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Abstract

Nonlinear thresholding of wavelet coefficients is an efficient method for denoising signals with isolated si
ities. The quasi-optimal value of the threshold depends on the sample size and on the variance of the noi
is in many situations unknown. We present a recursive algorithm to estimate the variance of the noise, p
convergence and investigate its mathematical properties. We show that the limit threshold depends on th
bility density function (PDF) of the noisy signal and that it is equal to the theoretical threshold provided th
wavelet representation of the signal is sufficiently sparse. Numerical tests confirm these results and show
petitiveness of the algorithm compared to the median absolute deviation method (MAD) in terms of compu
cost for strongly noised signals.
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1. Introduction

Estimating signals or images from noisy data is a typical problem in data processing with many
cations. Many parametric and nonparametric approaches, such as linear kernel estimators, Kalm
have been proposed, see, e.g., [5]. Nonlinear thresholding of the empirical wavelet coefficients w
inally proposed by Donoho and Johnstone [2] to denoise signals corrupted with Gaussian whit
It consists in deleting the wavelet coefficients of the noisy signal whose modulus is below a thr
and reconstructing the denoised signal from the remaining coefficients. The threshold depends
the sample size and on the noise’s variance. The method was later generalized to correlated n
to non-Gaussian situations [6,7]. Wavelet thresholding estimators minimize the maximumL2-risk in a
whole class of finite energy signals including Hölder and Besov spaces without any a priori know
of the signal, but the unknown variance of the noise has to be estimated. The median absolute d
(MAD) is a standard method that estimates the level of the noise by taking the median of the mod
the smallest scale wavelet coefficients [5]. In the present paper we introduce a new recursive algo
estimate the variance of the noise, study its properties regarding convergence, stability and perfo
and validate the results with a numerical example.

2. Denoising by nonlinear wavelet thresholding

We consider a discrete signalS of sizeN = 2J with vanishing mean, corrupted by a Gaussian w
noise of mean zero and varianceσ 2

W resulting inXk = Sk + Wk for k = 0, . . . ,N − 1, whereXk andWk

areN samples of the noisy data and the noise, respectively.
We decompose the noisy dataX into an orthogonal wavelet seriesX = ∑

λ∈ΛJ X̃λψλ where the multi-
indexλ = (j, i) denotes the scalej and the positioni of the wavelets. The corresponding index setΛJ

is

ΛJ = {
λ = (j, i), j = 0, . . . , J − 1, i = 0, . . . ,2j − 1

}
.

By thresholding the wavelet coefficients̃Xλ and reconstructing the corresponding signal we defin
nonlinear operator

FT :X �→ FT (X) =
∑

λ

ρT (X̃λ)ψλ (1)

with the thresholding function

ρT (a) =
{

a if |a| > T ,
0 if |a| � T ,

whereT denotes the threshold. We denote byΛT the index subset of wavelet coefficientsX̃ that are
selected by the thresholding functionρT , such thatΛT = {λ ∈ ΛJ , |X̃λ| > T } ⊂ ΛJ . Donoho and John
stone [2] showed that the relative quadratic error between the signalS and its estimatorFT (X), defined
by

E(T ) = ‖S − FT (X)‖2

2
, (2)
‖S‖
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has its lower bound, minT E(T ), close to the minimax error for all signalsS ∈ H whereH belongs to a
wide class of function spaces, including Hölder and Besov spaces. They also showed that the erroE(TD)

corresponding to the threshold

TD = σW(2 lnN)1/2 (3)

is close to the minimum ofE(T ). SinceTD depends only on the variance of the noise, it is called unive
threshold in contrast to the valueTmin that minimizes the errorE(T ). However, in many applicationsσW

is unknown and has to be estimated from the available noisy dataX.
To address the estimation of the noise, we adopt a dual point of view: Instead of consider

denoised partFT (X) of the noisy signalX, we focus on the residual which was not taken into accou
FT (X); namely,

