique solution of (11) in Lp

loc([0, 1] × R+)
for any 1 ≤ p <∞, as h→ 0:

u ∈ L∞((0, 1)× (0,∞)),∫ ∞

0

∫ 1

0

[(u− κ)±ϕt + sign±(u− κ)(f(u)− f(κ))ϕx]dxdt

+M
∫ ∞

0

(u(t)− κ)±ϕ(0, t)dt+M

∫ ∞

0

(u(t)− κ)±ϕ(1, t)dt

+
∫ 1

0

(u0 − κ)±ϕ(x, 0)dx ≥ 0,

∀κ ∈ [A,B], ∀ϕ ∈ C1
c ([0, 1]× [0,∞),R+).

(11)

In (11), M is any bound for |f ′| on [A,B] (and the solution of (11) does not depends
on the choice of M). The definition of sign± is: sign+(s) = 1 if s > 0, sign+(s) = 0 if
s < 0, sign−(s) = 0 if s > 0, sign−(s) = −1 if s < 0.

Remark 4.

1. It is interesting to remark that this convergence result is also true if the function g
depends on i and n, provided that L is a common Lipschitz constant for all these
functions.

2. The definition (11) of solution of (5)-(6) with the “weak” boundary conditions u and
u at x = 0 and x = 1 is essentially due to F. Otto, see [10].

3. It is interesting also to remark that if one replaces, in (11), the two entropies (u−κ)±
by the sole entropy |u − κ|, one has an existence result (since |u − κ| = (u − κ)+ +
(u− κ)−) but no uniqueness result, see [13] for a counter-example to uniqueness.

4. This convergence result can be generalized to the multidimensional case, see Sect. 5
and [13].

If u, solution of (11), is regular enough (say u ∈ C1([0, 1] × R+), for instance), u
satisfies u(0, t) = u(t) and u(1, t) = u(t) in the weak sense given in [1]. This condition is
very simple if f is monotone:

If f ′ > 0, then u(0, ·) = u and u does not depend on u.
If f ′ < 0, then u(1, ·) = u and u does not depend on u.

3.2 A very simple example

One considers here Equation (5), with initial condition (6) and weak boundary condition
u and u at x = 0 and x = 1, that is in the sense of (11), in the particular case f ′ > 0. In
this case, the main example of numerical flux is g = g0 = g1, g(a, b) = f(a), which leads
to the well known upstream scheme. With this choice of g0 and g1, using the notations
of Sect. 3.1, the boundary conditions are taken into account in the form:
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fn
1
2

= f(un), fn
N+ 1

2
= f(un

N ), (12)

with un = 1
k

∫ (n+1)k

nk
u(t)dt. One may apply the general convergence theorem. The ap-

proximate solutions converge (as h → 0) towards the solution of (11). In this case, the
approximate solutions, as well as the solution of (11), do not depends on u.

In the case f ′ < 0 the main example is g = g0 = g1, g(a, b) = f(b), which also leads to
the upstream scheme. The boundary conditions are taken into account in the following
way:

fn
1
2

= f(un
1 ), fn

N+ 1
2

= f(un), (13)

with un = 1
k

∫ (n+1)k

nk
u(t)dt.

These simple cases suggest the following scheme for any f , which is the scalar version
of the scheme described in Sect. 2.2 (note that f ′(u) is the Jacobian matrix at point
u ∈ R):

– Boundary condition at x = 0:{
fn

1
2

= f(un), if f ′(un
1 ) > 0,

fn
1
2

= f(un
1 ), if f ′(un

1 ) < 0. (14)

– Boundary condition at x = 1:{
fn

N+ 1
2

= f(un), if f ′(un
N ) < 0,

fn
N+ 1

2
= f(un

N ), if f ′(un
N ) > 0.

(15)

This solution is not always satisfactory as can be shown on the following simple
example with the Bürgers equation:

Let f(s) = s2, u0 = 1 a.e. on (0, 1), u = 1 a.e. on R+ and u = −2 a.e. on R+.
The exact solution which has to be approached by the numerical scheme is the unique
solution of (11) with these values of f , u0, u and u. Computing the approximate solution
with (7)-(9), the function g satisfying (C2), and with (14)-(15), leads to an approximate
solution which is constant and equal to 1 for any h and k. Then, it does not converge (as
h and k go to 0) towards the exact solution which is not constant and equal to 1 since,
for the exact solution, a shock wave with a negative speed starts from the point x = 1
at time t = 0. Indeed, one can also remark that this approximate solution is the exact
solution of (11) with the same values of f , u0, u and with any u satisfying u ≥ −1 a.e. on
R+. In order to obtain a convergent approximation of the exact solution corresponding
to u = −2, a good choice is, instead of (15), fn

N+ 1
2

= g1(un
N ,−2) with g1 satisfying

(C1)-(C3).

