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Abstract

Nonlinear thresholding of wavelet coefficients is an efficient method for denoising signals with isolated singular-
ities. The quasi-optimal value of the threshold depends on the sample size and on the variance of the noise, which
is in many situations unknown. We present a recursive algorithm to estimate the variance of the noise, prove its
convergence and investigate its mathematical properties. We show that the limit threshold depends on the proba-
bility density function (PDF) of the noisy signal and that it is equal to the theoretical threshold provided that the
wavelet representation of the signal is sufficiently sparse. Numerical tests confirm these results and show the com-
petitiveness of the algorithm compared to the median absolute deviation method (MAD) in terms of computational
cost for strongly noised signals.
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1. Introduction

Estimating signals or images from noisy data is a typical problem in data processing with many appli-
cations. Many parametric and nonparametric approaches, such as linear kernel estimators, Kalman filters,
have been proposed, see, e.g., [5]. Nonlinear thresholding of the empirical wavelet coefficients was orig-
inally proposed by Donoho and Johnstone [2] to denoise signals corrupted with Gaussian white noise.
It consists in deleting the wavelet coefficients of the noisy signal whose modulus is below a threshold
and reconstructing the denoised signal from the remaining coefficients. The threshold depends only on
the sample size and on the noise’s variance. The method was later generalized to correlated noise and
to non-Gaussian situations [6,7]. Wavelet thresholding estimators minimize the maxifisk in a
whole class of finite energy signals including Holder and Besov spaces without any a priori knowledge
of the signal, but the unknown variance of the noise has to be estimated. The median absolute deviation
(MAD) is a standard method that estimates the level of the noise by taking the median of the modulus of
the smallest scale wavelet coefficients [5]. In the present paper we introduce a new recursive algorithm to
estimate the variance of the noise, study its properties regarding convergence, stability and performance,
and validate the results with a numerical example.

2. Denoising by nonlinear wavelet thresholding

We consider a discrete signslof size N = 2’ with vanishing mean, corrupted by a Gaussian white
noise of mean zero and variam:é resulting inX, = S, + W, fork =0, ..., N — 1, whereX, and W,
are N samples of the noisy data and the noise, respectively.

We decompose the noisy datainto an orthogonal wavelet serigs= )", _,, X, ¥, where the multi-
index = (j, i) denotes the scalg and the position of the wavelets. The corresponding index det
is

AJ:{)“:(]J)’ ]=O,,J—1, l=0,’21_1}

By thresholding the wavelet coefficients, and reconstructing the corresponding signal we define a
nonlinear operator

Fr:Xe Fr(X)=Y_ pr(X)vs (1)
A

with the thresholding function

(@) = a ifla|>T,
P =10 if|a|<T,

whereT denotes the threshold. We denote hy the index subset of wavelet coefficientsthat are
selected by the thresholding functipf, such thatA; = {A € A/, |X,| > T} c A’. Donoho and John-
stone [2] showed that the relative quadratic error between the sigaadl its estimato¥ (X), defined
by

_IS= Fr(X)|?

sz @)

ET)
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has its lower bound, minE(T), close to the minimax error for all signatse H where’H belongs to a
wide class of function spaces, including Holder and Besov spaces. They also showed that th@gjror
corresponding to the threshold

TDIO'pv(ZInN)l/Z (3)

is close to the minimum of (T'). SinceTp depends only on the variance of the noise, itis called universal
threshold in contrast to the valdg,, that minimizes the erraf (7). However, in many applicationsy
is unknown and has to be estimated from the available noisyXata

To address the estimation of the noise, we adopt a dual point of view: Instead of considering the
denoised parFy (X) of the noisy signall, we focus on the residual which was not taken into account in
Fr(X); namely,

Fi(X)=(d=F)(X)=X - Fr(X)= Y _ pp(X)¥n= Y Xuts, @)
reat reAG

where Id denotes the identity. The complementary operBfouses the complementary thresholding

function p4 = Id — pr and defines the complementary index gét= A’\ Ar. The residualy, (X) is

a quasi-optimal estimator of the Gaussian white ndsavhose relative error is

IX — Fr(X) — W|? _ IS+ W - Fr(X) - W _ N
W12 W2 W12

E(T) = ET). %)

3. Recursivealgorithm

In [4], we proposed a recursive algorithm for denoising based on the conjecture that, given a thresh-
old 7,,, the variance of the noise estimated 8y (X) yields a threshold;,; closer toT), than7,. In the
following, we present the algorithm and check the validity of this conjecture.
Algorithm 1.

