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Abstract. A new finite volume for the discretization of anisotropic diffusion problems on general un-
structured meshes in any space dimension is presented. The convergence of the approximate
solution and its discrete gradient is proven. The efficiency of the scheme is shown through
numerical examples. c© 2002 Académie des sciences/Éditions scientifiques et médicales
Elsevier SAS

Un schéma volumes finis pour les problèmes anisotropes sur des maillages non
structurés

Résumé. On présente ici un nouveau schéma volumes finis pour la discrétisation des équations de
diffusion anisotropes sur des maillages non structurés, pour toute dimension d’espace. On
prouve la convergence de la solution approchée, ainsi que celle d’un gradient approché. La
pertinence du schéma est illustrée par des résultats numériques. c© 2002 Académie des
sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Anisotropic diffusion problems are encountered in various scientific fields: geosciences, biology, finance.
Wellknown discretization methods are finite differences, finite volumes and finite elements. The mathemat-
ical study of convergence is quite wellknown in the case of isotropic diffusion for the three methods, and is
the object of numerous works in the case of anisotropic diffusion; a thorough mathematical theory is known
in the finite element theory. For various reasons, such as the ease of implementation, construction of simple
Voronoı̈ meshes and the coupling of equations of different kind, finite volumes are often chosen in actual
applications. Our aim here is to construct a finite volume scheme for anisotropic problems and prove its
convergence towards the solution of the continuous problem. We thus study the following problem: find an
approximation of the variational weak solution ū ∈ H1

0 (Ω) to the following equation:

−div(Λ∇ū) = f in Ω, (1)
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with homogeneous Dirichlet boundary conditions, where Ω is a polygonal open bounded connected subset
of R

d, d ∈ N
∗, and f ∈ L2(Ω). The function Λ is measurable from Ω to the set of symmetric d × d

real matrices, the eigenvalues of which are included in [α(x), β(x)] where α, β ∈ L∞(Ω) are such that
0 < α0 ≤ α(x) ≤ β(x) for a.e. x ∈ Ω.

The track which we follow here consists in building an approximate gradient, using the usual cell values
of the discrete unknowns. Note that such an approximate gradient was already considered in [3]. However,
in this latter work, the approximate gradient was constructed using the so-called Raviart-Thomas shape
functions. Unfortunately, these functions have simple expressions only in the case of triangles and rectan-
gles. Here, we shall develop a new approximate gradient which does not use these shape functions, and
which is easy to compute on any admissible finite volume mesh.

2. The finite volume scheme

Let T = (M,E,P) be an admissible finite volume discretization of Ω in the sense of [2], Definition 9.1
page 762. An example of two neighbouring control volumes K and L of M is depicted in Figure 1. The
notations are identical to that of [2].

dK,σ

DK,σ

xL

dKL

xK

meas(σ)

K|LL

K

xσ

Figure 1: Notations for an admissible mesh

The size of the discretization is defined by:

size(T) = sup{diam(K),K ∈ M}.

The set of interior (resp. boundary) edges is denoted by Eint (resp. Eext). For any σ ∈ Eint, σ = K|L
(resp. Eext, σ ∈ EK). For all K ∈ M, we denote by NK the subset of M of the neighbouring control
volumes, and we denote by EK,ext = EK ∩ Eext.

For all K ∈ M and σ ∈ EK , we define DK,σ = {txK + (1 − t)y, t ∈ (0, 1), y ∈ σ}. For all σ ∈ E,
let xσ denote the center of gravity of σ. We shall measure the regularity of the mesh through the function
regul(T) defined by

regul(T) = inf

{

dK,σ

d(xσ , xK)
,K ∈ M, σ ∈ EK

}

. (2)

We denote by HT(Ω) ⊂ L2(Ω) the space of piecewise constant functions on the control volumes. For
all w ∈ HT(Ω) and for all K ∈ M, we denote by wK the constant value of w in K. For any function
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ϕ ∈ C∞c (Ω), we denote by PMϕ ∈ HT(Ω) the piecewise function equal to ϕ(xK) on cell K. For
(v, w) ∈ (HT(Ω))2, we denote by:

[v, w]T,α =
∑

K|L∈Eint

meas(K|L)

dKL

(vL − vK)(wL − wK)

meas(DK,K|L ∪DK,K|L)

∫

DK,K|L∪DK,K|L

α(x)dx

+
∑

σ∈Eext

mσ

dK,σ

vKwK

meas(DK,σ)

∫

DK,σ

α(x)dx.

We define a norm in HT(Ω) by ‖w‖T = ([w,w]T,1)
1/2 (where 1 denotes the constant function equal to 1).

We define the discrete gradient ∇T : HT(Ω) → HT(Ω)d, by:

meas(K)∇TwK =
∑

L∈NK

meas(K|L)

dKL
(xK|L − xK) (wL − wK)−

∑

σ∈EK,ext

meas(σ)

dK,σ
(xσ − xK)wK ,

∀K ∈ M.

