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Abstract:
The influence of the shape of the plasma on the dynamics of RFPs is investigated in numerical simulations of
fully nonlinear visco-resistive magnetohydrodynamics. The axial mode-spectrum is qualitatively changed in
cylinders with elliptic cross-section, and the radial turbulent diffusion is affected. Even though from the
present study it cannot be concluded what the optimal shape of an RFP should be, it is clear
that the shape of the cross-section is an important parameter that should be taken into account
when optimizing the confinement quality of an RFP.

1 Introduction
Tokamaks and Reversed Field Pinches (RFPs) are toroidal fusion plasmas with a similar
magnetic geometry. In both types of plasma the combination of an imposed toroidal mag-
netic field combined with a poloidal magnetic field, associated with an induced toroidal
current, result in a helical field, around the toroidal axis. The difference between the plas-
mas is the strength of the toroidal magnetic field, which needs to be much larger than the
poloidal field in tokamaks, whereas it is of the same order of magnitude in RFPs. This
requirement is due to the dangerous MHD instabilities, or disruptions, in tokamaks [1],
which lead to loss of confinement.

The RFP works in this unstable regime, but takes advantage of the nonlinear saturation
of the instability, thereby bypassing the risk of disruptions and avoiding the need of a very
strong (and costly) toroidal magnetic field. Whereas in early research on the RFP the
unstable character was seen as a drawback for fusion, it has become increasingly clear that
the self-organization of the RFP is actually an asset to reach self-sustained fusion. Indeed
in the 2000s, quasi-single-helicity (QSH) states were detected within turbulent flows in the
RFX experiment [2–4]. These states are characterized by the appearance of a quiescent
helical structure in the plasma core, which improves the plasma confinement [5–7]. Later
studies showed that the persistence of these QSH states and the appearance of a Single-
Helical Axis at high current regimes [8] can be increased by applying helical magnetic
perturbations [9, 10]. These results motivated (a small part of) the fusion community to
reconsider the RFP as a suitable candidate for nuclear fusion [11].

Indeed, applying helical magnetic perturbations seems a promising way to affect the self-
organized state in an RFP [12]. Another obvious way would be to change directly the shape
of the plasma. The optimization of the confinement quality for toroidal fusion plasmas by changing
the plasma shape has been the subject of many studies, in particular for tokamaks. For instance, it has
been shown that shaping has a beneficial effect on the β limits of tokamaks [13], and increases the total
plasma current I in the case of elliptic cross-sections, yielding thus a better confinement.

Investigations on the influence of shaping on the confinement properties of RFPs are, however, rela-
tively scarce. Some rare examples of experimental observations were presented in [14,15], and numerical
investigations are reported in references [16, 17] where two-dimensional equilibrium studies were carried
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out in order to investigate the shaping effect on RFP plasmas. Their work led to the conclusion that
shaping does not bring an advantage to the plasma dynamics in RFPs and is even destabilizing in the
case in which the poloidal cross-section is elongated. These studies focused on the stability properties of
RFPs, but did not consider the fully developed nonlinear dynamics. Here we proceed one step further
in the investigation of the effect of changing the shape of the cross-section of RFPs by considering the
fully nonlinear dynamics within a resistive fluid description. More precisely, we investigate the effect of
elongation of the poloidal cross-section on plasmas in RFPs by means of direct numerical simulations
using a three-dimensional MHD pseudo-spectral solver [18]. We consider the simplified case where the
torus is modeled by a straight periodic cylinder. We justify the choice of this simplification as
follows. In reference [19], we compared the straight-cylinder approach to fully toroidal
simulations. We showed that most of the qualitative features remained unchanged. The
most significant change was the appearance of a toroidally invariant mode, the influence of
which we do therefore necessarily neglect in the present work. It is true that considering
the effect of curvature on the dynamics of RFP could be interesting, but we aim at the
understanding of the two effects (curvature and shape of the cross-section) independently
in order to pinpoint the most important physical effects, before considering their possible
interplay. Furthermore, in Paccagnella et al. [16] the influence of curvature was considered
with respect to the stability properties of RFPs and its effect was shown to be minor.

In the present work is shown that elongation of the cross-section has a significant effect on the
dynamics of the plasma. To probe the confinement, we consider the advection of a passive
scalar, injected in the core of the plasma. The mean scalar profile that establishes allows
us to directly determine the turbulent diffusivity associated with the RFP dynamics. The
results of our simulations show that in some cases the confinement compared to circular RFPs is
improved by shaping.

The remainder of the manuscript is organized as follows. Section 2 presents the governing equations,
recalls briefly the numerics and the relevant physical parameters. Results are shown in section 3 and
section 4 discusses the choice of the length scales. Conclusions are drawn in section 5.