Initialization

e GivenX;,k=0,..., N —1. Setn = 0 and compute the fast wavelet transformxofo obtainX;.

e Compute the variance? of X as a rough estimate of the variancé®fand compute the correspond-
ing thresholbZ = £ 3", 1/ 1X,[?, To= (2InNad) V2.

e Set the number of coefficients considered as ntfige= Card A”) = N

Main loop
Repeat

e SetNy, = Ny and count the wavelet coefficients smaller tHan Ny = Carc(ACTn)
e Compute the new variances?, = + 3., 1p5 (X;)I? and the new thresholdr, ; =
(2(nN)o?, Y2
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e Setn=n+1
until (N, = Nw).
Final step

e ComputeFr, (X) from the coefficient$ X; };.c Ay, using inverse fast wavelet transform and compute
Fi (X)=X — Fr,(X).

This algorithm defines a sequence of estimated thresi@ds.y and the corresponding sequence
of estimated variance@rnz)neN. Their convergence depends on their initial value and orittnation
function

Ix v :RT+— R"Y suchthat 7,1 = Ixy(T,),
which is obtained by merging the definitionSCt)jjrl andT,1:

2InN . 1/2 2InN . 1/2
’X1N<T>=(; Z|p%<Xx>|2> =(; Zmﬁ) : (6)

reAl reAG

3.1. Properties of the iteration function

Taking the square of (6), we rewrite the sum as a continuous integral using delta functions:

T
2InN .
(ILxw (D) = :] /tz > 8(1X ] — 1) . (7)
=0 Area’

This expression shows that the functibpy (T') is piecewise constant with a number of discontinuities
smaller thanV and is therefore bounded both from below and above. Moreover, the iteration function is
monotonically increasing, i.e.,

IX’N(T)<IX7N(T+AT) VT,ATGR+. (8)
3.2. Convergence

In the following we prove the convergence of the recursive algorithm by applying fixed point ar-
guments to the iteration functiofy y. Theorem 1 proves that, if there exists an interval such that the
iteration function is above the ling = x at the lower bound and below this line at the upper bound,
then the sequence of thresholds converges as soon as it enters this interval. Corollary 1 shows that these
particular conditions are always satisfied by the iteration function.

Theorem 1. We consider aninterval [7,, T,] C Rt such that Iy y(T,) > T, and Ix x(T,) < Ty. If there
existsa step ng such that 7,,, € [T,, Tp], then T,, = Ix n(T,,_1) convergesto alimit 7, within [T, 7},] such
that 7, = I'x n(T;). The number of iterations n, issmaller than N.
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Proof. We suppose thaty y(7,,) < T,,- Expression (8) implies th&tx y o Ix n(T,,)) < Ix n(T,,) and
hence

Tno+2 == IX,N(Tno-i-l) < Tno+l - IX,N(Tno) < Tnov (9)

which shows that the sequen(® },>,, decreases. A%, < T,,, expression (8) implies thdk y(7,) <

Ix N(Tp,). As we assumed, < Ix y(T,), we findT, < T,,+1 and thereford, < T, for alln > no. Hence
{T,.}n>n, decreases, is bounded from belowXyy and converges to a limit, = inf,>,,(7,) betweenT,
and 7,,. As the iteration function/y 5 is piecewise constant with a finite number of discontinuities,
its image (including the values taken by the sequdii¢é,-,,) is countable with a cardinality smaller
thanN. As a consequence, there exists,asuch thatl,,, = Ty = inf,,>,,,(T,,). AS {7, },-,, iS decreasing,
one hasl,,+1 =1T1,,, i.e., T, = Ix y(T;). Conversely, iflx y(T,,) > T,, one can show analogously that
{T}n>n, IS increasing, is bounded from above By and therefore converges betwegpand7,. O

Corollary 1. One has sup, g+ Ix.x(T) = To = (2InN)Y264 and Ix y(0) = 0. Therefore, Theorem 1
implies that the sequence {7, },,en convergesto a limit 7, € [0, Tp].

