C. R. Acad. Sci. Paris, t. xxx, S érie I, p. xx—xx, 2007 - PXMA???7?. TEX -

Rubrique/ Numerical Analysis

A new finite volume scheme for anisotropic diffusion
problems on general grids: convergence analysis
R. Eymard, T. Gallouét and R. Herbin

Université de Marne-la-Vallee, France, (Robert.Eymard@univ-mlv.fr)
Université de Provence, 39 rue Joliot-Curie, 13453 Marseille (gall@t, herbin@cmi.univ-mrs.fr)

(Recu le jour mois anree, accept apres révision le jour mois anree)

Abstract. We introduce here a new finite volume scheme which was desélégr the discretization

of anisotropic diffusion problems; the originality of thieheme lies in the fact that we
are able to prove its convergence under very weak assursptiothe discretization mesh.
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Un nouveau scma volumes finis pour les probimes de diffusion anisotrope :
analyse de convergence

Résum é. On introduit ici un nouveau schéma volumes finis, constpoitir la discrétisation de
problemes de diffusion anisotrope sur des maillagessgirx; I'originalité de ce travail

réside dans sa preuve de convergence, qui ne nécessitéegugypotheses faibles sur le
maillage. (© 2007 Académie des scienceditions scientifiqgues et médicales Elsevier SAS

1. Introduction

The scope of this work is the discretization by a finite volumethod of anisotropic diffusion problems
on general meshes. L8tbe a polygonal (or polyhedral) open subseR6f(d = 2 or 3); let M 4(R) be the

set ofd x d symmetric matrices. We consider the following elliptic servation equation:
—div(AVu) = fin Q,

with boundary condition
u = 00nof

with the following hypotheses on the data:

A is a measurable function frofdto M, (R), and there exisk and) such that
0 < A < XandSp(A(z)) C [A, A fora.e.x € Q. The functionf is such thatf € L?(Q).
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In (4), Sp(B) denotes for allB € M4(R) the set of the eigenvalues Bf. We consider the following weak
formulation of problem (2):

{ u € Hy(9),

[ A@)9u(z) - Vo(a)dr = s.l F@)(@)dz, Yo e HL(Q). ()

2. Discrete functional tools

A finite volume discretization of? is a tripletD = (M, &, P), where:

- M is a finite family of non empty connex open disjoint subset§dthe “control volumes”) such
thatQ) = Uxem K. ForanyK € M, letdK = K \ K be the boundary ok andmy > 0 denote
the measure oK.

- £ is a finite family of disjoint subsets d® (the “edges” of the mesh), such that, for allc &, o
is a non empty closed subset of a hyperplan®bfwhich has a measure, > 0 for the (d — 1)-
dimensional measure of. We assume that, for all € M, there exists a subséj of £ such that
0K = Uyeg,o. We then denote byM, = {K € M,o € Ex}. We then assume that, for all
o € &, eitherM, has exactly one element and thext 02 (boundary edge) ot , has exactly two
elements (interior edge). For alle £, we denote by, the barycenter of.

- P is a family of points of2 indexed byM, denoted byP = (xx ) kem, Such thattx € K andK is
star-shaped with respect 1o .
The following notations are used. The size of the discrétinds defined byhp = sup{diam K), K €
M}. ForallK € M ando € £k, we denote for a.exr € o by ng , the unit vector normal te outward to
K. We denote bylk , the Euclidean distance betweeg ando. The set of interior (resp. boundary) edges

is denoted by, (resp.Eext), thatis€i,, = {o € £;0 ¢ 9N} (resp.Eext = {0 € £; 0 C 0N}). The regu-
larity of the mesh is measured through the parantgier min { %, 0 € &g, Mo ={K, L}} .

A family F of discretizations is regular if there exigts> 0 such that for anyp € F, 6p > 6.

Let Xp = RM x R¢ be the set of al := ((ux)kem, (us)oce), and letXp o C Xp be defined as
the set of allu € Xp such that, = 0 for all ¢ € . The spaceXp o is equipped with a Euclidean
structure, defined by the following inner product:

V(uw) S (XD,O)27 [an]p = Z Z dr

KeMoe€lk ’

Mg

(vo — v )(Wo — WK ). 5)

and the associated nornfjulj1,p = ([’U/,U]D)l/z. Let Hp(Q) C L2(9) be the set of piecewise con-
stant functions on the control volumes on the madhwhich is equipped with the following inner norm:
llull1,m = inf{]jv]]1,p, v € Xp o, Pmv = u}, where for allu € Xp, we denote byPru € Ha(2) the
element defined by the valuésx ) k< (We then easily see that this definition|pf||; ,¢ coincides with
that given in [1] in the case where we 8kt = dk, + dr » forall o € &y, With M, = {K, L}). For all

v € C(Q,R), we denote byPp () the element ofXp defined by((¢(zx)) kem, (©(2s))oece)-

3. The finite volume scheme and its convergence analysis

The finite volume method is based on the discretization ob#ilance equation associated to equation
(2) on cellK. It requires the definition of consistent numerical f|UK§§,U)KeM,oesK0” the edges of the
cells, meant to approximate the diffusion fluxeA Vu - ng, whereng is the unit outward normal to K.