2 Equations, numerical methods and parameters
2.1 Visco-resistive MHD equations
In the present work, we consider a plasma characterized by constant, and uniform permeability µ, per-
mittivity ε and conductivity σ. The more complicated case of non-uniform conductivity was
considered in reference [20]. In the magnetohydrodynamic (MHD) description that we consider,
the governing equations are the incompressible Navier-Stokes equations including the Lorentz force, and
the induction equation. Normalizing these quantities by the Alfvén velocity CA = B0/

√
ρµ, a reference

magnetic field B0 and a conveniently chosen length scale L leads to the following expressions,

∂u

∂t
+ u · ∇u = −∇P + j ×B + Pm

S
∇2u, (1)

and
∂B

∂t
= ∇× (u×B) + S∇2B, (2)

where the magnetic Prandtl number Pm = ν/λ is the ratio of kinematic viscosity over magnetic diffusivity,
S = B0L/λ the Lundquist number and ρ = 1 the density. The current density is given by

j = ∇×B. (3)

The velocity field u and the magnetic field B are both divergence free,

∇ · u = 0, (4)

∇ ·B = 0. (5)
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The incompressibility condition (4) allows to obtain the pressure from the velocity field
by taking the divergence of the momentum equation (1) and solving the resulting Poisson-
equation. We think it is important to retain this feature in the dynamics unlike in previous
investigations of RFPs (e.g. [21, 22]), where the pressure was entirely neglected invoking
low-β dynamics. We thus take into account the influence of pressure on the dynamics, but
we neglect all compressibility effects and consider the dynamics of an isothermal plasma.
Note that imposing incompressibility was shown to diminish the reversal of the magnetic
field [23], and this will thus necessarily be the case in the present investigation. We note here
that the resistivity profile can also influence the reversal [24]. The combined influence of
shaping, compressibility and non-uniform resistivity constitutes an interesting perspective
for future work.

Initially, in the plasma a uniform current density j0 in the z-direction and an axial magnetic field
Bz0 are imposed, resulting in a helically shaped magnetic field. The current density j0 will induce an
elliptical magnetic field Bp0 parallel to the elliptic boundaries. At later times the magnetic field
will reorganize through an interplay with the velocity field, and the total magnetic field will
then consist of Bz0 and Bp0 plus the self-induced contributions. At the boundaries the velocity
is imposed to be zero and the magnetic field is parallel to the boundaries. The value of the poloidal
parallel magnetic field at the boundary is fixed and its value is determined by j0. The expression of Bp0
in cylindrical coordinates reads,

Br = −1
2j0rc sin(2θ) (6)

Bθ = 1
2j0r(1− c cos(2θ)) (7)

with c the ellipticity which can be expressed as a function of the ellipse’s major semi-axis a and minor
semi-axis b, i.e,

c = a2 − b2

a2 + b2 . (8)

Note that the coordinates we use are cylindrical and not elliptical coordinates so that only
in the case of the circle the radial vector er is everywhere perpendicular to the boundary.

FIG. 1: Sketch of the cylindrical geometry and imposed magnetic field and current density.

The confinement is evaluated by simulating the advection-diffusion equation of a passive scalar T . We
thereto solve the following equation simultanuously with equations (1) and (2),

∂T

∂t
+ u · ∇T = α∇2T + fT , (9)

where α is the scalar diffusivity, chosen equal α = 10λ, and fT is a constant source term of value unity,
which injects the scalar at a constant rate in a cylindrical region of radius 0.1, in the center of the plasma.
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The value at the wall is kept constant and is fixed at zero value, so that the value of T at the center of
the plasma is a direct measure of the confinement quality. In the present work T is therefore an
auxiliary quantity, which in the case of small temperature fluctuations, assuming isotropic
transport coefficients, could be associated with the temperature. However, in the present
case we do not model the interaction of the plasma in the presence of temperature dif-
ferences, but we consider the case of an isothermal plasma, where T is a passive scalar,
advected by the RFP velocity field. An investigation of the fully coupled problem between
velocity and temperature will be done in a future work.