We consider the finite volume scheme:






uT ∈ HT(Ω),
∫

Ω

(Λ(x)− α(x)Id)∇TuT(x) · ∇Tv(x)dx + [uT, v]T,α =

∫

Ω

f(x)v(x)dx, ∀v ∈ HT(Ω).
(3)

One may prove that there exists a unique solution uT to (3), thanks to the following discrete H1 estimate:

α0‖uT‖T ≤ diam(Ω)‖f‖L2(Ω)d . (4)

3. Convergence results

THEOREM 3.1. – [Convergence of the finite volume scheme] Let T be an admissible discretization
of Ω. Let uT ∈ HT(Ω) be the solution to (3). Then uT converges in L2(Ω) to the weak solution ū to the
problem (1), and the approximate gradient ∇TuT converges in L2(Ω)d to ∇ū, as size(T) → 0 provided
that that there exists ρ > 0 with regul(T) ≥ ρ.

Remark 1. – Note that the present convergence result also gives the strong convergence of the present
discrete gradient for the classical finite volume scheme in the isotropic case, which is given by (3) when
taking Λ = αId.

Sketch of proof of Theorem 3.1: From (4), we may extract from any sequence of approximate solutions
a subsequence which converges to some u ∈ H1

0 (Ω). We shall show below that u = ū, and therefore, u is
unique. Hence we may consider any family of discretizations T with regul(T) ≥ ρ, and size(T) → 0.

Let ϕ ∈ C∞c (Ω), set v = PTϕ in (3). The keypoints of the proof of convergence of uT and ∇TuT are
the following:

1. [uT, PTϕ]T,α →
∫

Ω α(x)∇u(x) · ∇ϕ(x)dx,

2. ∇TuT tends to ∇u weakly in L2(Ω)d,

3. ∇TPTϕ tends to ∇ϕ in L2(Ω)d.
Item 1 is developped in [2], [1]. Item 2 may be shown by noting that, thanks to the orthogonality of xKxL

and K|L, we have

∑

K|L∈Eint

(uL−uK)

[

nK,L

∫

K|L

ϕ(x)dγ(x) −
meas(K|L)

dKL

(

(xK|L − xK)ϕ(xK) + (xL − xK|L)ϕ(xL)
)

]

→ 0,
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which leads to
∫

Ω

PTϕ(x)∇TuT(x)dx +

∫

Ω

uT(x)∇ϕ(x)dx → 0.

Item 3 is a consequence of the following geometric property: for all i, j = 1, . . . , d,
∫

K div(x(i)
e
(j))dx = δijmeas(K) =

∑

σ∈EK
meas(σ)x

(i)
σ nK,σ · e

(j), obtained thanks to the choice
of xσ as the center of gravity of σ. One then concludes to the convergence of uT thanks to the fact that
∫

Ω(Λ(x)−α(x)Id)∇Tu(x)·∇TPTϕ(x)dx tends to
∫

Ω(Λ(x)−α(x)Id)∇u(x)·∇ϕ(x)dx, and thus u = ū.

In order to prove the convergence of ∇TuT, we consider a regular function ψ, and write the following
inequality:

‖∇Tu−∇u‖L2(Ω)d ≤ ‖∇Tu−∇TPTψ‖L2(Ω)d + ‖∇TPTψ −∇ψ‖L2(Ω)d + ‖∇ψ −∇u‖L2(Ω)d .

Now, it may be shown that [uT, uT ]T,α tends to
∫

Ω
α(x)∇u(x)2dx, thanks to ”lim inf” considerations

[4], using weak convergence properties. Hence we get that lim supsize(T)→0 ‖∇Tu − ∇TPTψ‖L2(Ω)d ≤

C‖∇ψ − ∇u‖L2(Ω)d . Using item 3, one has lim supsize(T)→0 ‖∇TuT − ∇u‖L2(Ω)d ≤ (C + 1)‖∇ψ −

∇u‖L2(Ω)d . Letting ψ tend to u in H1
0 (Ω), we conclude.

4. Numerical results
We plot in the figure on the right the error between exact and ap-
proximate solution versus the parameter α for problem (1) with

Ω = (0, 1)× (0, 1), Λ(x) =

(

1.5 .5
.5 1.5

)

, and ū(x) = x(1)(1 −

x(1))x(2)(1 − x(2)), using a uniform square 25 × 25 grid. We ob-
serve that a minimum is attained for a constant value of α(x) close
to 2, that is the largest eigenvalue of Λ(x). However, the above proof
of convergence is only valid for α ≤ 1, that is the smallest eigen-
value of Λ(x). Hence one should aim at proving the convergence for
larger values of α. For this same problem, the order of convergence
of the method with respect to the size of the mesh is close to 2 for
the solution for both rectangles and triangles, and 1.5 (resp. 1) for
its gradient in the case of rectangles (resp. triangles).
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