Université de Marseille, téléenseignement Licence de Mathématiques, 3eme année, SMI5U1T Intégration, examen de juin 2013

Le polycopié du cours est autorisé. L'examen est composé de 4 exercices indépendants.

Exercice 1 (intégration par parties, 4 points) Soit $u, v \in C^1(\mathbb{R}, \mathbb{R})$. On suppose que u, v, u' et v' sont des fonctions de carré intégrable (pour le mesure de Lebesgue sur les boréliens de \mathbb{R}).

1. Montrer que $\lim_{x\to+\infty} u(x) = 0$.

[On pourra commencer par montrer que $u^2(x)$ a une limite dans \mathbb{R} quand $x \to +\infty$.]

2. Montrer que

$$\int_{\mathbb{R}} u(x)v'(x)dx = \int_{\mathbb{R}} v(x)u'(x)dx.$$

-commentaire

Cet exercice est très voisin de l'exercice (corrigé) 5.6 du polycopié. Il fait partie du devoir 2 et sera donc bientôt corrigé.

Exercice 2 (Théorème de compacité, 6 points)

Soit T > 0. On note L^1 l'espace $L^1_{\mathbb{R}}(]0, T[, \mathcal{B}(]0, T[), \lambda)$. Soit $(u_n)_{n \in \mathbb{N}}$ une suite bornée de L^1 (on a donc $\sup_{n \in \mathbb{N}} \|u_n\|_1 < +\infty$).

On suppose que pour tout $h \in]0,T[$ et tout $n \in \mathbb{N}$ on a

$$\int_0^{T-h} |u_n(t+h) - u_n(t)| dt \le \eta(h),$$

où η est une fonction croissante de]0, T[dans \mathbb{R}_+ t.q. $\lim_{h\to 0^+} \eta(h) = 0$.

L'objectif de l'exercice est de démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est relativement compact dans L^1 .

1. Soit $d, h \in]0, T[$ t.q. $d + h \leq T$. Montrer que

$$\int_{0}^{d} |u_{n}(t)|dt \leq \int_{0}^{d} |u_{n}(t+h)|dt + \int_{0}^{d} |u_{n}(t+h) - u_{n}(t)|dt. \tag{1}$$

2. Soit $h_0 \in]0, T[$ et $d \in]0, T - h_0[$, montrer que

$$h_0 \int_0^d |u_n(t)| dt \le d||u_n||_1 + h_0 \eta(h_0). \tag{2}$$

[On pourra intégrer l'inégalité (1) sur $]0, h_0[.]$

- 3. Montrer que $\int_0^d |u_n(t)| dt \to 0$ quand $d \to 0^+$, uniformément par rapport à n.
- 4. On prolonge u_n sur tout \mathbb{R} en posant $u_n = 0$ hors de]0,T[. Montrer que $\int_{\mathbb{R}} |u_n(t+h) u_n(t)| dt \to 0$ quand $h \to 0$, uniformément par rapport à $n \in \mathbb{N}$.
- 5. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est relativement compacte dans L^1 . [Appliquer le théorème de Kolmogorov vu au chapitre 8 du cours.]

-commentaire-

Cet exercice est corrigé dans le polycopié. Il s'agit de l'exercice 8.9.

Exercice 3 (Convergence en mesure et domination, 8 points) Soit (E, T, m) un espace mesuré et $1 \leq p < +\infty$. On note \mathcal{L}^p l'espace $\mathcal{L}^p(E, T, m)$. Soit $(f_n)_{n \in \mathbb{N}}$ une suite d'éléments de \mathcal{L}^p et f une fonction mesurable de E dans \mathbb{R} . On suppose que les conditions suivantes sont vérifiées :

- $f_n \to f$ en mesure quand $n \to \infty$.
- Il existe $g \in \mathcal{L}^p$, t.q., pour tout $n \in \mathbb{N}$, $|f_n| \leq g$ p.p..
- 1. Soit $\varepsilon > 0$. En remarquant que $|f| \leq |f f_n| + |f_n|$, montrer que, pour tout $n \in \mathbb{N}$,

$$m(\{|f| - g \ge \varepsilon\}) \le m(\{|f_n - f| \ge \varepsilon\}).$$

2. Soit $\varepsilon > 0$. Montrer que $m(\{|f| - g \ge \varepsilon\}) = 0$. En déduire que $|f| \le g$ p.p. et que $f \in \mathcal{L}^p$.

- 3. On suppose, dans cette question, que $m(E) < +\infty$.
- (a) Soit $\eta > 0$. Montrer que, pour tout $n \in \mathbb{N}$,

$$\int |f_n - f|^p dm \le \eta m(E) + \int_{\{|f_n - f|^p > \eta\}} 2^p g^p dm.$$

(b) Montrer que $\lim_{n\to\infty} \int |f_n - f|^p dm = 0$.

[On rappelle que si, h est une fonction intégrable de E dans \mathbb{R} , pour tout $\varepsilon > 0$ il existe $\delta > 0$ t.q.

$$A \in T, \ m(A) \le \delta \Rightarrow \int_A |h| dm \le \varepsilon.$$

4. On ne suppose plus que $m(E) < +\infty$. Montrer que $\lim_{n\to\infty} \int |f_n - f|^p dm = 0$. [On rappelle que si, h est une fonction intégrable de E dans \mathbb{R} , pour tout $\varepsilon > 0$ il existe $C \in T$ t.q. $m(C) < +\infty$ et $\int_{C_c} |h| dm \le \varepsilon$.]

-commentaire-

Cet exercice est corrigé dans le cas p=1. Il s'agit de l'exercice 4.31 du polycopié. Il faut donc adapter la démonstration au cas $1 \le p < +\infty$. Il me semble que ce n'est pas difficile.

Exercice 4 (Application du lemme de Fatou, 4 points) Soit (E, T, m) un espace mesuré, $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions mesurables de E dans \mathbb{R} et f une fonction mesurable de E dans \mathbb{R} . Soit p une fonction mesurable de E dans \mathbb{R} . On suppose qu'il existe $q \in \mathbb{R}_+$ tel que $0 < p(x) \le q$ pour tout $x \in E$.

1. Montrer que l'application $x \mapsto |f(x)|^{p(x)}$ est mesurable (de E dans \mathbb{R}_+).

On suppose maintenant que

- $\bullet \int |f(x)|^{p(x)} dm(x) < +\infty,$
- $\int |f_n(x)|^{p(x)} dm(x) \to \int |f(x)|^{p(x)} dm(x)$, quand $n \to \infty$,
- $f_n \to f$ p.p..
- 2. Montrer que $\int |f_n(x) f(x)|^{p(x)} dm(x) \to 0$ quand $n \to \infty$.

[On pourra appliquer le lemme de Fatou à la suite $(g_n)_{n\in\mathbb{N}}$ définie par $g_n=M(|f_n|^p+|f|^p)-|f_n-f|^p$ en choisissant convenablement M dans \mathbb{R} .]

-----commentaire-

Cet exercice est corrigé dans le cas où p est une application constante dans le polycopié. Il s'agit de l'exercice 6.17 (question 2). Il faut donc adapter la démonstration au cas p variable. Je ferai bientôt un corrigé.