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Abstract. The topic of this work is to obtain discrete Sobolev inequalities for piecewise constant func-
tions, and to deduce LP error estimates on the approximate solutions of convection diffusion equations
by finite volume schemes.

1 Introduction

The aim of this work is to study the discretization by the finite volume method of convection diffusion
problems on general structured or non structured grids; these grids may consist of polygonal control
volumes satisfying adequate geometrical conditions (which are stated in the sequel) and not necessarily
ordered in a cartesian grid. We shall be concerned here with the so-called “cell-centered” finite volume
method. We refer to [1], [17], [24] and references therein for studies on the “vertex-centered” finite
volume method, and to [3], [4], [14] and [11] for the related finite volume element and control volume
finite element methods.

The analysis of cell centered finite volume schemes has only recently been undertaken. Error estimates
were first obtained in the rectangular case [23], [15], [22]. Triangular meshes and Voronoi meshes; which
we shall also refer to as “admissible” meshes, were also investigated [27], [18], [12], [21]; convergence results
were obtained for Dirichlet boundary conditions and constant diffusion coefficients and were generalized
to Neumann and Fourier boundary conditions [16] and to nonhomogeneous diffusion matrices [19]. The
scheme was also extended to more general “non-admissible” meshes [8], [9], [13], and an error estimate
was proven in the case of a quadrangular mesh [9], and in the case of some refined meshes of rectangles
[2], [7]. The estimates are obtained in these papers under C? or H? regularity assumptions on the exact
solution. L? error estimates between the exact and the approximated solutions are proved to be of order
one with respect to the size of the mesh, (and of order 2 in the case of rectangular meshes).

We shall prove here a LP error estimate of order h, with p € [1,4+00) in the two dimensional case and
p € [1,6] in the three dimensional case, and derive some lower order L™ estimates as a consequence.

In section 2 below we present the continuous problem. Section 3 is devoted to the finite volume scheme
on admissible meshes. The generalization of the scheme to non admissible meshes is presented in Section
4, and finally, the L? error estimates are proven in Section 5.
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2 The continuous problem
Let us consider the following elliptic equation:
—Au(z) + div(vu)(z) + bu(z) = f(z), =€ Q, (1)
with Dirichlet boundary condition:
u(z) = g(z), =€ 9Q, (2)

where

Assumption 1 (d =2 or3).
(i) Q is an open bounded polygonal subset of R,
(i) b€ IR,
(i) f:Q — R is such that f € L*(Q),
(iv) v € CY(Q,R"),divv =0, and IV € R, |v(2)| < V for all x € R", where |.| denotes the Euclidean

norm in IR,

(v) g € H'2(0Q,R); let § € HY(Q) verifying 7(3) = g a.e. on 0Q.

Remark 1  The Laplace operator is considered here for the sake of simplicity, but more general el-
liptic operators are possible to handle, for instance operators of the form —div(a(u)Vu) with adequate
assumptions on a.

Here, and in the sequel, ¥ denotes the trace operator from H!(Q) into L?(0Q). Note also that “a.e. on
9" means a.e. for the (d — 1))-dimensional Lebesgue measure on 9.

Let us introduce the weak formulation of problem (1)-(2). A weak solution of (1)-(2) under assumptions
1 is a function u = @+ § € H'(Q) satisfying

u =@+ g where @ € H}(Q) and
/ﬂ (Vu(2) Ve (x) — v(2)u(@)Ve(z) + u(e)p(z))de = /ﬂ f(@)ple)de, Yo € HE(Q). 8)

By Lax-Milgram’s lemma there exists a unique function u € H*(2) which satisfies (3). Furthermore, it
is known that if Q and v are regular enough (for instance if Q is polygonal and convex), the solution is
in W2P(Q), for f € LP(Q) and g € W1P(Q) (for some p, see [6] for some precisions).

