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Abstract

One approximates the entropy weak solution u of a nonlinear parabolic degenerate equation u; + div(qf(u)) —
Ap(u) = 0 by a piecewise constant function up using a discretization D in space and time and a finite volume
scheme. The convergence of up to u is shown as the size of the space and time steps tend to zero. In a first step,
estimates on up are used to prove the convergence, up to a subsequence, of up to a measure valued entropy solution
(called here an entropy process solution). A result of uniqueness of the entropy process solution is proved, yielding
the strong convergence of up to u. Some numerical results on a model equation are shown.
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1 The nonlinear parabolic degenerate problem.

Let © be a bounded open subset of R?, (d = 1,2 or 3) with boundary 02 and let T € R}.. One considers the following
problem.
ug(xz,t) + div (q f(u)) (z,t) — Ap(u)(z,t) =0, for (z,t) € 2 x (0,T). (1)

The initial condition is formulated as follows:

u(z,0) = up(z) for z € Q. (2)

The boundary condition is the following nonhomogeneous Dirichlet condition:

u(z,t) = u(z,t), for (z,t) € 0N x (0,T). (3)

This problem arises in different physical contexts. One of them is the problem of two phase flows in a porous medium,
such as the air-water flow of hydrological aquifers. In this case, Problem (1)-(3) represents the conservation of the
incompressible water phase, described by the water saturation u, submitted to convective flows (first order space terms
q(z,t) f(u)) and capillary effects (Ap(u)). The expression q(z,t) f(u) for the convective term in (1) appears to be a
particular case of the more general expression F'(u,x,t), but since it involves the same tools as the general framework,
the results of this paper could be extended to some other problems.

One supposes that the following hypotheses, globally referred to in the following as hypotheses (H), are fulfilled.

Hypotheses (H)
(H1) Q is polygonal (if d =1, Q is an interval, and if d = 3, Q is a polyhedron),
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(H2) ug € L*®(Q) and @ € L>=(09Q x (0,T)), @ being the trace of a function of H*( x (0,T)) N L>®(Q x (0,T)) (also
denoted u); one sets Ur = min(infess ug,infess 4) and Us = max(supess ug, supess ),

(H3) ¢ is a nondecreasing Lipschitz-continuous function, with Lipschitz constant ®, and one defines a function { such

that ¢' = V/¢',
(H4) f € CH(R,R), f' > 0; one sets F = max,cqu,,vus) f'(s),
(H5) q is the restriction to Q x (0,T) of a function of C*(R? x R,R?),

d

(H6) div(q(z,t)) = 0 for all (z,t) € R? x (0,T), where div(q(z,t)) = Z %(x,t), (q; is the i-eth component of q)
i=1 Ot
and
q(z,t).n(z) =0, for a.e. (z,t) € 002 x (0,T), 4)

(for x € O, n(z) denotes the outward unit normal to Q at point x).

Remark 1.1 The function f is assumed to be non decreasing in (H3) for the sake of simplicity. In fact, the conver-
gence analysis which we present here would also hold without this monotonicity assumption using for instance o flux
splitting scheme for the treatment of the convective term qf (u).

Under hypotheses (H), Problem (1)-(3) does not have, in the general case, strong regular solutions. Because of the
presence of a non-linear convection term, the expected solution is an entropy weak solution in the sense of Definition
1.1 given below.

Definition 1.1 (Entropy weak solution) Under hypotheses (H), a function u is said to be an entropy weak solution
to Problem (1)-(3) if it satisfies:

u € L*(Q x (0,7)), (5)
p(u) — p(a) € L*(0,T; Hy (D)), (6)
and u satisfies the following Kruzkov entropy inequalities: ¥ ¢ € DT (Q x [0,T)), Vk € R,

|u(z,t) — k| Yz, t)+
[ | GlnT ~ fu@ )10) alot) - Vo) | dode+ [ Juo(o) = wlp@0)ds >0, (0
@01 | —Vlp(u)(z,t) — o(k)| - Vi (z,1) @
where one denotes by aTb the mazimum value between two real values a and b, and by a Lb their minimum value and
where DT (Q x [0,T)) = {¢ € C (2 x R,R}),¢(-,T) =0} .

This notion has been introduced by several authors ([5], [20]), who proved the existence of such a solution in bounded
domains. In [20], the proof of existence uses strong BV estimates in order to derive estimates in time and space for the
solution of the regularized problem obtained by adding a small diffusion term. In [5], the existence of a weak solution
is proved using semigroup theory (see [2]), and the uniqueness of the entropy weak solution is proved using techniques
which have been introduced by S.N. Krushkov and extended by J. Carrillo.

In the present study, thanks to condition (4), boundary conditions are entirely taken into account by (6) and do not
appear in the entropy inequality (7). For studies of the continuous problem, one can refer to [20], which uses the



classical Bardos-Leroux-Nédélec formulation [1], or [5] in the case of a homogeneous Dirichlet boundary condition on
00 without condition (4).

Let us mention some related work in the case of infinite domains (2 = R?): In [3], the authors prove the existence in
the case ) = R?, regularizing the problem with the “general kinetic BGK” framework to yield estimates on translates
of the approximate solutions. Continuity of the solution with respect to the data for a more general equation was
studied by Cockburn and Gripenberg [8], and convergence of the discretization with an implicit finite volume scheme
was recently studied by Ohlberger [21].

We shall deal here with the case of a bounded domain. The aim of the present work is then to prove the convergence of
approximate solutions obtained using a finite volume method with general unstructured meshes towards the entropy
weak solution of Problem (1)-(3) as the mesh size and time step tend to 0. We state this result in Theorem 2.1 in
Section 2, after presenting the finite volume scheme. Then in Section 3, the existence and uniqueness of the solution
to the nonlinear set of equations resulting from the finite volume scheme is proven, along with some properties of the
discrete solutions. In Section 4 we show some compactness properties of the family of approximate solutions. We
show in Section 5 that there exists some subsequence of sequences of approximate solutions which tends to a so-called
“entropy process solution”, and in Section 6 we prove the uniqueness of this entropy process solution, which allows us
to conclude to the convergence of the scheme in Section 7. We finally give an example of numerical implementation
in Section 8.

2 Finite volume approximation and main convergence result

Let us first define space and time discretizations of 2 x (0,T).

Definition 2.1 (Admissible mesh of Q) An admissible mesh of ) is given by a set T of open bounded polygonal
convex subsets of Q0 called control volumes, a family £ of subsets of Q contained in hyperplanes of R? with strictly
positive measure, and a family of points (xx ) ke (the “centers” of control volumes) satisfying the following properties:

(i) The closure of the union of all control volumes is Q.
(ii) For any K € T, there exists a subset Ex of £ such that 0K = K\K = U,cg, 5. Furthermore, £ = Uxe7EK .

(ii) For any (K,L) € T with K # L, either the “length” (i.e. the (d — 1) Lebesgue measure) of KNLis 0 or
KNL=a for some g € E. In the latter case, we shall write 0 = K|L and &y = {0 € £,3(K,L) € T?,0 = K|L}.
For any K € T, we shall denote by N the set of boundary control volumes of K, i.e. Nk ={L € T,K|L € Ek}.

(iv) The family of points (zx)xeT s such that tx € K ( for oll K € T) and, if 0 = K|L, it is assumed that the
straight line (zk,x1) is orthogonal to o.

For a control volume K € T, we will denote by m(K) its measure and Eeze, ik the subset of the edges of K included in
the boundary 0Q. If L € Nk, m(K|L) will denote the measure of the edge between K and L, Ty, the “transmissibility”

K|L

through K|L, defined by Tr|, = % Similarly, if 0 € Eeqt,x, we will denote by m(o) its measure and 7, the
kyLL

“transmissibility” through o, defined by 1, = %. One denotes Eeqt = UkeTEezt,k and for o € Ecpt, one denotes

by K, the control volume K such that o € €41 k. The size of the mesh T is defined by



size(T) = %g%c_diam(K), (8)

and a geometrical factor, linked with the regularity of the mesh, is defined by

9)

Remark 2.1 Assumption (iv) in the previous definition is due to the presence of the second order term. Examples of
meshes satisfying these assumptions are triangular meshes satisfying the acute angle condition (in fact this condition
may be weakened to the Delaunay condition), rectangular meshes or Voronoi meshes, see [14] or [13] for more details.

_ diam(K)
reg(T) = ?g;;(card&(, max Aar,0) "

Definition 2.2 (Time discretization of (0,7)) A time discretization of (0,T) is given by an integer value N and
by an increasing sequence of real values (t")ncfo,N41] with t° =0 and tN1! = T. The time steps are then defined by
ot" = "t — ¢, for n € [0, N].

Definition 2.3 (Space-time discretization of Q x (0,T)) A finite volume discretization D of Q x (0,T) is the
family D = (T,&, (zx)keT, N, t")nefo,n1), where T, &, (k) keT 15 an admissible mesh of ) in the sense of Definition
2.1 and N, (t")nefo,N+1] 8 o time discretization of (0,T) in the sense of Definition 2.2. For a given mesh D, one
defines:

size(D) = max(size(T), (6t")nepo,n7), and reg(D) = reg(T).
We may now define the finite volume discretization of Problem (1)-(3) . Let D be a finite volume discretization of

Q2 x (0,T) in the sense of Definition 2.3. The initial condition is discretized by:

U = ﬁ /K uo(z)dz, VK € T. (10)

In order to introduce the finite volume scheme, we need to define:

_ 1 ¢t
o __ a(z,t)dy(z)dt . N 11
O3t = g [ [ale @, Vo€ vne o.M, )
n+1 1 e
kL = 5w a(z,t) - ng,pdy(z)dt, VK € T,VL € Nk,Vn € [0, N], (12)
tn K|L

where ng 1, is the normal unit vector to K|L oriented from K to L.