Proof. When taking the thresholfl = 0, the residuaF;_,(X) = 0. It naturally follows that’y » (0) = 0.
On the other hand, the iteration function is bounded from abovi by¥his maximum value is reached
with any thresholdl" larger thanTmax = sup,c 4/ |X,|. Therefore, Theorem 1 is valid for arfy chosen
such thatl, > max(To, Tmax), With T, = 0 and with7,,, = Tp. Hence, the sequenég, },.n converges to
alimit 7, € [0, T,]. As Ix y(T,) = To, the limit T, is actually in[O, Tp]. O

An additional point is the stability and self-consistency of the recursive algorithm. Corollary 2 shows
that if we apply the recursive algorithm to the already denoised signal, this does not change the result.

Corollary 2. Let A: X — Fr,x)(X) bethe operator corresponding to the recursive algorithm described
above. Then

Ao AX)=A(X) VX€eH.

Thismeans that .4 is a nonlinear projector.

Proof. This property can be shown by considering the graph of the iteration function corresponding to
A(X) defined as

2InN s vz
I.A(X),N(T):( k Z |p;"(pT@(XA))|2> , (10)

N
ren’t

whereT, > 0 is the threshold obtained from the recursive algorithm applied once. As expression (10)
corresponds to a partial sum of the termsginy (T), one had ax) v (T) < Ix x(T) VT € R*. As Theo-

rem 1 implies thatx x(7T) < T forall T > T,, we havel 4x) n(T) < T for T > T,. Hence, there is no
fixed point forZ 4(x),y in the interval[7,, +-oo[. Furthermore, the fact that. o p;, =0 VT < T, implies
Iax).n(T) =0VT < T,. This means that the only possible fixed point 1oy, v is T = 0, which is

the only possible limit for the sequence of threshdlfig, «n. Finally, the resulting estimation coincides
with the first one. O
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3.3. Convergence for Gaussian white noise

Stating that the successive estimations of the néis¢X) converge close to the best estimation
F7 (X) suggests that a Gaussian white noise is invariant with respect to the recursive algorithm. We
check this assertion by applying the algorithm to a Gaussian white fidisks the orthonormality of
(V1 }eas implies that{ W, }, . ,s is also a Gaussian white noise, the analytic expression of the PDF of its
wavelet coefficients is known. Berman [3] showed that the probability that the maximum of the modulus
of N values of a Gaussian white noigiéis inside the intervalTp — ow IN(INN)/In N, Tp]; namely,

) In(in N
P(N) = p(mka)<(|WA|) e |:TD - % TDD (11)

tends to 1 for largev.

This result shows that fov large enough, the valug, is a good estimator of the expected max-
imum modulus of the noise. At the first iteration of the algorithm, we h@iye= (2InN)%2
(2InN)Y2 64 = T,, which yields

2InN - 2\Y? /2InN -\ P
IW,N(TO):IW,N(TD)=( k Z|PTD(W/\)|2) 2( k Z|WA|2) =To=Tp. (12)

N N
reA’t reA’

oy =

This shows that the threshol§ obtained at the first iteration of the algorithm is almost a fixed point
of the iteration function/y . In addition, using the analytical expression of the Gaussian PDF of the
noise, one can show that the derivative of the iteration function is almost zero dfguitiis forces the
thresholdT, to be close td'p and the algorithm to converge in one iteration.

The remaining question is to determine whetligiis a correct estimator of p, which will be tested
using a numerical example.

4. Numerical application

We apply the recursive algorithm to a one-dimensional test signal and illustrate its properties (cf.
Fig. 1). We construct a noisy signal by superposing a Gaussian white noise, with zero mean and
variances?, = 1, to a signalS, normalized in such a way that >, |Sx|?)%? = 10. The number of
samples isV = 8192. We first apply the recursive algorithm to the sighatithout any noise, then to
the noiseW only, and finally to the noisy sign&. We study the influence of the iteration functialsy
andIy y of the signal or noise alone, and on the iteration funcfigR of the total signal. We compare
the results obtained with the threshdlidcomputed by the recursive algorithm, the universal threshold
T computed with the known variance of the noigg = 1, and the threshold,, obtained using MAD
method [2] which estimatesy, from the median of the wavelet coefficients of the noisy signal at the
smallest scale. The resulting MAD threshold is given by the formula

(2InN)Y? -
w=—— med X;1). 13
0.6745 A=(j,i)e{(j,i),j=]}(| ’\|) (13)
The iteration functions foX, S, andW are shown in Fig. 2. One observes tligty iS superposed on
Iy y for small values off;,, but it follows I y for large values of/;, up to the pointC, corresponding to
the first iteration of the algorithm. In Fig. 3, we plot the histograms of the wavelet coefficiekitsSodnd
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Fig. 1. Construction (top) of a 1D noisy signgl= S + W (middle) and results obtained by the recursive algorithm (bottom).