In the next section, we describe a finite volume scheme for (1)-(2), which was proved to be convergent
([12]) on families of “admissible meshes” (see Definition 1). We also define the discrete spaces and norms
which are used to prove the estimates on the schemes. For more general meshes (see Definition 1), we
give an extension of the previous scheme which is successfully used in practice ([5, 20]) and has been
proved to converge on quadrangular meshes ([8]), and on admissible meshes (in which case it is identical
to the scheme of Section 2). The last part is concerned with the proof of some discrete inequalities of
Sobolev for functions defined on general meshes which yield the final L? error estimates for the schemes.

3 The Finite Volume Schemes

The finite volume scheme is found by integrating equation (1) on a given control volume of a discretization
mesh and finding an approximation of the fluxes on the control volume boundary in terms of the discrete
unknowns.

Let us first give the assumptions which are needed on the mesh.
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3.1 Finite volume meshes

We first give the assumptions and notations on the meshes which are used for the discretization of
convection diffusion equations by the finite volume scheme.

Definition 1 (General and admissible meshes) Let Q be an open bounded polygonal subset of R?
(d =2, or3). A general finite volume mesh of Q is denoted by T and is given by a family of “control
volumes” which are open polygonal convex subsets of Q0 (with positive measure); a family of subsets of Q
contained in hyperplanes OfIHd, denoted by &€ (these are the edges (in the two-dimensional case) or sides
(in the three-dimensional case) of the control volumes), with strictly positive (d — 1 )-dimensional measure
and a family of points of @ denoted by P satisfying the following properties (in fact, we shall denote,
somewhat incorrectly, by T the family of control volumes).

(i) The closure of the union of all the control volumes is Q.

(ii) For any K € T, there exists a subset £k of & such that 0K = K \ K = Uy¢¢, 7, and we suppose
that £ = UgeréK -

(i11) For any (K, L) € T? with K # L, either the (d — 1)-dimensional Lebesgue measure of K N L is 0,
or KN L =7 for some o € £, which will then be denoted by K|L.

An admussible finite volume mesh of Q is a general finite volume mesh of Q which satisfies the following
additional condition:

(iv) The family P = (xx)keT is such that xg € K (for all K € T ) and, ifoc = K|L € &k, it is assumed
that xx # x1, and that the straight line Dk 1, going through xx and zy, is orthogonal to K|L.

In the sequel, the following notations are used.
o The mesh size is defined by: size(T) = sup{diam(K), K € T}.

e Forany K € T and o € £, m(K) is the d-dimensional Lebesgue measure of K (i.e. area if d = 2,
volume if d = 3), and m(o) the (d — 1)-dimensional measure of o.

o The set of interior (resp. boundary) edges is denoted by Eny (resp. Eext), that is Eny = {0 € &;
o ¢ 00} (resp. Eexs = {0 € E; 0 C INY).

o The set of the neighbours of K is denoted by N'(K), that is N(K) ={L € T; 30 € £k, 7= KNL}.

o Forany K €T, and for 0 € £k, dk o is the euclidean distance from zx to o.

o Ifc = K|L € &y, we note d, = dgr = di,o +dp,o. On admissible meshes, it is the Euclidean
distance between xg and xp (which is positive).

o Ifo € &k N&exi, we note dg = dp .

e For any o € &; the “transmissibility” through o is defined by 7, = m(o)/d,.

o S (resp. Sext) denotes the family of the vertices of the control volumes (resp. the vertices which
are on the boundary).

o Forany o € £, S, denotes the set of the vertices of the interface o.

o for K € T and o € &k, nk, denotes the unit normal to o, outward to K. Then, Bg o, =
(t%o)izl..d—l is a basis of the hyperplane o, such that (nK,o;té(,g) is a direct basis in IR®.

Remark 2 On admissible meshes, the condition v # x5, if o = K|L, is in fact quite easy to satisfy:
two neighbouring control volumes K, L which do not satisfy it just have to be collapsed into a new control
volume M with xpr = xg = xp, and the edge K|L removed from the set of edges. The new mesh thus
obtained is admissible.