Fc
T (X) = (Id − FT )(X) = X − FT (X) =

∑
λ∈ΛJ

ρc
T (X̃λ)ψλ =

∑
λ∈Λc

T

X̃λψλ, (4)

where Id denotes the identity. The complementary operatorFc
T uses the complementary thresholdi

functionρc
T = Id − ρT and defines the complementary index setΛc

T = ΛJ \ΛT . The residualFc
TD

(X) is
a quasi-optimal estimator of the Gaussian white noiseW , whose relative error is

E ′(T ) = ‖X − FT (X) − W‖2

‖W‖2
= ‖S + W − FT (X) − W‖2

‖W‖2
= ‖S‖2

‖W‖2
E(T ). (5)

3. Recursive algorithm

In [4], we proposed a recursive algorithm for denoising based on the conjecture that, given a
old Tn, the variance of the noise estimated byFc

Tn
(X) yields a thresholdTn+1 closer toTD thanTn. In the

following, we present the algorithm and check the validity of this conjecture.

Algorithm 1.

Initialization

• GivenXk, k = 0, . . . ,N − 1. Setn = 0 and compute the fast wavelet transform ofX to obtainX̃λ.
• Compute the varianceσ 2

0 of X as a rough estimate of the variance ofW and compute the correspon
ing thresholdσ 2

0 = 1
N

∑
λ∈ΛJ |X̃λ|2, T0 = (2 lnNσ 2

0 )1/2.
• Set the number of coefficients considered as noiseNW = Card(ΛJ ) = N.

Main loop

Repeat

• SetN ′
W = NW and count the wavelet coefficients smaller thanTn: NW = Card(Λc

Tn
).

• Compute the new varianceσ 2
n+1 = 1

N

∑
λ∈ΛJ |ρc

Tn
(X̃λ)|2 and the new thresholdTn+1 =

(2(lnN)σ 2 )1/2.
n+1
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• Setn = n + 1

until (N ′
W = NW).

Final step

• ComputeFTn
(X) from the coefficients{X̃λ}λ∈ΛTn

using inverse fast wavelet transform and comp
Fc

Tn
(X) = X − FTn

(X).

This algorithm defines a sequence of estimated thresholds(Tn)n∈N and the corresponding sequen
of estimated variances

(
σ 2

n

)
n∈N

. Their convergence depends on their initial value and on theiteration
function

IX,N :R+ �→ R
+ such that Tn+1 = IX,N(Tn),

which is obtained by merging the definitions ofσ 2
n+1 andTn+1:

IX,N(T ) =
(

2 lnN

N

∑
λ∈ΛJ

∣∣ρc
T (X̃λ)

∣∣2
)1/2

=
(

2 lnN

N

∑
λ∈Λc

T

|X̃λ|2
)1/2

. (6)

3.1. Properties of the iteration function

Taking the square of (6), we rewrite the sum as a continuous integral using delta functions:

(
IX,N(T )

)2 = 2 lnN

N

T∫
t=0

t2
∑
λ∈ΛJ

δ
(|X̃λ| − t

)
dt. (7)

This expression shows that the functionIX,N(T ) is piecewise constant with a number of discontinuit
smaller thanN and is therefore bounded both from below and above. Moreover, the iteration func
monotonically increasing, i.e.,

IX,N(T ) � IX,N(T + �T ) ∀T ,�T ∈ R
+. (8)

3.2. Convergence

In the following we prove the convergence of the recursive algorithm by applying fixed poi
guments to the iteration functionIX,N . Theorem 1 proves that, if there exists an interval such tha
iteration function is above the liney = x at the lower bound and below this line at the upper bou
then the sequence of thresholds converges as soon as it enters this interval. Corollary 1 shows t
particular conditions are always satisfied by the iteration function.