An implicit finite volume scheme for the discretization of Problem (1)-(3) is given by the following set of nonlinear
equations, the discrete unknowns of which are U = (UIT}H)KeT,ne[[O, NJ*

n+l _ rrn
U 2V )+ Y [ roE) - @ fopt)]

ot LeNk
- Y mrneUT) = o(URH)
LeNk _ (13)
Y T - pUE) ~o,
0EEeat, K

VK € T,¥n € [0, N],



where (g1 )* and (gi'} )~ denote the positive and negative parts of ¢j'] (i.e. (¢i})" = max(¢'},0) and (¢i7})~ =

—min(gj*;, 0)).

Remark 2.2 The upwind discretization of the flux qf(u) in (18) uses the monotonicity of f and should be replaced
in the general case by, for instance, a flur splitting scheme.

Remark 2.3 Thanks to Hypothesis (H6), one gets for all K € T and n € [0, N],
ntl _ (@) = (1)~ = 0. This leads ¢
Ak,L dk.L UK L, is leads to

LeNk LeNk
S (@D U — (@)UY == Y (@)Ut - fUEt). (14)
LENK LENK

This property will be used in the following.

In Section (3) we shall prove the existence (Lemma 3.1) and the uniqueness (Lemma 3.4) of the solution U =
(UF™) ket nepo,ny to (11)-(13) . We may then define the approximate solution to Problem (1)-(3) associated to an
admissible discretization D of Q x (0,T) by:

Definition 2.4 Let D be an admissible discretization of Q x (0,T) in the sense of Definition 2.3. The approzimate
solution of Problem (1)-(3) associated to the discretization D is defined almost everywhere in Q x (0,T) by:

up(z,t) = Uptt, Vo € K, Vt € (t",t"*!), VK € T, Vn € [0, N], (15)
where (U}}H)KeT,nE[o’N]] is the unique solution to (11)-(13) .

Theorem 2.1 (Convergence of the approximate solution towards the entropy weak solution )

Let £ € R, consider a family of admissible discretizations of Q x (0,T) in the sense of Definition 2.3 such that, for
all D in the family, one has & > reg(D). For a given admissible discretization D of this family, let up denote the
associated approximate solution as defined in Definition 2.4. Then:

up — u € LP(Q x (0,T)) as size(D) — 0, Vp € [1,+00),
where u is the unique entropy weak solution to Problem (1)-(3) .

The proof of this convergence theorem will be concluded in Section 7 after we lay out the properties of the discrete
solution (sections 3 and 4), its convergence towards an “entropy process solution” (Section 5) and a uniqueness result
on this entropy process solution (Section 6).

Remark 2.4 All the results of this paper also hold for explicit schemes, under a convenient CFL condition on the
time step and mesh size.

3 Existence, uniqueness and discrete properties

We state here the properties and estimates which are satisfied by the scheme which we introduced in the previous
section and prove existence and uniqueness of the solution to this scheme. All the discrete properties which we address
here correspond to natural estimates which are satisfied, at least formally, by regular continuous solutions. Let us first
start by an L™ estimate:



Lemma 3.1 (L* estimate) Under hypotheses (H), let D be a discretization of Q x (0,T) in the sense of Definition
2.8 and let (U[Ty_l)KGT,nE[IO,N]I be a solution of scheme (11)-(18) . Then

U <UMl<Ug, VKeT, Ynel0,N].
K

Proof.
Let Uy = . Tma)ﬁo N Ut and let n € [0, N] and K € T such that Upt! = Ups. Equations (13) and (14) yield
e€7T,me|0,
6tn n b (s (3
Un =U =Up + —= > (&)~ (FU) = fUR™)
m(K) LeNk
6t" n+1 n+1
) LGZN T (p(UL ) = p(UE)) (16)
ot" -
+ T (p(UFH) — p(UE™)).-
i, 2, ¢

If one assumes that

Un > g, max ]]Uf,”“, using the monotonicity of ¢ and f, one gets Uyr < UR, and therefore Uy < UY.
0€Eezt,mE[0,N

This shows that

Uy < max max U™ max U?
= (aesm,me[[o,lv]] 7 LeT 2

ielding Up; < Us. By th thod, hows that min U™ >y O
yielding Uy < Ug. By the same method, one show Lermim UE 2 U
A corollary of Lemma 3.1 is the existence of a solution (Ugt") ke nefo,ng to (11)-(13) . (Uniqueness is proven in
Lemma (3.4) below).

Corollary 3.1 (Existence of the solution to the scheme) Under hypotheses (H), let D be a discretization of
Q x (0,T) in the sense of Definition 2.3. Then there ezists a solution (Up™") g7 nefo,ny to the scheme (11)-(13) .

The proof of this corollary is an adaptation of the technique which was used in [11] for the existence of the solution
to an implicit finite volume scheme for the discretization of a pure hyperbolic equation.

The two following lemmas express the monotonicity of the scheme. Both are used to derive continuous entropy
inequalities.

Lemma 3.2 (Regular convex discrete entropy inequalities) Under hypotheses (H), let D be a discretization of
Q x (0,T) in the sense of Definition 2.3 and let U = (Ug™ ) ke nefo,n] be a solution to (11)-(13) .

Then, for all n € C?(R,R), with n"" > 0, for all p and v in C*(R,R) with ' =n'(¢) and v' =n'(o)f', for dll K € T,
and n € [0,N], there exist (Uh!)Leny with Ugh € (min(Ugt, UPT), max(Ugtt, UF™)) for all L € Nk and
(URE) oetune s with URt! € (min(UgH, U2+, max(UgH', U HY) for all 0 € Eear i satisfying



wURH) — w(UR)

S m(K) + Y (g U = (@) vt

LeNk

- ZTK|L Un+1)) (‘P(UITQH)))
LeNk _

=) T me@r) = n(eUEH)) (17)
JE&HK

+ 3> " (U (eUT) — o(URT))?
LENK

+ LY WU U - pURH)? <0
0E€Eeat, K

Proof.
In order to prove (17), one multiplies Equation (13) by n'(o(Ut)).
The convexity of p yields

Uk — Uk
ot"
Using the convexity of v and Remark 2.3, one gets

w(URHY) — w(URH)
at" ’

m(K) ' (p(UgH) 2 m(K)

LS @GO - FUE ) > — Y ()W) - o)
> Y @R UET) - (a) TvUE
LeNk

The Taylor-Lagrange formula gives, for all L € Nx and all 0 € Eezt, i, the existence of B
Uptt € (min(UgH, Upth), max(UgH, UpHY)) and UR' € (min(URt, U2 ), max(Upt, U2+))
such that

L (U (eUE) — p(UIH))2,

—(pUL™) = oUE )N (U™ = =((e(UE*) = nle(UE™)) + 3

rTn n n rrn n 1 n r 7 n
=(@(U7™) = pUE™ )N (eUE™) = =((p(TF™) = n(e(UR™)) + 51" (e (URL @ (UF ) = o(UE™)*.
Then collecting the previous inequalities gives Inequality (17) . O

Lemma 3.3 (Kruzkov’s discrete entropy inequalities) Under hypotheses (H), let D be a discretization of 2 X
(0,T) in the sense of Definition 2.3 and let U = (U}}H)Ke’r,ne[[o,lv]] be a solution of the scheme (11)-(13) .

Then, for all k € R, K € T and n € [0, N],

" B . n4+1y\4 n+1
Wi —® R =5 gy + [ (?5?33) lﬁgf"*z) }f,l')

6tn LeNk |
= Y k(e = ()] - [pURT) — (k) (19)
LENK
= Y T (le@r) = e(8)| - leURT) = p(k)]) <0
0€Eeat, K



Proof. In order to prove Kruzkov’s entropy inequalities, one follows [11]. Equation (13) is rewritten as

B(UI?‘_I’ UI?: (U£+1)LENK5 (U:+1)¢r€8emi,x) =0,

where B is nonincreasing with respect to each of its arguments except U}?Ll. Consequently,

BUEH  URTE, U TR) Lenis U2 TR) gegunnnc) < 0.

Since B(k, &, (k) LeNx s (K-')aesezt,K) = 0, one gets

B(’ia UITéTh@ (UE+1 TK‘)LENK: (U;L+1T’i)0'€5ezt,1{) S 0.

Using the fact that Ut Tk = Ut or &, (21) and (22) give

BUEM TR, UgTh, (U Tr) Leng, (U2 Th)oct.nx) < 0.

In the same way one obtains

B(UIT(L'+1 J—”: UITéJ-’% (U},H_l J—’i)LENka (UOT'L+1J‘K/)0'€£emt,K) > 0.

(23)

(24)

Substracting (24) from (23) and remarking that for any nondecreasing function g and all real values a,b, g(aTb) —

g(ald) = |g(a) — g(b)| yields Inequality (19). O
Let us now prove the uniqueness of the solution to (11)-(13) and define the approximate solution.

Lemma 3.4 (Uniqueness of the approximate solution) Under hypotheses (H), let D be a discretization of Q x

(0,T) in the sense of Definition 2.3. Then there ezists a unique solution (Ugt") ke neo,ng to (11)-(13) .

Proof.