Remark 3  The difference between general meshes and admuissible meshes is that it is not necessary to
be able to construct the family of cell centers (P) such that the edges (or sides) K|L are perpendicular to
the directions dg|r.
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Whenever possible, the cell centers should be chosen such that the mesh is admissible; the schemes de-
scribed below are then identical. This is the case in particular for triangular meshes or Voronoi meshes.
Otherwise, they are usually chosen to be the centers of gravity of the control volumes.

3.2 Discrete Spaces and Norms

Let us now introduce the space of piecewise constant functions which are associated to a finite volume
mesh and some “discrete H}” norm for this space. This discrete norm will be used to obtain some

estimates on the approximate solution given by a finite volume scheme.

Definition 2 Let Q be an open bounded polygonal subset of R, d = 2 or 3, and T a general mesh.
Define X(T) as the set of functions from Q to IR which are constant over each control volume of the
mesh.

Definition 3 (Discrete norms) Let Q be an open bounded polygonal subset of RY d=2o0r3, and T
a general finite volume mesh in the sense of Definition 1.
For u € X(T) such that u(z) = ug for a.e. x € K, define the discrete H} norm by

lulls 7 = (37 (Dow)?) (4)
c€ef

Dou=|ug —up|, ifo € &n,oc=K|L,

DGUI|‘LLK|, ifUEgextmgK

and the sets £, Eint, Eext and Ex are given in definition 1.

where, for any o € £, 7, = m(0)/d, and

3.3 A finite volume scheme on admissible meshes

Let 7 be an admissible mesh. Let us now define a finite volume scheme to discretize (1)-(2). In order to
describe the scheme in the most general way, one introduces some auxiliary unknowns, namely the fluxes
Fk o, forall K € T and o € £k, and some (expected) approximations of u on an edge o, denoted by u,,
for all o € €.

For K € T and o € £k, ni , denote the unit vector normal to o, outward to K, fx denote the mean
value of f on K, and vk , denote the integral of v.ng , on an edge o of K:

1
fxk = W/Kf(r) dz and VKo = /CIV(I).IIKJ dvy(z) (5)

(Note that dv is the integration symbol for the (d — 1)-dimensional Lebesgue measure on the considered
hyperplane).

We may now write the finite volume scheme for the discretization of problem (1)-(2) under assumptions
1 as the following set of equations:

Z (FK,o + VKo u07+)+m([() ug = m(K) fk, (6)
oc€efK
where for the convection term, we use an upstream scheme, i.e.

ug ifvge >0,
fo=K

Le gint N SK; Ug 4+ =
uyr  otherwise,

ug ifvge >0,
if o € Eext NEK, Ug 4 =
Uy otherwise.
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The flux F o is defined by:

ifo=K|L € &nt Nk, FKJ:—m([{L)w’

dg|L
- (8)

if 0 € Eext NEx, Fro, = —m(o) —Z—2K

dK,o
where for any o € Eext,
1

Uy = DN .
o = o [ s o)

Remark 4  Note that (6)-(9) leads, after an easy elimination of the auziliary unknowns, to a linear
system of N equations with N unknowns, namely the (ug)ger, with N = card(T). This linear system
can be written, using some ordering of the unknowns and equations, as

AU = F + D(g), (10)
where:
U € RY is the vector of discrete unknowns (that is the (ug)xeT ), N being the number of cells of
the mesh T .
A s a linear application from RY to IHN, and AU corresponds to the discretization of —Au(z) +
divvu + bu.

F e RY corresponds to the discretization of f.

D(g) is a vector of IRY which contains all the terms depending on g (note that D is an application
from LY(0Q) into RY.