3.3 A simplifed model for two phase flows in pipelines

It is now possible to understand the treatment of the boundary described in Sect. 2 on
a simplified model. This simplifed model for two phase flows in pipelines is given in [12].
For this model, the densities are constant so that there are no longer pressure waves but
only the void fraction wave, corresponding to the second eigenvalue of the original system
(1). It is also easy to see that for this model, the total flux (that is the sum of the fluxes of
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the two phases) is constant in space. One also assumes that this total flux is constant in
time (and positive). System (1) is then reduced to a scalar equation, Equation (5), where
the unknown, u : (0, 1) ×R → R, is the gas fraction which takes its values between 0
and 1.

The function f can be taken as f(s) = as − bs2, where a, b ∈ R are given and such
that 0 < b < a < 2b. In (5), the quantity f(u) is the flux of gas. Then, f(1)− f(u) is the
flux of liquid. The function f is increasing between 0 and uM = a/(2b) and decreasing
between uM and 1. An important value is um ∈ [0, uM ] such that f(um) = f(1).

One takes u0 = 0 a.e. on [0, 1] as an initial condition. At x = 0, the gas flux is given
(as in the complete model, see Sect. 2), one takes f(u(0, ·)) = f with f(t) = c for t ≤ T
and f(t) = 0 for t ≥ T , where c and T are given with c > f(1) and T large enough so
that f ′ changes sign at x = 1 during the simulation. Indeed, in this simplified model, it
is also necessary to take T not too large in order to avoid a problem at x = 0 (for T
too large, f ′ will also changes sign at x = 0). The boundary condition at x = 1 will be
described on the discrete problem below.

The discretization of the problem is performed as before with (7)-(9), with g satisfying
(C1)-(C3).

For the discretization of the boundary condition at x = 0, the method described in
Sect. 2 leads here to

fn
1
2

= f(nk), (16)

which is indeed in accordance with the fact that f ′(un
1 ) > 0 for all n, at least if T is

not too large.
For the discretization of the boundary condition at x = 1, the first method described

in Sect. 2 and given in (15), using the sign of f ′(un
N ) leads to{

fn
N+ 1

2
= f(un

N ), if un
N < uM ,

fn
N+ 1

2
= f(1), if un

N > uM ,
(17)

and does not lead to the desired results. Note also that fn
N+ 1

2
, given by (17), is a discon-

tinuous function of un
N .

The second method, described in Sect. 2, uses the fact that the liquid flux cannot be
negative at x = 1. Since the liquid flux at x = 1 is f(1)− fN+ 1

2
and since f(um) = f(1),

this method leads to {
fn

N+ 1
2

= f(un
N ), if un

N ≤ um,

fn
N+ 1

2
= f(um), if un

N > um,
(18)

Note that fn
N+ 1

2
, given by (18), is a continuous function of un

N . We shall apply the
convergence theorem, Theorem 1 given in Sect. 3.1, for the boundary conditions (16) and
(18), and understand the boundary conditions satisfied by the limit of the approximate
solutions. In order to do so, we need to find g0 and g1, satisfying (C1)-(C3), and u, u ∈
L∞(R+) such that fn

1
2

and fn
N+ 1

2
, respectively defined by (16) and (18), satisfy (10).

Indeed, it is shown in [7] that both boundary fluxes fn
1
2

and fn
N+ 1

2
may be expressed with

the Godunov flux in the following way:

– Boundary flux at x = 1. One takes u = 1 a.e. on R+ and g0 equal to the Godunov
flux, that is g0 = gG with
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gG(α, β) =
{

min{f(s), s ∈ [α, β]} if α ≤ β,
max{f(s), s ∈ [β, α]} if α > β.

The formula (18) reads

fn
N+ 1

2
= gG(un

N , 1) =
{
f(un

N ) if un
N ≤ um,

f(1) if un
N > um.