Theorem 1. We consider an interval [Ta, Tb] ⊂ R
+ such that IX,N(Ta) � Ta and IX,N(Tb) � Tb. If there

exists a step n0 such that Tn0 ∈ [Ta, Tb], then Tn = IX,N(Tn−1) converges to a limit T� within [Ta, Tb] such
that T� = IX,N(T�). The number of iterations n� is smaller than N .
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Proof. We suppose thatIX,N(Tn0) < Tn0. Expression (8) implies that(IX,N ◦ IX,N(Tn0)) � IX,N(Tn0) and
hence

Tn0+2 = IX,N(Tn0+1) � Tn0+1 = IX,N(Tn0) < Tn0, (9)

which shows that the sequence{Tn}n�n0 decreases. AsTa < Tn0, expression (8) implies thatIX,N(Ta) �
IX,N(Tn0). As we assumedTa � IX,N(Ta), we findTa � Tn0+1 and thereforeTa � Tn for all n � n0. Hence
{Tn}n�n0 decreases, is bounded from below byTa , and converges to a limitT� = infn�n0(Tn) betweenTa

and Tn0. As the iteration functionIX,N is piecewise constant with a finite number of discontinuit
its image (including the values taken by the sequence{Tn}n>n0) is countable with a cardinality smalle
thanN . As a consequence, there exists an� such thatTn�

= T� = infn�n0(Tn). As {Tn}n>n0 is decreasing
one hasTn�+1 = Tn�

, i.e.,T� = IX,N(T�). Conversely, ifIX,N(Tn0) > Tn0 one can show analogously th
{Tn}n�n0 is increasing, is bounded from above byTb, and therefore converges betweenTn0 andTb. �
Corollary 1. One has supT ∈R+ IX,N(T ) = T0 = (2 lnN)1/2σ0 and IX,N(0) = 0. Therefore, Theorem 1
implies that the sequence {Tn}n∈N converges to a limit T� ∈ [0, T0].

Proof. When taking the thresholdT = 0, the residualFc
T =0(X) = 0. It naturally follows thatIX,N(0) = 0.

On the other hand, the iteration function is bounded from above byT0. This maximum value is reache
with any thresholdT larger thanTmax = supλ∈ΛJ |X̃λ|. Therefore, Theorem 1 is valid for anyTb chosen
such thatTb � max(T0, Tmax), with Ta = 0 and withTn0 = T0. Hence, the sequence{Tn}n∈N converges to
a limit T� ∈ [0, Tb]. As IX,N(Tb) = T0, the limit T� is actually in[0, T0]. �

An additional point is the stability and self-consistency of the recursive algorithm. Corollary 2 s
that if we apply the recursive algorithm to the already denoised signal, this does not change the r

Corollary 2. Let A :X �→ FT�(X)(X) be the operator corresponding to the recursive algorithm described
above. Then

A ◦A(X) = A(X) ∀X ∈ H.

This means that A is a nonlinear projector.

Proof. This property can be shown by considering the graph of the iteration function correspond
A(X) defined as

IA(X),N(T ) =
(

2 lnN

N

∑
λ∈ΛJ

∣∣ρc
T

(
ρT�

(X̃λ)
)∣∣2

)1/2

, (10)

whereT� > 0 is the threshold obtained from the recursive algorithm applied once. As expressio
corresponds to a partial sum of the terms inIX,N(T ), one hasIA(X),N(T ) < IX,N(T ) ∀T ∈ R

+. As Theo-
rem 1 implies thatIX,N(T ) � T for all T � T�, we haveIA(X),N(T ) < T for T � T�. Hence, there is no
fixed point forIA(X),N in the interval[T�,+∞[. Furthermore, the fact thatρc

T ◦ ρT�
= 0 ∀T < T� implies

IA(X),N(T ) = 0 ∀T < T�. This means that the only possible fixed point forIA(X),N is T = 0, which is
the only possible limit for the sequence of thresholds{Tn}n∈N. Finally, the resulting estimation coincide
with the first one. �
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3.3. Convergence for Gaussian white noise