3.4 A finite volume scheme on general meshes

In the case of a general mesh, the line zx z, is no longer orthogonal to the edge o = K|L; the approx-
imation of the flux by the expression given in (8) is therefore no longer consistent. In order to obtain a
consistent approximation of the flux, this expression is modified with a term which involves the tangential
derivatives.

Of course, the number of points involved in the discretization on a general mesh is greater than on an
admissible mesh (9 points instead of 5 in the quadrangular case).

Let us define a discretization of (1)-(2) on a general mesh 7, which is still of the form:

> (Fico + vko oy ) +ml(K) uk = m(K) i, (11)
o€l

where uq 4 is defined by (7).
The flux Fk o, is given by a Green-Gauss type approximation ([8, 9]). It consists of discretizing the
following Green equality, true for smooth functions:

v v ),
_— Vude = —— UNggrdy,
m(Vs) Jy, m(Vs) Jay, 4

where V, is the dual cell associated to o:

if o = K|L € £n¢, then V, is the diamond shaped cell of vertices 2k, 1, and the vertices of S,.
if o € &y, then V, is given by K, y, and the vertices of S, (it is a pyramid shaped cell).

The right hand side should provide a good approximation, denoted by p,, of the gradient along o. It
is discretized by a first order Gauss quadrature, where the vertex values (at the vertices M of S,) are
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interpolated from the center values (the unknowns). This approximation yields, after some calculations,
the following expression for I o:

ifo=K|LE&nNnEk, Fro=-m(KL) [ 54 5 Agp(M)un |,

dKlL MEeSk|L
(12)
ifUEgextmgKa FK,U I—Hl(O') (w+ Z ACT(‘]\4)UJW);
dK o
' MeS,
where for any o € Eeyt,
uo = 9(Yo), (13)
where y, denotes the center-point of edge and the values at the vertices are given by
if M €S\ Sear, um= Y yu(K)ux,
KeNnm (14)

ifMESe:ct; uM:g(IM)’

where Ny is the set of the control volumes neighbouring M: Ny = {K € 7, such that M € F}

For a node M € 8, the weights (yam (K))ken,, must be some barycentric coordinates of M with respect
to the centers (2x)kxen,,, in order for the scheme to be consistent (see [8]). We may for instance calculate
them as follows:

yM(A’):i (1+ZM) , (15)

i
where np = cardANy is the number of control volumes to which M belongs , (mi)izlnd are the co-
ordinates of a point X, G is the isobarycenter of Ny (ie nyrzl = E xh), and for i,j € {1..d},
KeNy
o= Y (e = sk — oh).
KeNy

Let us now give a more precise expression of the numerical flux in the two- and three-dimensional cases.

3.4.1 The two-dimensional case.

Let Nk, Sk,o denote the two endpoints of o, such that (l’NK,U — $SK,U)~tK,o > 0. After calculation of
the coefficients A, (M), we find

wr — UN, . — US,
if o = K|L, Fk o= -m(K|L) <u - aK|LM)
if 0 € € NEk, Fio=—m(o) M_QOM ’
’ dK o m(o)

(2L — 2K)-tk,o (Yo — 2K )tk o )

(21 — zKx) DK, (Yo — zr) DK o
ng . to the direction zg, 1 (resp. Tk, yo]).

where ag |, = (resp. ay = is the tangent of the angle from the normal

3.4.2 The three-dimensional case.

For K € T and o € &g, let yg o be the perpendicular projection of xx on 0. If o € &4, we denote by
Yo the centerpoint of o.
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If M €8,,let M) i =1 N be the vertices of o; then mK(M(i)) is the algebraic sum of the oriented

area of the two triangles M(i)yKyoMa(i_l) and M(i'*'l)yKyoM(i), with respect two the normal ng ,. Then
we have, for any o € &, such that M € &,

my (M) — mg (M)

ifO’ =K - 3

Le&nN&k, )\K|L(M) =

(17)
my, (M) — mg (M)

if 0 € Eupe N Ex, Ao (M) = d,m(o)

Remark 5 Again, the scheme may be written in the form (10).
Foro = K|L € Ex N&int, if txar is perpendicular to o, then yk o = yr.o and the flux along o is identical
to the flur defined in part 2.