(19)

– Boundary flux at x = 0. One assumes (for simplicity) that T
k ∈ N. let α, β ∈ (0, 1)

such that α < β and f(α) = f(β) = c. One takes

u(t) =
{
α if t < T,
0 if t > T,

(20)

so that, recalling that un = 1
k

∫ (n+1)k

nk
u(t)dt,

f(un) =
{
c if nk < T,
0 if nk ≥ T,

Then, if un
1 ≤ β, the formula (16) reads

fn
1
2

= gG(un, un
1 ), (21)

since, in this case, gG(un, un
1 ) = f(un). The fact that un

1 ≤ β is true for all n if T is
not too large. If T is too large, the convergence result can be applied with (21) instead
of (16).

It is now possible to apply Theorem 1. Let L be a common Lipschitz constant for g
and gG (on [0, 1]2) and let ζ > 0. If k ≤ (1− ζ) h

L , the approximate solution uh,k, that is
the solution defined by (7)-(9), with the boundary fluxes (19)-(21) (and u0 = 0, u = 1
and u given by (20)), takes its values in [0, 1] and converges towards the unique solution
of (22) in Lp

loc([0, 1]×R+) for any 1 ≤ p <∞, as h→ 0:

u ∈ L∞((0, 1)× (0,∞)),∫ ∞

0

∫ 1

0

[(u− κ)±ϕt + sign±(u− κ)(f(u)− f(κ))ϕx]dxdt

+M
∫ ∞

0

(u(t)− κ)±ϕ(0, t)dt+M

∫ ∞

0

(1− κ)±ϕ(1, t)dt

+
∫ 1

0

(0− κ)±ϕ(x, 0)dx ≥ 0,

∀κ ∈ [0, 1], ∀ϕ ∈ C1
c ([0, 1]× [0,∞),R+).

(22)

If u, solution of (22), is regular enough on [0, 1]× (0, T ), then, it is possible to prove
that u satisfies the boundary conditions, for 0 < t < T , in the following sense (see [13]
and [7]):

– Boundary condition at x = 0 (recall that u is given by (20)): u(0, t) = α or u(0, t) ≥ β.
In fact, if T is not too large, one has u(0, t) = α.

– Boundary condition at x = 1: u(1, t) ≤ um or u(1, t) = 1,
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Thanks to Theorem 1, it is possible to give other choices for fn
N+ 1

2
for which the

approximate solutions obtained with this new choice of fn
N+ 1

2
converge towards the same

function u, which is the unique solution of (22). Indeed, let ψ : [0, 1] → R be a
nondecreasing function such that ψ ≤ f and ψ(1) = f(1) and take:

fn
N+ 1

2
= ψ(un

N ). (23)

One may construct a function g1 satisfying (C1)-(C3) such that ψ(s) = g1(s, 1), for
all s ∈ [0, 1], and then use Theorem 1. Let L be a common Lipschitz constant for g and
gG and g1 (on [0, 1]2) and let ζ > 0. If k ≤ (1− ζ) h

L , the approximate solution uh,k, that
is the solution defined by (7)-(9), with the boundary fluxes (23) and (21) (and u0 = 0,
u = 1 and u given by (20)), takes its values in [0, 1] and converges towards the unique
solution of (22) in Lp

loc([0, 1]×R+) for any 1 ≤ p <∞, as h→ 0.

Turning back to the complete system described in Sect. 2, the analysis of this sim-
plified model for two phase flows in pipelines may also suggest another way to take into
account the boundary condition at x = 1 (with a given numerical flux g1):

1. Compute DF (wn
N ), its eigenvalues {λ1, λ2, λ3} and a basis of R3, {ϕ1, ϕ2, ϕ3}, such

that DF (wn
N )ϕi = λiϕi, i = 1, 2, 3,

2. write wn
N on the basis {ϕ1, ϕ2, ϕ3}, namely wn

N = α1ϕ1 + α2ϕ2 + α3ϕ3,
3. Since λ3 < 0 and since one wants Ql ≥ 0, compute wn

N+1 = β1ϕ1 + β2ϕ2 + β3ϕ3

and Fn
N+ 1

2
= g1(wn

N , w
n
N+1) with the following 3 conditions on the components of

wn
N+1: usual condition on the pressure, β3 = α3 and Rn

N+1 = 1 where Rn
N+1 is the

gas fraction computed with wn
N+1.