Stating that the successive estimations of the noiseFc
Tn

(X) converge close to the best estimati
Fc

Tmin
(X) suggests that a Gaussian white noise is invariant with respect to the recursive algorith

check this assertion by applying the algorithm to a Gaussian white noiseW . As the orthonormality o
{ψλ}λ∈ΛJ implies that{W̃λ}λ∈ΛJ is also a Gaussian white noise, the analytic expression of the PDF
wavelet coefficients is known. Berman [3] showed that the probability that the maximum of the mo
of N values of a Gaussian white noisẽW is inside the interval[TD − σW ln(lnN)/lnN,TD]; namely,

P(N) = p

(
max

λ

(|W̃λ|
) ∈

[
TD − σW ln(lnN)

lnN
,TD

])
(11)

tends to 1 for largeN .
This result shows that forN large enough, the valueTD is a good estimator of the expected ma

imum modulus of the noise. At the first iteration of the algorithm, we haveTD = (2 lnN)1/2 σW =
(2 lnN)1/2 σ0 = T0, which yields

IW,N(T0) = IW,N(TD) =
(

2 lnN

N

∑
λ∈ΛJ

∣∣ρTD
(W̃λ)

∣∣2
)1/2

�
(

2 lnN

N

∑
λ∈ΛJ

|W̃λ|2
)1/2

= T0 = TD. (12)

This shows that the thresholdT0 obtained at the first iteration of the algorithm is almost a fixed p
of the iteration functionIW,N . In addition, using the analytical expression of the Gaussian PDF o
noise, one can show that the derivative of the iteration function is almost zero aroundTD. This forces the
thresholdT� to be close toTD and the algorithm to converge in one iteration.
The remaining question is to determine whetherT� is a correct estimator ofTD, which will be tested
using a numerical example.

4. Numerical application

We apply the recursive algorithm to a one-dimensional test signal and illustrate its properti
Fig. 1). We construct a noisy signalX by superposing a Gaussian white noise, with zero mean
varianceσ 2

W = 1, to a signalS, normalized in such a way that( 1
N

∑
k |Sk|2)1/2 = 10. The number o

samples isN = 8192. We first apply the recursive algorithm to the signalS without any noise, then t
the noiseW only, and finally to the noisy signalX. We study the influence of the iteration functionsIS,N

andIW,N of the signal or noise alone, and on the iteration functionIX,N of the total signal. We compar
the results obtained with the thresholdT� computed by the recursive algorithm, the universal thres
TD computed with the known variance of the noiseσ 2

W = 1, and the thresholdTm obtained using MAD
method [2] which estimatesσW from the median of the wavelet coefficients of the noisy signal at
smallest scale. The resulting MAD threshold is given by the formula

Tm = (2 lnN)1/2

0.6745
med

λ=(j,i)∈{(j,i), j=J }
(|X̃λ|

)
. (13)

The iteration functions forX, S, andW are shown in Fig. 2. One observes thatIX,N is superposed o
IW,N for small values ofTn, but it followsIS,N for large values ofTn up to the pointC, corresponding to
the first iteration of the algorithm. In Fig. 3, we plot the histograms of the wavelet coefficients ofX, S and
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Fig. 1. Construction (top) of a 1D noisy signalX = S + W (middle) and results obtained by the recursive algorithm (botto

W which are related to the iteration functionsIX,N , IS,N , andIW,N shown in Fig. 2, since histograms a
estimators of PDFs. The sparsity of the wavelet representation of the signalS causes most coefficients̃Sλ

to be close to zero, and therefore limits the growth of the corresponding iteration functionIS,N which
thus remains below the liney = x.