4 Discrete Sobolev Inequalities and L” Error Estimates.

4.1 Convergence of the finite volume scheme on admissible meshes.

The existence and uniqueness of the solution (ux)ger to the scheme (6)-(9) is an easy consequence of
the following maximum principle (see [18],[12] or [10] for the proof).

Proposition 1 (Maximum Principle) Under assumptions 1, let T be an admissible mesh in the sense
of definition 1; and (fx)rxer, (VK,0)ocex, KeT and (Uo)oce.,, be defined by (5) and (9).

If fk >0 for all K € T, and uy > 0, for all ¢ € Eext, then the solution (ug)rxer to (6), (7), (8), (9)
satisfies ug > 0, for all K € T.

Let us define the approximate solution u7 : Q € IR — IR by:
VK €T, ur(z) =ugx ,ifze K. (18)
We now recall here the L? error estimate which was proven in [12].

Theorem 1 (H? regularity) Under assumptions I, let T be an admissible mesh in the sense of defini-
tion 1, and ¢ > 0 be such that,

VK € T Vo € &k, digo > (dy, and dg , > (diam(K). (19)

Let ur be the function defined by (18), (uk)gcy being the solution of (6)-(9), for (fx)xer and
(Vi,0)ocex, KeT defined by (5). Assume, furthermore, that the unique variational solution, u, to (1)-(2)
belongs to H?(Q).

Finally, let e be defined for all K € T by er(z) = ex = u(eg) —uk if v € K.

Then, there exists C, only depending on u, g, v, b, Q and (, such that,

ler |l 7 < Csize(T), (20)
where || - ||1,7 is the discrete H} norm given by definition 3, and,

I|€T||L2(Q) < Csize(T). (21)
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4.2 Convergence of the scheme on general meshes.

In the general case, assuming the scheme to verify a condition of coercitivity, under the regularity as-
sumptions (19) and a lower bound of m(¢) in each K, the error between the approximated solution and
the mean value of the exact solution on K verifies estimates (20) and (21) (see [9, 8]).

The condition of coercitivity may be interpreted as a local condition on the regularity of the mesh, and
on the weights (yar(K)).

Indeed, the scheme has been proved to converge on meshes of quadrangles [8]) in the following sense:

Theorem 2 (Convergence on Quadrangular Meshes) Under assumptions 1, let T be a mesh of
quadrangles (in ]Rz). For any o € &, let C, denote the union of the six neighbouring cells to o, and let
Jo be a C? mapping from Co onto [0, 3size(T)] x [0, 2size(T)]. Let & > 0 be such that

Vo e &, sup |VJ,| < ¢, and sup |[V2],| < €. (22)
Co Co

Moreover, suppose that the points (x), are the centers of gravity of the control volumes of the mesh T.
Assume also that the unique variational solution, u, to (1)-(2), belongs to W2P(Q), for p > 2.

Then there exist a unique solution (uK)KeT to (11)-(15), and (16), for (fx)keT and (Vi o)ocex, KeT
defined by (5).

Moreover, let ur be the function defined by (18), and e be defined by e (x) = ex =ux —ug (ifz € K,

K €T), ug being the mean value of u on K (i.e. m(K)ug = u(z)dz).

K
Then, there exists C' depending on u, g, v, b, Q and (, such that,

ller|l1,7 < Csize(T), and |ler||p2(q) < Csize(T). (23)

Remark 6  The same error estimates holds on meshes of rectangles, with some local refinement (see

[7]).