The existence of (U}}“) KeT,ne[o,N] Was established in Corollary 3.1. There only remains to prove the uniqueness
of the solution. Let (Uﬁ“)KGT’"E[O,N]} and (VI?JFI)KeT,nE[O,N]] (setting V¥ = U%) be two solutions to the scheme

(11)-(13) . Following the proof of Lemma 3.3, one gets, for all K € T and all n € [0, N],

BUR TV U TV, (UL TVE ) nenie, (Ug ) oeten i) 0,

and

BURM LV UR LV, (U LV ) Lenie, (U ) oennic) 2 0,

which by substraction give

U - Vet - up - v | @Y FUE) = FVE) |
5 mE) + 2 | gl < s
(U — (Vi) -

- ZTK'L[ (U (V) ]

LENK
+ ) mleURT) —e(VEth)| <0.
aeé‘emt,K



For a given n € [0, N, one sums (27) on K € T and multiplies by §¢". All the exchange terms between neighbouring
control volume disappear, and because of the sign of the boundary terms, one gets

D IURT =V m(K) < ) UR — VR| m(K). (28)
KeT KeT

Since UY = V£, one concludes Z Ut — Vgt m(K) = 0, for all n € [0, N], which concludes the proof of

. KeT
uniqueness. [

Let us now give two discrete estimates on the approximate solution up which will be crucial in the convergence
analysis. The first estimate (29) is a discrete L?(0,T, H!(f2)) estimate on the function ((up) where (' = v/¢'. This
estimate will yield some compactness on ((up).

The second estimate is the weak BV inequality (30) on f(up). Such an inequality also holds for the continuous
problem with an additional diffusion term —eA f(u). This inequality does not give any compactness property (to our
knowledge, no BV estimate is known in the case of unstructured meshes); however it it plays an essential role in the
proof of convergence, where it is used to control the numerical diffusion introduced by the upstream weighting scheme
(see Section 5 and references [7], [9], [11] and [6].

Proposition 3.1 (Discrete H' estimate and weak BV inequality) Under hypotheses (H), let D be a discretiza-
tion of Q x (0,T) in the sense of Definition 2.3. Let & € R be such that £ > reg(D); let (U}}“)KGT’”E[[O,N]] be the
solution of the scheme (11)-(13) .

Then there exists a real number C > 0, only depending on Q,T,ug, 4, f,q,p and & such that

(Np(C(up)))? = Zat > T CUET) = ¢Upth))?

n=0 K|L€EEin:
+ 2575" > O - Ut <C (29)
0€Eeat
(Bp(f(up)))® = 2575" > ()™ + @O URh - fupth)? < e (30)
n= K|LEE;n:

Proof. One first defines discrete values by averaging, in each control volume, the function %, whose trace on Of2
defines the Dirichlet boundary condition. Note that this proof uses 4 € H'(2x (0, 7)) and not only u € L?(0,T; H'(12))
and u; € L2(0,T; H=1(9)), since we use below the fact that u; € L2(0,T; L'(Q)). Let

_ 1
0 _ _
Uk =iy /Ku(x,O)dx, VK €T, (31)
tn+1
Ut = / u(z,t)dedt, VK € T,V¥n € [0,N], (32)
5t" m(K) m(K) Jin

Setting V = U—U, one multiplies (13) by 6t"VZ+" and sums over K € T and n € [0, N]. This yields E1+E2+E3 =0
with



N

El = > Y m(K)URH - UR)VEH,

n=0KeT

E2 = Z(Stnz S (gD TFUE™) = (@)~ fupty)viet,

= KeT LENK

N
B3 = > ot" > (D kU —o(URrNVE! + Y 7 (007 — o(UR)) V).

n=0 KeT LeNk 0E€Eeat, kK

Using U = V + U yields E1 = E11 + E12 with

N

1 1 n n
Ell=g > m(E) (VR = (VR)?) + 52 > m(K)(VEt - V)
KeT n=0 KeT
N
E12=>Y > m(K)(Ug™" - Up)Vgt.
n=0KeT
Setting
Ap g =Untt — L/ @(z,t")dz and B, x = L/ w(x,t") — UL
n, K — Vg m(K) X ” n,K — m(K) X ’ K>
one has

N N
E12=3%" 3 mE)AnxVpt + 33 m(K) B x Vit

n=0 KeET n=0KeT

By a classical density argument one gets:

1
|An K| < ( )”Ut“Ll K x(tn,tn+1)), Vn € |]:0 N]] VK € T

and

|BnK| < ||ut||L1(Kx(tn 14m)), Vn € [[1 N]] VK eT

( )

(note that Bo,x = 0 for all K € T). Using these two inequalities and the L> stability of the scheme (Lemma 3.1)

yields:
|E12] < 2(|@l| 21 @x 0,1)) (Us = Ur).

Now remarking that

1 9 1 _
KeT

10



the previous inequality allows us to obtain the existence of C1 > 0, only depending on Q,T,u¢ and @, such that

E1>Cl1.

The term E2 can be decomposed in E2 = E21 + E22 with

E21 = Z&tnz PG
= KeT LeENk

E22 = —Z(St >«
n=0 KeT LeENKk

Using Remark 2.3, one gets

YFUR) = (a5~ FULF)HURT,

(k)T FUR) — (D)~ UL TR,

B21 = Z 6"y (dicn) (FUR) = fUEF) U

= KeT

Let g be a primitive of f and g(s) = sf(s)
values (a,b) (see [13] and [6]).

g(b)

Using (39) for (a,b) = (U, URt") and (38) yield

E21 > Z&tnz NCHAR

n= KeT LeENk

Using Remark 2.3 with g instead of f gives

Z UDBDINC Ik

n=0 KeT LeENk

and therefore

— g(a) <b(f(b) —

f(@) = 55 (£(b) = f(a))?

(V) - gUE) + 51(Bo(f wp)?.

U —gUz*) = o,

B21> S (Bo(f (up)))’.

(38)

— g(s) for all real s. The following inequality holds for all pairs of real

(39)

(40)

(41)

A discrete space integration by parts in £22 does not yield any boundary term since q-n = 0 on 92, and gives, using

the Cauchy-Schwarz inequality,

11



E2 = —Zat > (@D U = (@) FUpT ) ORT =Tt

n=0 K|LEE;n:

> —lallzex,r)) Hl}ailij |Z5tn Z m(K|L)|Ug — Ut
s€lUr, n=0 KLEEn:

> —llallze@x(,r) max |f(5)WD(ﬂD)[Z5t" > m(K|L)d(zx,z)]?
s€[Ur,Usg] —

n=0 KlLEgint
1
> —Np(up)lldllz~@x,r) max |f(s)|(dm(Q)T)=.

s€[Ur,Us]

The following estimate for Np(up) holds:

Nop(ip) < F(E)||al 20,151 (2))

(42)

where F' > 0 only depends on £ (Inequality (42) is proved in [14], with a different definition of the regularity factor of

the mesh), leading to a lower bound of E22 denoted by C22, only depending on 2,7, ug, %, f,q and &.

There only remains to deal with E3. A discrete space integration by parts, using the fact that
Vil = 0,Vo € Eepy, Vn € [0, N], yields

N
Yot Y mpleUET) = e(URM) (VP — vt

K|LEE;n:
+ D 1O = (U (VT = V).
0EEeqt

Writing again V into U — U leads to E3 = E31 + E32 where

N
B3l = ) &t"( > mruleUT) — o) (U - URH)
= K\Legmt
+ Y 1e(@Urth) — U ) (U — Ut
0€Eeqt
N —_ —
E32 = —Z(St"( Z T\ (P(UPTY) — p(UET ) (Ot — Ut
= K|LEE;n:
+ D To((U) = p(UR) (O - TR
0€EEeat

(44)

(45)

One has for all pairs of real numbers (a, b) the inequality ({(a) — ¢(b))? < (a — b)(p(a) — ¢(b)). Also using ¢’ < V&'

(recall that ® = ||¢'||oc), One gets

E31 > (Np(((up)))?,
E32 > —VONp(((up))Np(ip).
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Using the Young inequality and (42), one gets the existence of C32 only depending on Q, T, uo, 4, f,q, and £ such
that

B2 > —%(Np(g(up)))uogz. (48)

Gathering the previous inequalities, one gets

O+ g (Bo(f(u)” + €22+ L (Np(C(up)))? + 032 <0, (49)

which completes the proof. [

Remarking that from the estimate of Lemma 2 in [14], one has Np({(up)) < \/EC“/EL”LQ(O,T,HI(Q)), where C' > 0 only
depends on &, one gets

Corollary 3.2 (Discrete H} estimate) Under hypotheses (H), let D be a discretization of Q x (0,T) in the sense
of Definition 2.3. Let & € R be such that £ > reg(D), let U = (U}?_I)KET,TLE[[O,N]] be the solution of the scheme
(11)-(18) and let U = (UEt") ket nefo,ny be defined by (32). Then, setting Z = ((U) — ((U), there ezists C' € Ry,
only depending on Q,T,ug,u,p,dq, f and & such that

N
doott( > mrpZERt =2t + D izt < (50)
n=0

K|LEE;n: 0€Eezt

4 Compactness of a family of approximate solutions

From Lemma 3.1, we know that for any sequence of admissible discretizations (D, )men, of Q x (0,7) in the sense of
Definition 2.3, the associated sequence of approximate solutions (up,, )men is bounded in L>(Q x (0,7)). Therefore
one may extract a subsequence which converges for the weak star topology of L>®(£2 x (0,T")) as m tends to infinity.
This convergence is unfortunately insufficient to pass to the limit in the nonlinearities. In order to pass to the limit,
we shall use two tools:

1. the nonlinear weak star convergence which was introduced in [11] and which is equivalent to the notion of
convergence towards a Young measure as developped in [10].