W which are related to the iteration functiohsy, /s, andly y shown in Fig. 2, since histograms are
estimators of PDFs. The sparsity of the wavelet representation of the Sigaabes most coefficients

to be close to zero, and therefore limits the growth of the corresponding iteration fudgfiowhich
thus remains below the ling= x.

One also observes that the histogram& pfand S, present the same heavy tails for values larger than
the expected maximum magnitude of the ndise= (2 In N)¥?oy, = 4.24 (cf. Section 3.3). This agrees
with the fact thatly y is almostidentical tds y for values larger thafi,, since the heavy tails of the PDF
of S, have a strong weight in the second-order moment of the histogram of the coeffikjer@ the
contrary, the coefficients of the noise are concentrated within the fariig Tp], and their contribution
to Ix n(T) for T larger thanT, remains negligible. In contrast, whé&his smaller thar’,, most of the
coefficientsS, smaller tharf” are close to zero. Therefore, their contribution to the second-order moment
(Ix.n(T))? is dominated by the contribution of the coefficients whose distribution far from zero is
wider. Thus the nois@ dominatesS in Ix y for T smaller thanTp, as soon as is sparse enough
in wavelet space. The consequence is that the interseBtioin/y y with y = x remains close to the
intersectionA of Iy y with y = x. Therefore, the limifT, of the recursive algorithm applied f0is close
to the limit obtained for the noise alone, which approximd&tgsThis is true since no other fixed point
is present for values of the threshold larger tlfan due to the fact that betwedhandC the iteration
function Ix y is belowy = x. For this test signal, the algorithm converges to the vdjue 4.30, which
is close to the universal threshadlth = 4.24. The resulting estimates;, (X) and Fr (X) of § and W,
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Fig. 2. Iteration functiongyw n, Is n. Ix,n for W, S, andX, respectively. The pointd andB correspond to the intersections
between the graphs diy y andix y with the liney = x, respectively. The point corresponds to the first iteration of the
algorithm applied to the noisy signal and its abscissa i&.
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Fig. 3. Histograms of the wavelet coefficieris, S, , andW,, for the 1D signal.

respectively, are shown in Fig. 1. Table 1 summarizes the values of the thr@shdld andT,, and the
resulting mean square errors of the estimati&(g), £(7,,), and&(Tp) defined in (2).

We observe that, despite the fact that the threstiglds closer toT, than T, and the erro€(T7,,)
is smaller than the errd®(T,), the performances of the two methods are of same order. Moreover, the
thresholdTp results in a larger error than the threshalglsandT,.

We also observe that the number of iteratiapss increasing with the signal to noise ratio, ix. = 1
for the noise without signak, = 4 for the noisy signak, andn, = 21 for the signal without noise.
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Table 1

ThresholdsTy, T;,, andTp and the corresponding mean square estimation errors

Signal ny Tg Tm TD E(Tg) E(Tm) E(TD)

X 4 434 419 425 728x 1073 7.06x 1073 7.32x 1073
S 21 17x 1076 9.9x 1077 0 47 x 10714 8.9 x 10716 0

w 1 4.24 419 424 +00 +00 +00

We interpret this result by saying that the wavelet coefficients of the noise are responsible for deflecting
the graph offx y above the liney = x. This deflection interrupts the sequence of iterations by forcing
the decreasing sequence of threshdidtn converge to the intersection polt

The numerical cost of the recursive algorithrmisV operations, which is, e.g., equal t&v&or the
case above, sinc& multiplications and sums are needed at each iteration. The MAD method needs
to perform a quick sort on the squared wavelet coefficients, which has a cost ofloignN plus N
multiplications. Both methods additionally require a wavelet transform and its inverse, with d@rder
complexity.

We conclude that the recursive algorithm may run more quickly than the MAD method for weak
signal to noise ratios, since the deflection of the iteration function occurs closer to the initial value of
the threshold;, which speeds up the convergence. Current work [1] also shows that the algorithm yields
better results than the MAD method, when applied to signals corrupted with non-Gaussian noise. These
additional results are currently being investigated and will be the object of a future publication.
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