4.3 L? Error Estimates.

Let us now show an LP estimate of the error, for 2 < p < +o00 if d = 2, and for 1 < p <6 if d = 3. The
error estimate for the LP norm is a consequence of the following lemma:

Lemma 1 (Discrete Sobolev Inequality) Let Q be an open bounded polygonal subset of R? and T
be a general finite volume mesh of Q in the sense of definition 1, and let { > 0 be such that

VK € T,Vo € &k, dig o > (dy, and dg , > (diam(K). (24)

Let uw € X(T) (see Definition 2), then, there exists C' > 0 only depending on Q and ¢, such that for all
qE[l+o0),ifd=2, and q € [16], if d = 3,

llullLa) < Callull,7, (25)
where || - ||1,7 15 the discrete H} norm defined in definition 3 page 4.

PrRooF of Lemma 1

Let us first prove the two-dimensional case. Assume d = 2 and let ¢ € [2,+00). Let d; = (1,0)" and
ds = (0,1)%; for € Q, let DL and D2 be the straight lines going through 2 and defined by the vectors
d1 and d2.

Let v € X(7). For all control volume K, one denotes by vg the value of v on K. For all control volume
K and a.e. x € K, one has
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v < ZD v ZD VY (26)

cef g€l

where X(gl) and X(g2) are defined by

; 1 ifonDi £0 .
@) (p) — T _
Xo (1:)_{ 0 ifenDL=190 fori=1,2.

Recall that D,v = |vg — vr|, if ¢ € &nt, 0 = K|L and Dyv = |vg|, if 0 € Eexs N Ex . Integrating (26)
over K and summing over K € T yields

| dx</(ZDv DI ))de.

Note that X(al) (resp. X(a2) ) only depends on the second component 5 (resp. the first component ;) of

z and that both functions are non zero on a region the width of which is less than m(o); hence

/ x)da < (Zm ) . (27)

c€ef
Applying the inequality (27) to v = |u|*sign(u), where v € X(7) and a > 1 yields

/| |2°‘d$<(zm Dv).

oc€ef

Now, since |vg —vr| < a(Jug|®™t + |ur|*~Ylukx —ug|, if 0 € Eint, 0 = K|L and |vk| < a|ug|*~Y)|uk],
ifO'EgextﬂgK,

/|u |20‘dx <az Z o)|ug|* *Dyu.

KeToelk
Using Holder’s inequality with p,p’ € IRy such that 1% + —, =1 yields that
2(1 o— 1 l |D U| L/
|u )] d;b <a ZZWKV’ dKa" ZZ dKa) )
KeToelk KeToelk 0

Since Z m(o)dg o = 2m(K), this gives

o€l
(/ |u(r)|2°‘dm)5 §a2§(/ |u(;13)|p(°‘—1)d3, % E Z |D u| dKa) ,
Q Q

-

KeToeex 0
which yields, choosing p such that p(a — 1) = 2a, ie. p= a—f‘l and p' = ocz—fp
Ery Dyulf’ %
ooy = ([ Jo)Podr) ™ < a2t (3 Y P Mm(o)an )7 (28)
& KeToefk
where ¢ = 2a.. Let r = ]% and r' = 2%]3,, using Holder’s inequality yields
D, Up Dsu 2’ L]
> Y Do < (X Y o)) (X ¥ mio)do)
KeToeEx VKo KeToecx “Ko KeToelk

replacing in (28) gives

)3 (2m ()7 |[ulls 7

R

llullLagn) < a27(
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and then (25) with, for instance, C' = (%)%((Qm(ﬂ))% +1).

Let us now prove the three-dimensional case. Let d = 3. Using the same notations as in the two-
dimensional case, let d; = (1,0,0)%, d2 = (0,1,0) and d3 = (0,0, 1) ; for z € Q, let DL, D2 and D3
be the straight lines going through z and defined by the vectors d;, ds and d3. Let us again define the

functions X(ol), X(g'?) and X(UB) by

() () — 1 lfO'ﬁD;¢0 .
Xo (r)_{o ifoNDi = fori=1,2,3.