2. Kolmogorov’s compactness theorem, which was used in [14] in the case of a semilinear elliptic equation.

Theorem 4.1 (Nonlinear weak star convergence) Let Q be a Borelian subset of R¥ and (un)nen be a bounded
sequence in L°(Q). Then there exists u € L>(Q x (0,1)), such that up to a subsequence, u, tends to u “in the
nonlinear weak star sense” as n — o0, i.e.:

1
Vg € C(R,R), g(u,) = / g(u(-, @))da for the weak star topology of L*°(Q) as n — oc. (51)
0

We refer to [10, 11] for details and proof of Theorem 4.1.

This compactness result allows us to exhibit a limit (in the nonlinear weak star sense) u € L*(2 x (0,T) x (0,1)) of
a subsequence of the sequence up, which we considered above. Of course, in order to show that this function u is the
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unique entropy weak solution to Problem (1)-(3) , we shall need to show that it does not depend on its argument «
and that it satisfies the boundary condition (6) and the entropy inequalities (7) of Definition 1.1.

Let us now turn to the the Riesz-Fréchet-Kolmogorov compactness criterion (see e.g. [4]) which will allow us to pass
to the limit in the nonlinear second order terms.

Theorem 4.2 (Riesz-Fréchet-Kolmogorov) Let Q be an open bounded subset of R¥ and (un)nen be a bounded
sequence in L*>(R*) such that

lim |sup ||un(- + ) — un()||L2 =0, 52
tim,[sup fun(- + 8) = un()12(0)] (52)

then there exists u € L*(Q) such that, up to a subsequence,

un = u in L3(Q) as n — oo. (53)

Let us now show that we are in position to apply the Riesz-Fréchet-Kolmogorov to ({(up,,))men. From the discrete
estimates Proposition 3.1 and Corollary 3.2, one can state the following continuous estimates on zp, where zp is
defined almost everywhere in  x (0,7 by

zp(z,t) = CUE) — ¢(URH) for z € K and t € (¢, ") (54)
where (U}}H)Ke’r,ne[[o,N]] is the solution to (11)-(13) and (U}}“)KeT’ne[[o,N]] is defined by (32).

Corollary 4.1 (Space and time translates estimates) Under hypotheses (H), let D be a discretization of Q x
(0,T) in the sense of Definition 2.3. Let £ be a real number such that £ > reg(D); let U be the solution of scheme
(11)-(13) , and let up be defined by (15). Let U be defined by (32), let zp be defined by (54), and be prolonged by zero
on (0,T) x Q¢. Then there exists C1 only depending on Q,T,ug,u,p,q, f and &, and there exists Cy, only depending
on Q, such that

T
veeR!, [ [ (ool +6.0) — zo(e.0)dadt < Cilel(€] + Cosine(T). (55)

and there exists Cy only depending on Q,T,ug,,p,q, f and & such that

T—s
Vs > 0,/ / (C(up)(z,t + 8) — C(up)(z, 1)) dedt < Cy s. (56)
0 R4

The use of space translate estimates for the study of numerical schemes for elliptic problems was recently introduced
in [14]. The technique of [14] may easily be adapted here to prove (55), using the estimates of Corollary 3.2. A
time translate estimate was introduced in [16] to obtain some compactness in the study of finite volume schemes for
parabolic equations. The proof of (56) follows the technique of [16] and uses estimate (29) and the discrete equation
(13).

From Theorem 4.2 and the estimates (55) and (56) of Corollary 4.1 we deduce the following compactness result:
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Corollary 4.2 (Compactness of a family of approximate solutions) Let (D,;)men be a sequence of discretiza-
tions of Q x (0,T) in the sense of Definition 2.3 such that there exists & € R with £ > reg(Dy,) for all m € N. For all
m €N, let up,, be defined by the scheme (11)-(18) and (15) with D = D,,, and let zp,, be defined by (54) with D = D,
and (32). Then there exists u € L>®°(Q x (0,T) x (0,1)) and z € L?(Q x (0,T)) such that, up to a subsequence, up,,
tends to u in the nonlinear weak star sense and zp,, tends to z in L2(Q x (0,T)) as m — oo. Furthermore one has
z € L*(0,T,H}(Q)), ¢(u) = 2z + ((@), and ((u) = ((¥) a.e. on ON.

Proof. The convergence of up,, towardsu € L>®(Q x (0,T) x (0,1)) in the nonlinear weak star sense is a consequence
of Lemma 3.1 and Theorem 4.1. The convergence of zp,, to z in L?(2 x (0,T) is a consequence of Theorem 4.2 and
the estimates (55) and (56) of Corollary 4.1.

Following [13] or [14], one then deduces from (56) that D;z € L*>(Q x (0,T)) for i = 1,...,d and since zp,, (z,t) =0
on Q¢ x (0,7) for all m € N, one has z € L?(0,T, Hj (?)).

Now since up,, converges to w in the nonlinear weak star sense and that the function 4p,, defined a.e. by
tp,, (z,t) = Ut for (z,t) in K x (t",t"*') converges uniformly to @, one deduces that ((up,,) converges to ((u)
in the nonlinear weak star sense and to z + ((@) in L%(2 x (0,T)) as m tends to infinity. Therefore, by Lemma 4.1
below, one obtains that ((u) = z + (@) and {(u) does not depend on a. Furthermore, since z € L?(0,T, H}(Q2)), it
follows that ¢(u) = (@) a.e. on 9Q which ends the proof of the corollary. O

Lemma 4.1 Let () be a Borelian subset of R¥ and let (un)nen C L°(Q) be such that u, converges to u € L*(Q x
(0,1)) in the nonlinear weak star sense, and to w in L?(Q), as n tends to infinity, then u(z,a) = w(x), for a.e.
(z,a) € Q x (0,1) and u does not depend on «.

Proof. With the notations of the lemma, we have

/OI/Q(U(m,a) —w(m))zdwda:/Ol/Q(u(w,a))2dwda—2/01/Qu(w,a)w(w)dwda+/01/Qw(w)2dwdoz.

Since u,, tends to u in the nonlinear weak star sense , one has

/01 /Q(u(x,a))zdmda: nin-ll—oo Q(un(x))Qda: and /Ol/Qu(x,a)w(x)da:da = nirrioo Qun(x)w(m)dm,

and since u, tends to w in L?(Q), one deduces that u(z,a) = w(z), for a.e. (z,a) € Q x (0,1) and u does not depend
on a. U
5 Convergence towards an entropy process solution

This section is mainly devoted to the proof of the convergence theorem 5.1, which states the convergence of the
approximate solution to a measure valued solution as introduced in [10], which is also called entropy process solution
[11], and defined as follows.

Definition 5.1 Under hypotheses (H), an entropy process solution to Problem (1)-(3) is a function u such that,

ue L¥(Q x (0,T) x (0, 1)), (57)
p(u) — p(@) € L*(0,T; Hy()), (58)
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(note that (u) does not depend on o), and u satisfies the following inequalities :

1. Regular convex entropy inequalities :

fo wlu(z, t,a))da Pz, t)+
)

f v(u(z,t,a))da q(z,t) - Vip(z,t) - ug(x T x
/QX(O,T) OVn w(u)(x,t)))( e d dt+/9u( o(2))¢(z,0)dz > 0,

() D) (Vip (). ), ) 9
V¢ e DHQ x[0,T)), Vn € C*(R,R),n" >0, p' =1'(p(")), v = ' (0() ' ()-
2. Kruzkov’s entropy inequalities :
/ fo |u(z,t, @) — k|da Pz, t)+ . / (o) Kb, 0)d
z,t,a)Tk) — f(u(z,t,0) Lk))da q(z,t) - Vi(z,t) | dedt + [ |uo(z) — k|¢(x,0)dr > 0,
@) f0V|<P( )@, t) — p()] - Ve(a, 1) ’ “ (60)

V¢ eDF(Qx[0,T)), Vk € R.

In the previous definition, we use two types of entropies, since in the proof (given below) of the uniqueness theorem
one should make use of terms 1" (p(u)). In [5], these terms are obtained from the equation satisfied by a weak solution,
which itself can be obtained from the Krushkov entropy inequalities. We have prefered here to keep this slightly more
complex definition since the following theorem shows that (59) and (60) are both obtained by the natural limit of the
approximate solutions.

Theorem 5.1 (Convergence towards an entropy process solution ) Under hypotheses (H), let (Dy)men be
a sequence of discretizations of Q x (0,T) in the sense of Definition 2.3, with size(D,,) — 0 as m — oo, such that
there exists £ € R with £ > reg(Dy,) for all m € N. For all m € N, let up,, be defined by the scheme (11)-(13) and
(15) with D = D,y.

Then, there exists an entropy processus solution of Problem (1)-(3) in the sense of Definition 5.1 and a subsequence

of (up,, )men, again denoted by (up,, )men, such that (up, )men converges to u in the nonlinear weak star sense and
(C(up,,))men converges in L2(Q x (0,T)) to ((u) € L%(0,T; H*()) as m tends to cc.

Proof. By Lemma 4.2, there exist u € L>®(Q x (0,T) x (0,1)) and a subsequence of (up,, )men, again denoted
(up,,)men, such that (up, )men converges to w in the nonlinear weak star sense and (((up,,))men converges in
L?(Q x (0,T)) to ¢(u) € L*(0,T; H'(£2)). There remains to show that the function v € L>®(Q x (0,T) x (0,1)) is an
entropy process solution.

A number of the arguments involved in order to do so may be found in [11] or [16] and therefore will be given with few

details. The main new argument introduced here concerns the term / 7" (p(u)(z, 1) (Vo(u)(z,t)2Y(z, t)dedt
Qx(0,T)

in equation (59). The passage to the limit to obtain this nonlinearity motivates the use of the technical lemma 5.2

below (a related technique was used in [18] in the case of a variational inequality).