4 Two phase flow in a porous medium

A second example is given by the modelization of a two phase flow, oil and water (for
instance), in a porous medium. Phases are immiscible. Compressibility and capillarity
effects are neglected. The model is obtained using the conservation of mass for each
phase and Darcy’s law. This study is limited to the one dimensional case. In this case
the pressure can be eliminated and the problem is reduced to a single equation, namely
(5) with :

f(u) =
f1(u)(α+ βf2(u))
f1(u) + f2(u)

. (24)

The unknown is the saturation of one phase, say water, and is denoted by u. The
quantity α is the total flux, which is constant in space, thanks to the incompressibility
of the phases. One assumes also that it is constant in time and positive. The quantity
β is the difference between the densities of the phases. The functions f1 and f2 are the
mobilities of the phases. The function f1 is nondecreasing, regular and satisfies f1(0) = 0.
The function f2 is nonincreasing, regular and satisfies f2(1) = 0. The function f1 + f2 is
bounded from below by a positive number.

Remark 5. For the equivalent two or three dimensional model, the pressure cannot be
eliminated and the resulting model is a coupled system of two partial differential equa-
tions and two unknowns (pressure and saturation). The problem to which the limit of
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the approximate solutions is solution is then much more complicated to determine. See
[6] for a partial study of this question.

Here again, an initial condition is prescribed, namely (6), with u0 ∈ L∞((0, 1)),
0 ≤ u0 ≤ 1 a.e.. The boundary condition will be given later.

The numerical scheme is as in Sect. 3.1; it is given by (7) and (8) with (9). The choice
of the numerical flux, g, satisfying (C1)-(C3), is usually given, for this model, using an
“upwinding phase by phase”, that is (see [2], for instance) :

g(a, b) =
f1(a)(α+ βf2(a))
f1(a) + f2(a)

if − α+ βf1(a) ≤ 0

g(a, b) =
f1(a)(α+ βf2(b))
f1(a) + f2(b)

if − α+ βf1(a) > 0.
(25)

Let us then define fn
1
2

and fn
N+ 1

2
. On considers here the case of an injection of pure

water at x = 0. Then :

fn
1
2

= α, n ≥ 0. (26)

At x = 1, The boundary condition is quite complicated. A simple example is (see [7]
for a more complete study):

fn
N+ 1

2
=

f1(un
N )α

f1(un
N ) + f2(un

N )
. (27)

Then, the approximate solution is given with (7)-(9), g given by (25), and (26)-(27).

In order to prove that the approximate solutions converge, as h and k go to zero,
and to determine the problem which the limit of the approximate solutions is the unique
solution to, one proceeds as in Sect. 3.3. One has to find g0 and g1 satisfying (C1)-(C3)
and u, u ∈ L∞(R+) such that fn

1
2

and fn
N+ 1

2
, respectively defined by (26) and (27),

satisfy (10). This is again performed in [7]. The most interesting case is obtained for
βf1(1) > α and when the function f is increasing on (0, uM ) and decreasing on (uM , 1),
as in Sect. 3.3. In fact, the main point is the existence of a unique um ∈ (0, 1) such that
f(um) = f(1) = α and that f is increasing on [0, um] and greater or equal to α on [um, 1].
Then, it is quite easy to prove that (26) gives

fn
1
2

= α = gG(um, u
n
1 ),

where gG is the Godunov flux given in Sect. 3.3.
For the boundary condition at x = 1, it is possible to construct (see [7]) a function

g1 : [0, 1]2 → R satisfying (C1)-(C3) such that (27) gives :

fn
N+ 1

2
= g1(un

N , 1).

It is now possible to use Theorem 1.
Let L be a common Lipschitz constant for g (given by (25)), gG and g1 (on [0, 1]2)

and let ζ > 0. If k ≤ (1− ζ) h
L , the approximate solution uh,k, that is the solution defined

by (7)-(9) (with g given by 25), and by the boundary fluxes (26)-(27), takes its values
in [0, 1] and converges towards the unique solution of (28) in Lp

loc([0, 1] × R+) for any
1 ≤ p <∞, as h→ 0:
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u ∈ L∞((0, 1)× (0,∞)),∫ ∞