One also observes that the histograms ofX̃λ andS̃λ present the same heavy tails for values larger t
the expected maximum magnitude of the noiseTD = (2 lnN)1/2σW = 4.24 (cf. Section 3.3). This agree
with the fact thatIX,N is almost identical toIS,N for values larger thanTD, since the heavy tails of the PD
of S̃λ have a strong weight in the second-order moment of the histogram of the coefficientsX̃λ. On the
contrary, the coefficients of the noise are concentrated within the range[−TD,TD], and their contribution
to IX,N(T ) for T larger thanTD remains negligible. In contrast, whenT is smaller thanTD, most of the
coefficientsS̃λ smaller thanT are close to zero. Therefore, their contribution to the second-order mo
(IX,N(T ))2 is dominated by the contribution of the coefficientsW̃λ whose distribution far from zero i
wider. Thus the noiseW dominatesS in IX,N for T smaller thanTD, as soon asS is sparse enoug
in wavelet space. The consequence is that the intersectionB of IX,N with y = x remains close to th
intersectionA of IW,N with y = x. Therefore, the limitT� of the recursive algorithm applied toX is close
to the limit obtained for the noise alone, which approximatesTD. This is true since no other fixed poi
is present for values of the threshold larger thanTD, due to the fact that betweenB andC the iteration
functionIX,N is belowy = x. For this test signal, the algorithm converges to the valueT� = 4.30, which
is close to the universal thresholdTD = 4.24. The resulting estimatesFT�

(X) andFc (X) of S andW ,
T�
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Fig. 2. Iteration functionsIW,N , IS,N , IX,N for W , S, andX, respectively. The pointsA andB correspond to the intersection
between the graphs ofIW,N andIX,N with the liney = x, respectively. The pointC corresponds to the first iteration of th
algorithm applied to the noisy signalX and its abscissa isT0.

Fig. 3. Histograms of the wavelet coefficientsX̃λ, S̃λ, andW̃λ for the 1D signal.

respectively, are shown in Fig. 1. Table 1 summarizes the values of the thresholdT�, Tm, andTD, and the
resulting mean square errors of the estimationsE(T�), E(Tm), andE(TD) defined in (2).

We observe that, despite the fact that the thresholdTm is closer toTD thanT� and the errorE(Tm)

is smaller than the errorE(T�), the performances of the two methods are of same order. Moreove
thresholdTD results in a larger error than the thresholdsTm andT�.

We also observe that the number of iterationsn� is increasing with the signal to noise ratio, i.e.,n� = 1
for the noise without signal,n� = 4 for the noisy signalX, andn� = 21 for the signal without noise.
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Table 1
ThresholdsT�, Tm, andTD and the corresponding mean square estimation errors

Signal n� T� Tm TD E(T�) E(Tm) E(TD)

X 4 4.34 4.19 4.25 7.28× 10−3 7.06× 10−3 7.32× 10−3

S 21 1.7× 10−6 9.9× 10−7 0 4.7× 10−14 8.9× 10−16 0
W 1 4.24 4.19 4.24 +∞ +∞ +∞

We interpret this result by saying that the wavelet coefficients of the noise are responsible for de
the graph ofIX,N above the liney = x. This deflection interrupts the sequence of iterations by for
the decreasing sequence of thresholdsTn to converge to the intersection pointB.

The numerical cost of the recursive algorithm isn�N operations, which is, e.g., equal to 4N for the
case above, sinceN multiplications and sums are needed at each iteration. The MAD method
to perform a quick sort on the squared wavelet coefficients, which has a cost of orderN logN plus N

multiplications. Both methods additionally require a wavelet transform and its inverse, with ordN

complexity.
We conclude that the recursive algorithm may run more quickly than the MAD method for

signal to noise ratios, since the deflection of the iteration function occurs closer to the initial va
the thresholdT0 which speeds up the convergence. Current work [1] also shows that the algorithm
better results than the MAD method, when applied to signals corrupted with non-Gaussian noise
additional results are currently being investigated and will be the object of a future publication.
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