The idea of the proof is to derive the continuous inequalities (59) and (60) for the limit « by multiplying the discrete
entropy inequalities (17) and (19) by regular test functions and passing to the limit. Indeed, let ¢ € DT (2 x [0,T)) =
{p € CX(Q xR,R;), (-, T) = 0}. For a given m, let us denote D = D,,, and let (U;Jrl)Ke’r,ne[o,N]] be the solution
of the scheme (11)-(13) associated to D. Let ¥ = (V%) kc7 nefo,n+1] be defined by

U = (xk,t") VK € T,¥n € [0, N +1]. (61)
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Remark 5.1 One cannot use for ¥ the mean value of 1 on K x (t",t"1); indeed, in order to pass to the limit
on the term A3p below (see (66) and (67)), we shall use the consistency of the approrimation ;g‘};‘ﬁ) to the normal
derivative Vi - ng .. This consistency holds if ¥ = (xk,t™) thanks to the assumption on the family (xx)keT in
Definition 2.3, but does not generally hold if U7 is the mean value of 1) on K x (t",#"+1). Note that discrete values
using the mean values were used for u when studymg an upper bound of Np(U) with respect to the L?(0,T; H'(Q))
norm of u. However we did not have to use the consistency of the flux on a.

With the notations of lemmas 3.2 and 3.3, let us multiply the discrete entropy inequalities (17) and (19) by §t"¥%
and sum over K € T and n € [0, N]. From (17), one gets

Alp + A2p 4+ A3p + A4p <0 (62)
with
N
Un+1 Un
Ay = Yy mE)t A (gt” HUk) gn
n=0 KeT
N

A2p = =0 S DT (gF) WU - v(UET) Uk

n=0 KeT LeNk
N

A3p = —2575"2 Z T 1L (((UE) = n(o(UEH)) Uk

n=0 KeT LeENKk

+ 3 T e@) = n(eUE)) T)

0€EEeat K
N
n 1 n k5 K5 n
Adp = Z‘St Z (5 Z TKanII(‘P(UKj—I}))(‘P(UL—H) - SD(UK+1))2‘I’K
n=0 KeT ILENK
+3 > o (U @(TFH) — p(URH))* R)
Uegezt,K

Each of these terms will be shown to converge to the corresponding continuous terms of Inequality (59) by passing to
the limit on the space and time steps, i.e. letting m — oo.

Since ¢(-,T) = 0, one has ¥ +' = 0 and therefore:

Uy — et
Alp Zdt > mE)pUE)—E
n=0  KeT
= m(E) Wip(u)
KeT

The sequence pu(up) converges weakly to fol w(u(-, a@))da asm — oo. Let xp be the function defined almost everywhere

n _gn+l
on Ox(0,T) by xp(z,t) = % if (z,t) € K x (t",t"*1); then xp converges to 1; in L} (2 x (0,T)) as m — +oo.

Furthermore, let 9% (resp u%) be defined almost everywhere on Q by ¢} = U9 (resp. v = UY) if © € K. Then,
p(ug) converges to p(ug) in LP(Q) for any p € [1,+00) and % converges to ¢(.,0) uniformly as m — +oco. Hence
passing to the limit as m — +o0 in Alp yields:
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n}gnooAlD = / // u(z, t, a))do iz, tdxdt—/ / (uo(z))¢(x, 0)dx. (63)

Let us now rewrite A2p as:

N
A2p = =) 6" Y Y vURT((@R) L ~ (0T T, (64)

n=0 KeT LENK

n+1
We replace the term (¢i7)Y¥% — (')~ % by 5= It leLzb(a:,t) q(z,t) - ng rdy(z)dt. When doing so, we
commit an error which may be controlled (see the details in [11]) thanks to the consistency and the conservativity of

the scheme and thanks to the the weak BV inequality (30). Using the weak convergence of v(ur) to fol v(u(-, a))da
as m — 0o, we then obtain:

lim A2p = / / / w(z, t,0))dav (q(z, t) ¥(z, £))dodt

m—0o0

/// u(z, t,a))daq(z,t) - V(x, t)dedt. (65)

Turning now to the study of A3p, one remarks that for size(7) small enough, the support of ¥ does not intersect the
control volumes with edges on 8. Then for all control volumes K € T the sum over 0 € £¢4¢,k vanishes and thus

A3p = —Z&"Z ZTKW? k)Y — Tk) (66)

n= KeT LENK

n+1
Using the consistency of 7x | (¥7 — ¥%) with 5= fttn I} k| V¥(z,1)-nk rdy(z)dt, Estimate (29) and the convergence
of n(¢(up)) to n(p(u)) as m — oo, one gets with computations similar as in [14]:

lim A3p,, = / / (z,t) A (z,t)dzdt = / /Vn z,t) - Vi(z,t)dzdt. (67)

m—0o0

One now deals with A4p. The second term of A4p vanishes if size(T) is again sufficiently small. Then A4p reduces
to its first term which writes, after gathering by edges:

N n+1 n " n+1
A4’D — Z(Stn Z TK|L ( (U ¥ ))II'K;_” ( (U * )) L( (Un+1) (Un+1)) (68)

KlLEEini

Let us now introduce the sets V, for 0 € £. Let K be a control volume and 0 € k. One defines Vi, = {tzx +

(1—-t)z,z €0,t€ (0,1)}. For 0 = K|L, Vy = Vk,, UVp, and for 0 € Ecpt,k, Vo = Vi,o. One denotes by H;TLI the

discrete approximation of 7 (u)¢ on Vi |, which appears in (68), namely:
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i1 MU T + 0" (0 (UL ) 1
Hfl = 5 (69)

One defines the function h%, for a.e. (z,t) € Q x (0,T") by

hsy(z,t) = HI%TLI, T € VK\L; te (t",t"+1) (70)
h(z,t) =0, x€V,, te (", ") if o € Eupy. (71)

Let ¢p be defined almost everywhere on Q x (0,T) by ¢p(z,t) = U} for all (z,t) € K x (t", "), for all K € T and
n € [0, N]. The function 5" (p(up))p tends to n"(¢(u))y in LP(Q x (0,T)) for all p € [1,4+00) as m — oo. Therefore
one only needs to compare h$, and n”(¢(up))yp. Since size(T) is small enough, one has

N
15 — 1" (eup)nlBaaxomy = D03 O mViw)HEE — " (@URF TR (12)
n=0 KeT LENk

Let € > 0. The function 5" may be approximated by a function g € C'(R,R) such that |g(s) — 7" (s)| < e for all
s € [o(Ur),(Us)]. Defining H};TLI and h$, using g instead of #" in the definition of HIT;TLl and h$, respectively, one

has ||h$ — l~1°D||2L2(Q>< 0.1y < Cye and [|g(o(up))pp — 1" (p(up))¥D||72(0x (0, < Cve where Cy > 0 only depends on
1. Thanks to Young’s inequality, one gets

2
H Urtnen)? < ( max s) T — U7)?
(5 - oW w? < (| max ole)) (¥ - ¥)

42 wioioiry ©) GOED - U (@)

max g
s€[p(U1),9(Us)]

Using (73), the regularity of the function ¢ and Estimate (29), one gets

155 = g(p(up))Wpl|L2(0x 0,1y < (g, %, @)size(T),

where ¢(g,1, ) > 0 depends only on g, and ¢. Hence for size(7) small enough, one has

189 — 9(p(up))¥p 2% (0,1 < Cuts

which proves that one can take m € N large enough such that

Ihp — " (up)¥ollL2@x(o,r)) < 2Cye. (74)
Hence h$, tends to 5" (¢(u))y in L*(Q x (0,T)) as m — oo.

Using the straightforward generalization of Lemma 5.2 (stated below) for space-time dependent functions, one gets:
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m—o0

T
liminf Adp,, > /0/Q(Vw(u)(x,t))zn”(w(u)(ﬂf,t))lﬁ(w,t)dmdt- (75)

Gathering (62), (63), (65), (67) and (75), the proof that u satisfies (59) is therefore complete.

The same steps are completed in a similar way in order to show that u satisfies (60), without the difficult problem of
the treatment of n"’. This also completes the proof of Theorem 5.1. O

To complete the proof of Theorem 2.1 there only remains to show the uniqueness of an entropy process solution. This
is the aim of Section 6.

Lemma 5.2 which was used in the above proof is a discrete equivalent of the following continuous classical lemma.

Lemma 5.1 Let (uy)nen be a sequence of functions of H () which converges weakly to u in H*(Q)) and g a nonneg-
ative function essentially bounded from Q to R. Then

n—oo

/ (Vu(e))2g(z)dz < liminf / (Vun (2)) () da.
Q Q
A discrete version of this lemma is now stated:

Lemma 5.2 (“Limit inf” lemma)
Under hypotheses (H), let g € L>(Q) with g > 0, let u € H'(Q) and let M € R,. Consider a family of admissible
meshes of Q in the sense of Definition 2.1, such that for all D = (T,E,(xk)KkeT) in the family:

o there exists a family (Gy)oce of nonnegative values such that the function Gp defined by Gp(z) = G, for all
o €& and all x € V, satisfies Gp — g in L*(Q) as size(D) — 0,

e there exists a family (ux)keT of real values such that the function up defined by up(x) = uk for all K € T
and all x € K satisfies up — u in L2(Q) as size(D) — 0.

e the value Np defined by N2 = Y K|Legi, THIL(UK — ur)? satisfies Np < M.