0

∫ 1

0

[(u− κ)±ϕt + sign±(u− κ)(f(u)− f(κ))ϕx]dxdt

+M
∫ ∞

0

(um − κ)±ϕ(0, t)dt+M

∫ ∞

0

(1− κ)±ϕ(1, t)dt

+
∫ 1

0

(u0 − κ)±ϕ(x, 0)dx ≥ 0,

∀κ ∈ [0, 1], ∀ϕ ∈ C1
c ([0, 1]× [0,∞),R+),

(28)

where M is a bound for |f ′| on [0, 1] (f is given by (24)). As in Sect. 3.3. It is possible to
give the sense of the boundary condition if u is regular enough. Indeed, let u be a regular
solution of (28). Then, u satisfies the boundary conditions in the sense given by [1], that
is :

sign(u(0, t)− um)(f(u(0, t))− f(κ)) ≤ 0, ∀κ ∈ [um, u(0, t)], for a.e. t ∈ R+,

sign(u(1, t)− 1)(f(u(1, t))− f(κ)) ≥ 0, ∀κ ∈ [1, u(1, t)], for a.e. t ∈ R+,

with [a, b] = {ta+ (1− t)b, t ∈ [0, 1]} and sign(s) = 1 for s > 0, sign(s) = −1 for s < 0,
sign(0) = 0.

This gives u(0, t) = um or u(0, t) = 1 and u(1, t) ≤ um or u(1, t) = 1. In particular,
at x = 0, one has f(u(0, t)) = α (only water is injected) and, at x = 1, f(u(1, t)) < α if
u(1, t) < um (which states that there is some oil production).

5 The multidimensional scalar case

In this section, a generalization of Theorem 1 is presented for the multidimensional scalar
case together with a rough sketch of proof. For the sake of simplicity, one considers d = 2
(the extension to d = 3 is straightforward) and a flux function under the form v(x, t)f(u),
with div(v(·, t)) = 0 (see [13] for the general case of a flux function f(x, t, u)). This leads
to the following equation:

ut + div(vf(u)) = 0, in Ω × (0, T ), (29)

where Ω is a bounded polygonal open set of R2, T > 0, f ∈ C1(R,R) (or f : R → R
Lipschitz continuous) and v ∈ C1(R2 × [0, T ]) → R2 with div(v(·, t)) = 0 in R2 for all
t ∈ [0, T ]. The unknown is u : Ω × (0, T ) → R.

Let u0 ∈ L∞(Ω) and u ∈ L∞(∂Ω × (0, T )). Let A,B ∈ R be such that A ≤ u0 ≤ B
a.e. on Ω and A ≤ u ≤ B a.e. on ∂Ω × (0, T ). Following the work of [10], an entropy
weak solution of (29) with the initial condition u0 and the (weak) boundary condition u
is a solution of (30):
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u ∈ L∞(Ω × (0, T )),∫ T

0

∫
Ω

[(u− κ)±ϕt + sign±(u− κ)(f(u)− f(κ))v · gradϕ]dxdt

+M
∫ T

0

∫
∂Ω

(u(t)− κ)±ϕ(x, t)dγ(x)dt

+
∫

Ω

(u0 − κ)±ϕ(x, 0)dx ≥ 0,

∀κ ∈ [A,B], ∀ϕ ∈ C1
c (Ω × [0, T ),R+),

(30)

where dγ(x) stands for the integration with respect to the one dimensional Lebesgue
measure on the boundary of Ω and M is such that ‖v‖∞|f(s1) − f(s2)| ≤ M |s1 − s2|
for all s1, s2 ∈ [A,B], where‖v‖∞ = sup(x,t)∈Ω×[0,T ] |v(x, t)| (and | · | denotes here the
Euclidean norm in R2).

Remark 6.

1. If u satisfies the family of inequalities (30), it is possible to prove that u is a solution
of (29) (on a weak form), u satisfies some entropy inequalities in Ω × (0, T ), namely
|u − κ|t + div(v(f(max(u, κ)) − f(min(u, κ)))) ≤ 0 for all κ ∈ R, but also on the
boundary of ∂Ω and on t = 0. u satisfies the initial condition (u(·, 0) = u0) and u
partially satisfies the boundary condition. For instance, if f ′ > 0 and u is regular
enough, then u(x, t) = u(x, t) if x ∈ ∂Ω, t ∈ (0, T ) and v(x, t) · n(x, t) < 0, where n
is the outward normal vector to ∂Ω.

2. Let M ≥ 1. It is interesting to remark that u is solution of (30) if and only if u
is solution of (30) where the term

∫
Ω

(u0 − κ)±ϕ(x, 0)dx is replaced by M
∫

Ω
(u0 −

κ)±ϕ(x, 0)dx.

A sketch of proof of existence and uniqueness of the solution of (30) together with
the convergence of numerical approximations is now given, following [13].