Let v € X(7) and let A € R4 such that Q C [—A, A]3; we also denote by v the function defined on
[-A, A]® which equals v on Q and 0 on [—A, A]®\ Q. By the Cauchy-Schwarz inequality, one has:

A A , A A 1, A A 1
/ / |v(z1, 22, 23)|2dx1des < (/ / |'U(;731,;t2,;133)|dm1d;132) (/ / |‘U(;l‘1,;l‘2,;t3)|2d;t1d;l‘2) .
—AJ—A —-AJ—-A —-AJ-A
(29)

Now remark that

A A A A
/ / |v(z1, 22, 23)|dr1des < ZDO’U/ / Xg?’)(;r)dmldxz < Zm(o’)Dov.
—AJ—-A —-AJ—-A

ed=1 cef

Moreover, computations which were already performed in the two-dimensional case give that

A A A A 9
/ / |v(z1, 22, ;1:3)|2d;1:1d;7:2 < / / EDO'UXgl)(r)ZDovxgz)(m)dxldxg < (Zm(am)i)ov) ,
—aJ_a -aJ-alz

2= gef
where 0, denotes the intersection of o with the plane which contains the point (0,0, z3) and is orthogonal
to ds. Therefore, integrating (29) in the third direction yields:

3

/ﬂ|v(13)|%dr < (Zm(a)Dov) ’ (30)

oc€ef

Now let v = |ul*sign(u), since |vg —vp|* < 4(Juk|® + Jur|®)|uk — ur|, Inequality (30) yields:

[ ueras <4 ¥ 3 jusf Do

KeToelk

By Cauchy-Schwarz’ inequlity and since Z m(o)dk - = 3m(K), this yields
ocefi

lulles < V3 3 (Do 2

b)
KeToe€xk g

and since di » > (d,, this yields (25) with, for instance, C' = 43

NG

Remark 7 (Discrete Poincaré Inequality) In the above proof, Inequality (27) leads to a proof of
some discrete Poincaré inequality. Indeed, let Q be an open bounded polygonal subset of IR*. Let T be a
general finite volume mesh of Q in the sense of Definition 1 page 3. Let v € X(T). Then, using (27),

the Cauchy Schwarz inequality and the fact that Zm(a)da = dm(Q) yields
c€ef

[0llZ2(0) < dm(Q)]v]l% 7
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Corollary 1 (Error estimate) Under the same assumptions and with the same notations as in Theo-
rem 1 or Theorem 2, there exists C' > 0 only depending on u, { and Q such that

[1, +00) ifd = 2,

e a(q) < Cqsize(T); for any q € 31
llerllLeay < Cysize(T); for any q 06] ifd=3. (31)
. . . m(K)
Furthermore, there exists C' € R4 only depending on u, ¢, (7 = mm{w,[& € T}, and Q, such
size
that
lleT || Loy < Csize(T)(|In(size(T))| + 1), if d=2. (32)
ler|lLm(ay < Csize(T)3,  ifd=3. (33)
Proor

Estimate (20) of Theorem 1 and (23) of Theorem 2 and Inequality (25) of Lemma 1 immediately yield
Estimate (31). Let us now prove (32) and (33).

Remark that

1

Crsize(T)?
In the two-dimensional case, a study of the real function defined, for ¢ > 2, by ¢ — Ing + (1 — g) Inh
(with h = size(T)) shows that its minimum is attained for ¢ = —21Inh, if Inh < —%. And therefore (31)
and (34) yield (32).

The three-dimensional case (33) is an immediate consequence of (34), (31) with ¢ = 6, and (20) or (23).
with ¢ = 6. ]

ezl o) = max{lex|, & € T} <( ) “llelze. (34)

Remark 8 Similar error estimates hold in the case of locally refined rectangular meshes (see [2] for the

scheme (7)-(8), and [9] for the scheme (12)-(17)).
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