1
Then, denoting Dp yp,Gp = Z 2 Z Tr|LGr (UK — ur)?, the following inequality holds:
KeT " LeNk

/(Vu(m))zg(a;)da: < liminf Dpyp,cp (76)
Q size(D)—0

Proof. The proof of this lemma is given in [18] in the particular case g = 1. Let w € C*®(Q,R) (the function w is
meant to tend to u in H*(2)) and let § € C°(Q, R) be a nonnegative function (which is meant to tend to g in L?(Q)).

Let D be one discretization of the considered family, let W be the family of values defined by Wk = w(zk) for all
K € T, and let 33, € L*(2) be defined by the mean value (denoted G,) of § on the diamond V, for all o € £. One
defines Q(g) and Qp(g3) by
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Qo) = /Q o) Vu(z) Vo (z)dz, (77)

@p(9p)

1
> 2 > mn(uk —up) (Wi — W1)Gx 1, (78)
KeT LeNk

and one similarly defines Q(g) and Qp(§%)-
One has

Q)

- / u(z) div(§Vw)(z)dz
Q

- / wp(@) div(§Vw)(z)dz + / (up(z) — u(z)) div(§Vw) (z)dz. (79)
Q Q

Using the fact that up is piecewise constant, one gets

_/QuD(x) div(gVw)(z)dz = —Z UK Z /Kng(:c)Vw(g:) -ng,Ldy(z)

KeT LeNk

¥ % 3 (u - ux) / i(2) V() - ng Ldy(a). (80)

KeT “LeNk K|L

Using the consistency of the mesh (item (4v) of Definition 2.1) and the Cauchy-Schwarz inequality yields

Y33 w—un) [ §@)Vule) nrdr(@) - QoG] < CouaNosise(D), 1)

KeT “LeNk K|L

where Cj.4,0 € Ry depends only on §,w and Q. Using the regularity of w and §, the convergence of up to u in L?(2)
as size(D) — 0 and using (79), (80) and (81), one gets

Clim Qp(gp) = Q(9)- (82)
s1ze(D)—0
One has
|Q(9) — Qp(gp)] < [Q(9) — Qp(dp)]
Hlull g1 ) IVl ) llg — 3l 220
+Np||[Vwl| () llgp — G2 (0)
< Q@) — Qp(gp)]

Hull g @) IVwl Lo @)llg = dllL2 (o)
+M||Vw||p= @) (l9p — 9llz2@) + 19 = dllz2@) + 19 — 3pllL2@))- (83)

Thanks to (82) and (83) one gets
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limsup [Q(9) - @o(p)| < (lullane) + M) Vel @lly - dllzzo)- (84)
size(D)—0

Now one can let § — g in (84). One then gets

limsup |Q(9) — Qn(g3)| = 0. (85)
51z€(D)—0
which proves that
_lim Qp(gp) = Q9)- (86)
size(D)—0

By the same proof, replacing u by w, one also has

lim Z % Z ki (We — Wk)*Ggi = /Q(Vw(x))zg(x)da:. (87)

51z€(D)—0 KeT “LeNk

Thanks to the Cauchy-Schwarz inequality, we may write

1
(@p(99))’ < Dpupan Y 2 > k(W — Wk)*Gxr- (88)
KeT ~LeNk

Passing to the limit in (88) when size(D) — 0 yields
(/ 9(z)Vu(z)Vw(z)dr)? < /(Vw(a:))2g(:c)dx Nliminf  Dpyp,ap- (89)
Q Q size(D)—0

Since C*®(Q, R) is dense in H'(12), one can let w tend to u in (89), which gives (76). O

6 Uniqueness of the entropy process solution.
One proves in this section the following theorem.

Theorem 6.1 (Uniqueness of the entropy process solution) Under hypotheses (H), let u and v be two entropy
process solutions to Problem (1)-(8) in the sense of Definition 5.1. Then there exists a unique function w € L*(Q x
(0,T)) such that u(z,t,a) = v(z,t,8) = w(x,t), for almost every (z,t,a,B) € 2 x (0,T) x (0,1) x (0,1).

Proof.

This proof uses on the one hand Carrillo’s handling of Krushkov entropies, on the other hand the concept of entropy
process solution, which allows the use of the theorem of continuity in means, necessary to pass to the limit on mollifiers.
Note that the hypothesis (4) makes it easier to handle the boundary conditions.

In order to prove Theorem 6.1, one defines for all ¢ > 0 a regularization S. € C'(R, R) of the function sign given by
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(a) = -1, Va € (—o0, —¢],

( ) = 352a€3a ) Va € [—6,6], (90)
(a) = Va € [g, +00).

) # cp(a)}. Note that p(R\Ry) is countable, because for all s € p(R\R,),
(a,b)) = {s}, and therefore there exists at least one r € Q with r € (a,b)

m

Se
S,

One defines R, = {a € R,Vb € R\ {a}, (b
there exists (a,b) € R? with a < b and ¢(

satisfying ¢(r) =

S

o

Let K € R,. Let € > 0 and let u be an entropy processus solution. One 1ntr0duces 1n (59) the function 7. .(a) =

f;(n) Se(s — ¢(k))ds. One defines p. .(a) = [ n. .(p(s))ds and v, c(a) = [0l . ( f'(s)ds, for all a € R. Using

the dominated convergence theorem, one gets for all a € R that hm0 ns,n( )=la— (/-c)|,
e—>
and, since k € Ry, lim us,ﬁ(a) = |a — k| and lim0 vex(a) = f(aTk) — f(alk). One gets for all ¢ € D (Q x [0,T)),
E—>

Jo [u(=, t ;@) — Klda ¢y (z, 1)
/ + [y (f(u(z,t,0)Tk) = f(u(a,t,0) LK))da q(z,t) - Vib(x,t) | dadt
@00 Sg(so( )(w ) — () Ve (w)(z, t) - Vib(a, 1)

) 2

—/ [St(p(u)(z,t) — () (Vo(u)* (z, )¢ (x, t)] dzdt

Qx(0,T)
+/ |U0(.’E) - I‘é|¢($,0)d.’17 > A(E,U,H,¢),
Q

(91)

where for any entropy process solution u, any ¢ € Dt(Q2 x [0,T)), any k € R, and any € > 0, A(e,u, k, 1)) is defined
by

Jy 1z, t,0) = K| = pe s (e, @) ) da () +
Ae,u,k,1p) = / 1((f(u(a:,t, a)Tk) — fu(z,t,a) Lk)) — ngn(u(x,t,a)))da dzdt

Qx(0,T) 0 92
a(a, 1) - Vi(z, 1) 2
+ [ (@) = 51 = hen(ua(@))) ¥, 0)da.
Q
Thanks to the dominated convergence theorem, one has
lim A(e,u,k,%) =0. (93)
e—0

This convergence is not uniform w.r.t. x (even if k¥ remains bounded), but A(e,u, &, %) remains bounded (for a given
u) if &, 1, 1y and V) remain bounded and if the support of ¢ remains in a fixed compact set of R? x [0, 7).
Using (60), one now remarks that, for all k € R, one has for all ¢ € DH(Q x [0,T)),

fo |u(z, t, ) — K|da Yy, t)+

/ f() (f u $7t7 OK)TI‘E) f( (w,t,a)J_n))da dxdt

Qx(0,T) Q( z,t) - Vi(z, t) (94)
— 5. (p(u) (@,8) - (K)) Vip(w) (2, 1) - Vi(z, 1

+ Jo luo(2) — &y (x, 0)dx > B(e, u,k,¢),

where for an entropy process solution u, all ¢ € DT(Q x [0,7)), all K € R and all € > 0, B(e,u, k,) is defined by
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B(e,u, k,9) = /Q o [V (Ip() (@, 1) = ()] = 0 (o) (2,1))) - Vib(a, 1) dadt. (95)

For all yp € D*(Q x [0,7')), one has

Bleund) == [ oy L1900 = )] ~ (i) 2,0 A 2, 0)] i, (96)
and
Eli_r>n0B(a,u, K,1) =0, (97)

for allp € DT (2 x [0,T)),e>0and k € R.
As for the study of A, the quantity B(e,u, k,%) remains bounded (for a given u) if ¥ and A% remain bounded and if
the support of 9 remains in a fixed compact set of R? x [0, T).

Let u and v be two entropy process solutions in the sense of Definition 5.1. One defines the sets E,, = {(z,t) € 2x(0,T),
u(z,t,a) € Ry, for a.e. a € (0,1)} and E, = {(z,t) € @ x (0,T), v(z,t,a) € Ry, for a.e. o € (0,1)}. Indeed, recall
that ¢(u) and ¢(v) do not depend of a € (0,1). Then, Q x (0,T) \ Ey = Uscpm\r,)Es,u With Eg, = {(z,t) €
Q x (0,T),p(u)(x,t) = s} (the same property is available for v). Let £ € C°(R? x R x R? x R,Ry) such that, for
all (z,t) € Q x[0,7), &(z,t,-,-) € DT(Q x [0,T)) and for all (y,s) € Q x [0,T), &(-,+,y,58) € DT(Q x [0,T)). One
introduces in (91), for (y,s) € E,, and a.e. 8 € (0,1), K = v(y,s,8) and ¢ = &(-,-,y,s). One integrates the result on
E, x (0,1). One then gets

fo fo |u(z,t,a) —v(y, s, B)|dadB &(,t,y,s)+

/ / fo fo flu(z,t,)To(y, s, B)) — f(u(z,t,a)Lv(y, s, B)))dadp dedtdyds
Qx(0,T ( t) - Vz§($ t,y,5)
Se(p(u)(z,t) — p(v)(y, 5))Ve(u)(z,t) - Vié(z,t,y,5)