Step 1: Approximate solution. With a quite general mesh of Ω (with triangles,
for instance), denoted by T , and a time step k, it is possible to define an approximate
solution, denoted by uT ,k, using some numerical fluxes (on the edges of the mesh) satis-
fying conditions similar to (C1)-(C3) in Sect. 3.1. Under a so called CFL condition (like
k ≤ (1 − ζ) h

L in Sect. 3.1), it is easy to prove that A ≤ uT ,k ≤ B a.e. on Ω × (0, T ).
Unfortunately, it does not seem easy to obtain directly a strong compactness result on
the familly of approximate solutions (alhough this strong compactness result is true, as
we shall see below).

Step 2: Weak compactness. Using only this L∞ bound on uT ,k, one can assume
(for convenient subsequences of sequences of approximate solutions) that uT ,k → u, as
the mesh size goes to zero (with the CFL condition), in a “non linear weak-? sense”
(similar to the convergence towards young measures, see [4] for instance), that is u ∈
L∞(Ω × (0, T )× (0, 1)) and∫ T

0

∫
Ω

φ(uT ,k(x, t))ϕ(x, t)dxdt→
∫ 1

0

∫ T

0

∫
Ω

φ(u(x, t, α))ϕ(x, t)dxdtdα,

for all ϕ ∈ L1(Ω × (0, T )) and all φ ∈ C(R,R).

Step 3: Passing to the limit. Using the monotonicity of the numerical fluxes, the
approximate solutions satisfy some discrete entropy inequalities. Passing to the limit in
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these inequalities gives that u (defined in Step 2) is solution of some inequalities which
are very similar to (30), namely:

u ∈ L∞(Ω × (0, T )× (0, 1)),∫ 1

0

∫ T

0

∫
Ω

[(u− κ)±ϕt + sign±(u− κ)(f(u)− f(κ))v · gradϕ]dxdtdα

+M
∫ T

0

∫
∂Ω

(u(t)− κ)±ϕ(x, t)dγ(x)dt

+
∫

Ω

(u0 − κ)±ϕ(x, 0)dx ≥ 0,

∀κ ∈ [A,B], ∀ϕ ∈ C1
c (Ω × [0, T ),R+),

(31)

For this step, one chooses M not only greater than the Lipschitz constant of ‖v‖∞f
on [A,B], but also greater than the Lipschitz constant (on [A,B]2) of the numerical fluxes
associated to the edges of the meshes (the equivalent of L in Theorem 1). This choice of
M is possible since the unique solution of (30) does not depend on M provided that M is
greater than the Lipschitz constant of ‖v‖∞f on [A,B] and since it is possible to choose
numerical fluxes (namely, Godunov flux, for instance) such as the Lipschitz constant of
these numerical fluxes is bounded by the Lipschitz constant of ‖v‖∞f (then, the present
method leads to an existence result with M only greater than the Lipschitz constant
of ‖v‖∞f on s ∈ [A,B], passing to the limit on approximate solutions given with these
numerical fluxes).

Step 4: Uniqueness of the solution of (31). In this step, the “doubling vari-
ables” method of Krushkov is used to prove the uniqueness of the solution of (31). Indeed,
if u and w are two solutions of (31), the doubling variables method leads to:∫ 1

0

∫ 1

0

∫ T

0

∫
Ω

|u(x, t, α)− w(x, t, β)|ϕt dxdtdαdβ

+
∫ 1

0

∫ 1

0

∫ T

0

∫
Ω

(f(max(u,w))− f(min(u,w)))v · gradϕdxdtdαdβ ≥ 0

∀ϕ ∈ C1
c (Ω × [0, T ),R+),

(32)

Taking ϕ(x, t) = (T − t)+ in (32) (which is, indeed, possible) gives that u does not
depend on α, w does not depend on β and u = w a.e. on Ω× (0, T ). As a result, u is also
the unique solution of (30).

Step 5: Conclusion. Step 4 gives, in particular, the uniqueness of the solution of
(30). It gives also that the non linear weak-? limit of sequences of approximate solutions
is solution of (30) and, therefore, the existence of the solution of (30). Furthermore, since
the non linear weak-? limit of sequences of approximate solution does not depend on α,
it is quite easy to deduce that this limit is “strong” in Lp(Ω × (0, T )) for any p ∈ [1,∞)
(see [4], for instance) and, thanks to the uniqueness of the limit, the convergence holds
without extraction of subsequences.
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