Let F be a family of finite volume discretizations; f& = (M,E,P) € F, K € M ando € &, we
denote byF? _ a linear mapping fronXp to R®. The famin((Fl?yg)KegA)Def is said to be a consistent

’ [AS]
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family of fluxes if for any functionp € C?(R%, R),

lim max —
hp—0 KemM 1N,
P gt O

F2_(Po(p)) + / AxVe i ody| =0, 6)

whereA g = ﬁ [ Adz. In order to get some estimates on the approximate soluticmeged a coercivity
property: the family of numerical fluxé$FZ ) xcr)per is said to be coercive if there exists> 0 such
7 oel

that, for anyD = (M, £,P) € F and for anyu € Xp o,
DY (uk —uo)FR ,(uw) > allulf . (7)

KeMoelyk

Finally the family of numerical quxe(s(F,?_’g)KE?)pef is said to be symmetricif forarp = (M, E,P) €
F, the bilinear form defined by ’c
{(u,v)p = Z ZFKU YK — Vo), V(u,v)GX%,O,
KeMoe€

is such that
(u,v)p = (v,u)p, VY(u,v) € X12>.,0-

The finite volume scheme may then be written by approximatiegntegration of (2) in each control
volume, and requiring that the scheme be conservative:

Findu® = ((uR)xem, (u))oee) € X105 (8)
SRR, (uP) = / F(@)dz, VK € M; )
o€l K
FRo(uP) + FLy(uP) = 0, V0 € Ene, Mo = {K, L}. (10)
or, in equivalent form:
Findu? = (uR) ke, (uP)oee) € Xpo st (uP,v)p = | f(x)Pymo(x)dz, Vo € Xp . (11)
Q

THEOREM3.1. —Under assumptions (4), latbe the unique solution to (5). Consider a regular family of
admissible mesheg, along with a family of consistent, coercive and symmemkdt((F,?_g)KE%A)Def.
’ [<AS

Then, for allD € F, there exists a unique® € Xp  solution to (10) or (12), and’y,u” converges ta,
solution of (5) inL4(Q2), forall ¢ € [1,400) if d = 2and allq € [1,2d/(d — 2)) if d > 2, ashp — 0.
Moreover,VpuP € Hp(9)?, defined bym g (VpuP)x = m, (u, — ug)ng, foral K € M,
converges t&/u in L?(2)<.

Sketch of proof Takingv = uP in (12), we get the following priori estimate on.”:

o€l

< | fllzz@ llup|lL2(o)-

The discrete Sobolev inequality [1] holds thanks to the atdefinition ofép, that is, there exist§’ > 0
depending only om, 2 andé such that:|| Pyqu® || pa(q) < C||Ppmu®|1,m. Therefore, thanks to the fact
that || PaquP |10 < |[uP||1,p, we obtain that:|| PauP|j1 v < [uPll10 < €| fll22(e), Which yields
the existence and uniquenessdi. Then, prolonging by the functionP,u” outside ofQ2, we get the
estimate

1PAuP (- +€) = Praw® | ey < [€](d m(2))?[[w®||1,p, V€ € R



R. Eymard, T. Gallou ét, R. Herbin

We can therefore apply the Fréchet—Kolmogorov theorenighwis a compactness criterion i (R?).
Again using the discrete Sobolev inequality, we get thatiaup subsequenc&u” converges, for all

q € [1,+00)if d =2andallg € [1,2d/(d — 2)) if d > 2, in LY(R?) to some functiori, with @(x) = 0

for a.e. z € R4\ Q. Furthermore, in the spirit of lemma 2 of [4], we can show tRatu” converges

to Vi weakly in L2(R%)<. Thereforei € H}(2). To complete the proof of the theorem, we pass to the
limit hp — 0 on the weak form of the scheme: fore C°(Q2), we takev = Pp(yp) in (12). Using
the symmetry and the consistency (7) of the flul%g(w), we obtain that verifies (5) withv = .
Therefore, by uniqueness,= « and the whole sequence converges. The strong convergeRtgdf to

Vu is obtained, using (8), the convergenceof, u”)p to [, Vu - AVudz and following the principles

of the proof of lemma 2.6 in [5].

4. An example of consistent, coercive and symmetric familyfdluxes

Let us first note that the case of the classical four pointgfiniiume schemes on triangles (also based on
a consistent coercive and symmetric family of fluxes, segi$dhcluded in the framework presented here.
However, for general meshes or anistropic diffusion omesathe construction of an approximation to the
normal flux is more strenuous [2, 3, 7]; it is often performedtte reconstruction of a discrete gradient,
either in the edges of the cell, or in the cell itself. We pregpthe following numerical fluxes, defined for
u € Xp by

Ric.o Ri.or .
Fr o(u) = —mg (VDUK “Agng .+ ag (L(U) - Z ma'K’i(u)(%' —TK)- s ))

d d ’ m
K,o prr K,o K

whereA i is the mean value of the matrix(z) for z € K, Vpuy is defined in Theorem 3. Rk ,(u) =

Uy —ug — Vpug.(r, — k), and(ak ) ke pm IS any family of strictly positive real numbers, bounded by
above and below. We thus get a consistent, coercive and siiarfaamily of fluxes, in the above stated
sense. In fact, in the same spirit as in the scheme derivef] ifof meshes satisfying an orthogonality
condition, the above expression Bk . (u) is deduced from the variational form of the scheme, which is
based on the following inner product:

Mg
<U,U>D = Z mVpur - AkVpug + ax Z d RK,U(U)RK,U(U) , Yu,v € XD70.
KeM occex Ko
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