_ / /Q x(OT)[ L(p(u)(2,t) — 9(v)(y, 8)) (Ve(u))? (z, t)E(x, t,y, 5)] dedidyds (98)
/ // |uo(z) — v(y, 5, B)|€(w,0,y, s)dBdzdyds
/ / A 6 u, U(yas 6) 5(5 'Y, S ))ddedB

(0,T)\E,, and any 8 € (0,1), K = v(y, s,3) and ¢ = £(-,-,y, s). One integrates

One introduces in (94), for (y, s) € Q x
x (0,1). One then gets

the result on (2 x (0,T) \ Ey)

fo \&) |U z, t Oé) (y,S ﬂ)'dadﬁ §t(x,t,y,s)

/ / +f0 fo x t «a Tv(y,s /3)) f(u(l'ata Oé)L’U(y,S,,B)))dOédﬂ dxdtdyds
ax(0,T)\E, Jex@o,1) | al@,t)-V §($ t,Y,5)
—5( (u)(z,t) — p(v)(y,s))Ve(u)(z,t) - Vi&(z,t,y,s)

+/Q><(0 T)\E, // |u0 ) —v(y,s, ﬂ)|§($ 0,y,s)dBdzdyds
/ / B(E u U(y,s ,B) 5(7 Y, S ))dded/B
Qx(0,T)\E,

Adding (98) and (99) gives
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o Jy luta, ) = ol 0 Bind3 ot

/ / +f0 fo SL' t Oé)T’U(y,S 6)) f(u(lli',t, O‘)J-U(yasaﬂ)))dadﬂ d:z:dtdyds
Qx(0,7)J2x(0,T) Vg 5(33 t,y,s)

s< ( )(w ) - ¢(0)(y, ) V() (@, ) - Vab(w, 1,1, )
/ /Q o 15160 P (0)(9,9) (Voo (w))? (@, )E(3, 1, y, 8)] dadtdyds (100)

+[ / / Ja0(2) — vy, 5, )|z, 0,3, ) ddyds

2x(0,7)

/ / Ale,u,v(y,5,8),6(, -y, ))dydsdﬂ+/ / B(e,u,v(y,s,8),&(-,-,y, 5))dydsdf
Qx(0,T)\E,

One now exchanges the roles of u and v, and add the resulting equations. It gives

Ti + T + Ts(e) + Tule) + Ts(e) > To(e), (101)

where

Iy fP [u(, t @) —v(y, s, B)|dadB (& (z,t,y,s) + &(z,t,y,s))
T = / / +f0 fo (o, @) To(y, 5, 8)) — £ (u(,t,0) Loy, 5, B)dadB | dedtdydsi(102)
PO IO v E@,ty,9) +aly, ) - Vyé(z.t,9,5))

= /QX(OT / / luo(x) = v(y, 5, B)|¢(x, 0,y, s)dBdxdyds

(103)
/ / / luo(y) — u(z, t,a)|é(z, t,y, 0)dadydzdt,
Qx(0,T)
_ Se(p(u)(z,t) — p(v)(y, 5))V(u)(z,t)-
Toe) = /Qx(OT)/Qx(OT [( o€z, t y, )+Vy§($ t,y,5)) ]da:dtdyds (104)
SH00) - 6 V09| sy
Qx(oT) Qx(0,T) (Ve&(z,t,y,8) + Vyé(z,t,y,5)) ’
T = | . /| o S0 00) = P(0) 0,90 Vi), V3t ,9) iy -
X x 105
+ [S- (¢ (0) (9, 8) — () (&, ) Vo(0) (4, 5) - Vol (@, t,y, )] dodtdyds,
ax(0,T)Jax(0,T)
ne = - [ . £) = 9(0) (4, 8)) (Vo(w)? (2, D&z, £y, 5)] dadidyds
x (106)
" Jore T)/E [SL(p(u)(z,t) — (v)(y, $))(Ve(©))? (y, 8)é(x, t,y, 5)] dodidyds,
and
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Ts(e) =

O\H

. Ale,u,v(y, s, 8),£(, 5y, 5))dydsdp

/ / 6 u,v y,s B) 5(77?};3))dydsdﬂ
01 Qx(0,T)\E, (107)

A(e,v,u(z,t,0),&(x, t, -, ) )drdtda

1
/ / B(e,v,u(z,t,a),&(=,t,-,-))dzdtda.
0 JOx(0,T)\E.

+

+
S—
o

+

(108)

By an integration by parts in (105) and using the fact that & vanishes on 92 x (0,7) x Q x (0,T) and on Q x (0,7T) x
90 x (0,T) one gets

/ / 15! (0 () (2, 1) — 9(0) (5, 8))E( £,y 5)Vep(w) (2, 1) - Vip(v) (9, 5)] ddltdydls
Qx(0,T7)J2x(0,T)

[St(e()(y, 8) — p(u)(@,1))é(z, t,y, 5)V(v)(y, 8) - Vip(u)(z,t)] dvdtdyds.
QX(OT) Qx(0,T)

Recall that E;, = {(z,t) € Q@ x (0,T),¢p(u)(z,t) = s} for all s € R. One has Vy(u) = 0 a.e. on E;, (see [4] for
instance). Since Q x (0,T) \ Ey = Usepr\R,) Es,u, and since (R \ R, ) is countable, the following equations hold.

(109)

V(u) =0, ae. on Qx (0,7)\ Ey (110)

and

Vp(v) =0, a.e. on Q2 x (0,T)\ E,. (111)
It leads to

1) = [ ISHew)(@0) ~ p(0) )6 by, ) Velu) 5, 0) - Vo) 0, o)) dodidyds
E,XE (112)
[ ISHe0:8) o) @ ), V)0 5) - Vi) 0)] dadrdyds
and o
Toe) = - [ [SHpu)et) - p0)0, ) (Vo) (o, 06z, 1y, 5)] dodtdyds
EuxE (113)
[ S0 = 0) (0 ) (V) (1,96 )] dodtdyds.
Therefore Ve > 0,
10+ 70 = - [ [ [sHeE0 - 0096w 0.0 (Vo a0 - Vo)) | dodtyas
< 0
(114)
One th ts Ve > 0,
SRR e Ty +Ts + Ts(e) > Ts(e). (115)
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One can now let € — 0 in (115). This gives, since Ts(e) — 0 (thanks to the dominated convergence theorem),

fo fo |’LL z,t, a (y,s ﬂ)ldadﬁ ({t(m,t,y,s) +£s($at;y;3))+
Jo Jo (F(u(ast, a)TU(y,S B)) — f(u(=,t,0)Lv(y, s, B)))dadp

Lo (e 0 -v-tlon ) ol - V€, t.9)) dadedyds
Qx(0,T)/Q2x(0,T)
—(Valo(u)(@,t) — o(v)(y, s)| + Vylp(u)(z,t) — o)y, s))
(Vob(z,t,y,8) + Vy(z,t,y,5)) (116)
o / [uole) — vl 5, )&z, 0,, 5)dBdadyds
Qx(0,T)
/ / / luo(y) — u(z, t,)|é(z, t,y,0)dadydzdt > 0.
Qx(0,T)
Now, let us consider the analog of (60) for v instead of u, with k = up(z) and ¥ (y, s f &(z,0,y,7)dr and integrate

the result on z € €2. One then gets

—fo |U Y,8,8) — uo(z)|dB &(z,0,y, s)+
o (F@(y, s, 8)Tuo(2)) — f(v(y, s, ) Luo()))dB aly, s):
/ /Q o) Vy f &(x,0,y,7)dr dydsdx +

Vyle)(y,s) — ¢(uo(z))|- (117)
f Vyé(z,0,y,7)dr

//|u0 — uo(y |/ &(z,0,y, 7)drdzdy > 0.

A sequence of mollifiers in R and R? is now introduced. Let p € C°(R?, Ry ) and p € C°(R, R, ) be such that
{z € RY; p(z) # 0} C {z € R; 2] <1},

{z € B j(x) # 0} C [~1,0] (118)

and

/ plx)dx =1, / plx)dx = 1. (119)
R4 R

For n € N*, define p,, = np(nz) for all z € R? and p, = np(nz) for all z € R.

One sets £(z,t,y,s) = Y(z,t)pn(z — y)pm(t — s), where p € C(2 x [0,T),R;) and n and m are large enough to
ensure, for all (z,t) € 2 x[0,7), &(z,t,-,-) € DY (2 x[0,T)) and for all (y,s) € A% [0,T), £(-,-,y,8) € DH(Q2x[0,T)).
This choice is not symmetrical in (z,t) and (y, s), which gives an easier way to take the limit as n — oo and m — oc.
One gets, from (116),
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i pn(x = Y)pm(t — 5)

fo fo lu( w,;,(a —v(y),s,ﬂ()|da%3)¢t(x,t)

u(z,t,a)Tu(y, s,
[ I B (LG ) deds dndidid
xdtdyds
ax(,1)Jax,r) | (Pn(T —y)pm(t — s)a(z,t) - Vi(z,1)

(2, 1) pm (t — 8)(a(z, t) q(y,s)) - Vpu(z —y))
—pn(T = Y)pm(t — 8) (Ve |p(u )( t) — p(v)(y, s)|
L +Vyle(u)(@,t) — ¢(v)(y,8)]) - Vib(

o / o () — 0(, 8, A6, 0)p (& — )P (—s) dBdzdydls >0,
Qx(0,T)

(120)

x,t)

The second of the two initial terms vanishes because of the asymmetric choice of py,. Using the same test function in
(117), at t =0, i.e. £(2,0,y,5) = ¥(z,0)pn(z — y)pm(—s) and (119), we get

—fo o y,S B) — uo(z)|dB ¢(z,0)pn(x — y)pn(—s)
— Jo F0(y,5,B) ) Tuo(@)) — f( (y,s,ﬂ)Luo( ))ds aly, s)-
//Qx(o T)

P(z,0) Vpn z— f P (— dydsdzx (121)
+Vyle)(y, s) — so(uo(x))|
¥(z,0)Vpn(z f Pm (=

+ Jo Jo luo(x) — uo(y)|y(x, 0)pn(w - )d:vdy > 0.

One can now add (120) and (121) let m tend to oo and use the theorem of continuity in means. Since the function
5 —> fsT Pm (—7)d7 is bounded and tends to zero as m — oo for all s € (0,7T), one gets

—.CL') fo fo |u z, ; OL( (gi)t ,8)|d0éd,8 ¢t($7t)
u(z, t, @) To(y,t,
*fo o ( Loty Lot t.3y ) dad
[/ (paly — D)a(@,1) - Vib(, 1)+ drdidy
@IOOT) |y (z,t)(aly, t) — a(=,1)) - Vpn(y — 2)) (122)
—pn(T = y)(Velp(u)(z,t) — p(v)(y,1)|
| +Vyle(u)(@,t) — p(v)(y,1)]) - Vib(z, 1)

/ / luo(®) — uo ()b, 0)pu (= — y)dedy > 0.

Remarking that

pn( ”f— (V Iso( )( t) - (v)( ,t)|

(123)
[ pn(w - )Icp( )(w,t) w(v)(y,t)lAMw,t) | dedtdy,
o Jax(,T)
it is possible to let n — oo in (122). Using divq = 0 and the theorem of continuity in means again, one gets
Jo Jy lute, t a) v(z, 1, B)|dadB iy (z,1)
/ +f0 fo u(@, t,a) To(z,t, 8)) — f(u(2,t, @) Lu(z,t, 8))dadB | goar > . (124)
ax(,r) | a(z,t) - V¢(5’3 t)

~Vlp(u) (@, 1) — p(0) (@, 1)| - Vib(a, 1)
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One notices that (124) holds for any ¢ € H'(Q x (0,T)), with ¢» > 0 and ¢(.,T) = 0, using a density argument.
Therefore one can now take, in (124), for ¢ the functions ¢ (z,t) = (T —t) min(@, 1), for e > 0.
Assume momentarily that for all w € H}(Q) with w > 0,

d(z,00)

liminf/ Vw(z) - V min( ,1)dz >0 (125)
Q

e—0

(The proof of (125) is given below).

d(w,BQ) 1)

The expression q(z,t) - V min( satisfies

d(z,00)

Eh_r>n0 q(z,t) - Vmin( ,1) =0, for a.e. (z,t) € Q% (0,7),

and under condition (4) (and (H5)) remains bounded independently of € for a.e. (z,t) € 2 x (0,T). Letting e — 0,
(124), with ¥ = 1., gives

1 1
_/ [/ / |u(z,t,a) —v(z,t,8)|dadB| dzdt > 0,
ax(0,1) LJo Jo

which finally proves that u = v and that u is a classical function of space and time (it does not depend on «).

Proof of (125)

Let € > 0. Let (0€;)i=1,....n be the faces of Q, n; their normal vector outward to 2, and for ¢ = 1,...N, let £; be the
subset of Q such that, for all z € Q;, d(z,09;) < € and d(z,0Q;) < d(z,0%;) for all j # i. One has

N
/ Vu(z) - Vmin(d(z,00) /e, 1)de = Y / W s
Uf'v—lﬂi = Ja

For each Q;, let €; be the largest cylinder generated by n; included in €2;. One denotes by 0 the face of Q; parallel
to 9. Let Q. be defined by Q. = @\ UY,Q;. One has meas(Q.) < C(Q)e? and

N
. w(z) V()
| Fu@) - Vmin(dte, 00)/2, 1o > > / e - R

€
Thanks to the Cauchy-Schwarz inequality, one gets
( / Vw(z)|dz)? < meas(Q.) / (Vu())2dz.

One concludes, using lim0 (Vw(z))?*dz = 0.
e—0 Jo

Remark 6.1 Inequation (125) could also be proved in the case where Q is regular instead of polygonal, with a slightly
different method. Let Q. = {z € Q,d(z,00) < e} and let ON. be the other face of Q.. The normal vector to 0N, at
any point = is equal to Vd(xz,00N). Therefore one has
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/ Vw(z) - V min(d(z,00)/e,1)dz = / w(z) dy(z) — / w(z) Ad(z,00) de.
Q 8 Q

Q € . €

Since Hardy’s inequality leads to

/QE (%)dw <c(@) /Q (Yol

one concludes using ms_m/ (Vw(z))*dz = 0.

€

O

7 Conclusion

Let us finally prove the convergence theorem by way of contradiction:

Assume that the convergence stated in the Theorem 2.1 does not hold. Then there exist € > 0, p € [1,+00) and
a sequence (up,,)men such that [lup,, — ullLr@@x@,r) > €, for any m € N. Then by Theorem 5.1, there exists a
subsequence of the sequence (up,,)men, still denoted by (up,, )men which converges to an entropy process solution
of Problem (1)-(3) . By Theorem 6.1 this entropy process solution is the unique entropy weak solution to Problem
(1)-(3) , and from Lemma 7.1 which is stated below, the convergence of (up,,)men is strong in any L9(Q2 x (0,T)).
This is in contradiction with the fact that |lup,, — ul|lzr@x(0,1) > €, for any m € N.

Lemma 7.1 Let Q be a Borelian subset of R* and let (un)nen C L®(Q) be such that u, converges to u € L™(Q x
(0,1)) in the nonlinear weak star sense where u does not depend on «, then (up)nen converges to u in LY (Q) for any

loc
p € [1,00).

Proof. Let K be a compact subset of @, since u,, converges to u in the nonlinear weak star sense , one has
/ |un (2) — u(z)Pde = / w2 (z)dr — 2/ Up(z)u(z)de +/ w(z)’de — 0 as n — 4o0;
K K K K
since K is bounded, one also has:
/ |un(x) — u(z)|Pde — 0 as n — 400, Vp € [1,2]

K
and since the sequence (up)nen is bounded in L*(Q),

/ |tn(2) — u(z)|Pde — 0 as n — +o00, Vp > 2.

K

O

Remark 7.1 An interesting (and open to our knowledge) question is to find the convergence rate of the finite volume
approzimations. In the case of a pure hyperbolic equation, i.e. p =0, it was proven by several authors (under varying
assumptions, see e.g. [9], [22], [11], [6]) that the error between the approzimate finite volume solution and the entropy
weak solution is of order less than h'/* where h is the size of the mesh, under a usual CFL condition for the explicit
schemes which are considered in [9], [22], [11], [6], and of order less than h'/* + k'/? where k is the time step in the
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case of the implicit scheme considered in [11]. However, it is also known that these estimates are not sharp, since
numerically the order of the error behaves as 1/2.

In the case of a pure linear parabolic equation, estimates of order 1 were obtained in [17] (see also [13])

We made a first attempt in the direction of an error estimate in the case of the present degenerate parabolic equation
by looking at the analogous continuous problem [15]: let u. be the unique solution to

uy(z, t) + div (q f(u)) (z,t) — Ap(u)(z, t) — eAu(z, t) =0, for (z,t) € Q x (0,T), (126)

with initial condition (2) and boundary condition (3) and let u be the unique entropy weak solution solution of Problem
(1)-(8) , then under assumptions (H), we are able to prove that ||u. — ul|p1(g,) < Ce'/® where C € R, depends only
on the data. This estimate is however probably not optimal and we have not yet been able to transcribe its proof to the
discrete setting (the term —eAu being the continuous diffusive representation of the diffusive perturbation introduced
by the finite volume scheme).

8 A numerical example

We finally present some numerical results which we obtained by implementing the scheme which was studied above in
a prototype code.

The domain € is the unit square (0,1) x (0,1). We define two subregions ©; = (0.1,0.3) x (0.4,0.6) and Qs =
(0.7,0.9) x (0.4,0.6). The initial data is given by 0.5in Q\ (21 UQ3), 1 in Q; and 0 in Q5. It is represented on upper
left corner of the figure below. The boundary value is the constant 0.5.

The function ¢ is defined by ¢(s) = 0 if s € [0,0.5] and ¢(s) = 0.2(s — 0.5) if s € [0.5,1], so that the diffusion effect
only takes place in the areas where the saturation u is greater than .5. The function f is defined by f(s) = s and the
field q is defined by q(z,y) = (10(z — 2?)(1 — 2y), —10(y — y?)(1 — 2z)). Hence there is a linear rotating convective
transport.

We define a coarse mesh of 14 admissible triangles on the unit square, from which we obtain a fine mesh of 12 600
triangles by refining these 14 triangles uniformly 30 times. This fine mesh is used for the computations.

The figure below presents the obtained results at times 0.000, 0.007, 0.028 and 0.112. The black points correspond to
the value 1, the white ones to the value 0, with a continuous scale of greys between these values. One observes that
the initial value 0 is transported, only modified by the numerical diffusion due to the convective upstream weighting,
and that, on the contrary, the initial value 1 is rapidly smoothed, due to the effect of the parabolic term which is
active on the range [0.5,1].

31



t=0.00000 t=0.00700

(0.0) (1.0) (0.0) (1.0)

0.2 0.2

0.1 0.1

0.0
10 @y 10 ()]

0.0

t=0.02800 t=0.11200

[(XV)] (1,0 [CX0)] (1,0

0.2 0.2

0.1 0.1

0.0
(1.0 (1) (1.0 (1)

0.0

Computed solution at time ¢ = 0 (initial condition), ¢ = 0.007, t = 0.028 and ¢ = 0.112.
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