2.2 Numerical methods
Equations (1),(2) and (9) are solved using a pseudo-spectral method in a periodic domain of size π×π×8π
with 64× 64× 512 grid points. The aspect ratio of the physical domain containing the plasma
is Lz/2πb = 4. Spatial derivatives are evaluated in Fourier space and multiplications are computed
in physical space. To avoid aliasing errors, i.e., the production of small scales due to nonlinear terms
which are not resolved on the grid, the velocity and magnetic fields are dealiased at each time step by
truncating its Fourier coefficients using the 2/3 rule [25]. Using the incompressibility condition of the
fluid, the pressure term can be eliminated by solving a Poisson equation. A semi-implicit third order time-
advancing scheme of Adams-Bashforth type is used to solve the equations, with exact integration of the
dissipative and magnetic diffusion terms. Boundary conditions are imposed using a volume penalization
method in order to build the cylindrical domain. Detailed description and validation of the method can
be found in [26], and an application of the method to investigate RFPs in toroidal domains is reported
in previous work [19, 20]. The implementation of the Dirichlet boundary condition for the scalar field is
identical to that of the velocity.
To obtain the results presented in section 4 and 5, the equations are integrated for 104τA Alfvén times,
with τA = L/CA. The results presented in the following are evaluated during the statistically stationary
state.

2.3 Shaping parameters
In the present investigation we focus on the influence of the shape of the cross-section on the confinement
properties of the plasma. The parameters should be carefully chosen to disentangle the effect of changing
the geometry from the effect of changing other control parameters. Considering a periodic cylinder instead
of a torus is motivated by this attempt to reduce the number of control parameters to a strict minimum.
Even in this simplified geometry, the way in which the parameters are varied is not unique. For instance,
if the same toroidal current-density Jz is chosen for two geometries, the mean current Iz will be the same,
only if the surface A of the cross-section is kept constant, a condition which we will impose. This will
also lead to equal values of the toroidal magnetic flux ψ = BzA, for a given imposed toroidal magnetic
field Bz.
The poloidal magnetic Bp field is computed from the current density. Its reference value is evaluated as
an average over the circular, or elliptic boundary. Necessarily, keeping the surface A, Jz and Bz fixed,
the average value Bp varies when changing the shape of the cross-section (the bar indicates a boundary
average). The pinch-ratio, defined as

Θ = Bp
〈Bz〉

, (10)

where the brackets denote a volume average, therefore depends on the value of the ellipticity c. An
important parameter in non-ideal MHD is the Lundquist number, which we define as

S = 2B̄pb
λ

, (11)

where we used the poloidal magnetic field strength and minor radius as reference quantities. We have
chosen b, rather than a, since it is this smallest minor radius which will probably determine the confine-
ment quality. This choice is further discussed in section 4. Imposing the same value of S for different
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FIG. 2: Field reversal parameter F as a function of the pinch parameter Θ for cylinders with circular
and elliptic cross-section. Also shown is Taylor’s prediction [27] for reference.

values of the ellipticity allows to determine the value of λ. In all our simulations the value of the magnetic
Prandtl number, Pm is chosen unity.

3 Results

3.1 F-Θ stability
The imposed magnetic field in RFPs is unstable for large values of Θ and S, and it will form a dynamic
helical structure with a certain amount of chaotic or turbulent motion superimposed.
The modification of the magnetic field can be quantified by the field reversal parameter F , representing
the normalized toroidal field at the boundary,

F = Bz
〈Bz〉

. (12)

As the current increases, the kink instability increases, leading to the decrease of the toroidal magnetic
field at the boundary, so that F decreases as a function of Θ.

This behavior is qualitatively predicted by Taylor’s theory [27] and more sophisticated theories allow
to improve this agreement [28–30]. In studies [16, 17] based on two-dimensional equilibrium equations,
it was shown that shaping does not alter the F -Θ curve. Preliminary simulations for cylinders of small
aspect ratio Lz/2πb ∼ 2 and S ∼ 4200 are carried out and compared with Taylor’s prediction [27] for
an ellipticity a = 1.6. Figure 2 shows the results of the field reversal parameter F versus Θ, which are
in reasonable agreement with the two previous studies [16, 17]. In these references it was shown
that shaping had a small destabilizing effect for large curvature, but the F − Θ curve was
unaffected. Indeed, the two geometries yield roughly the same behavior. However, the reversal
parameter is a global parameter and does not give insight into the fine structure of the dynamics. It is
this fine structure, constituted by the nonlinear interplay of a large number of modes which will determine
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FIG. 3: Isosurface of axial velocity uz = 8.10−2CA colored by the scalar field for an ellipse with a = 1.2.

the confinement quality of a reactor. The modification of the fine structure is now assessed by evaluating
the modal behavior of the flow.

3.2 Helical modes and safety factor
We study now the effect of shaping on the helical modes. We have hereto performed simulations for a
higher value of S and a larger aspect ratio Lz/2πb = 4 to approach more realistic conditions. We consider
three shapes: a circle with radius r = 1, an ellipse with a = 1.2 b = 0.83 and an ellipse with a = 1.4 and
b = 0.714. The Lundquist number for the three cases is S ≈ 2.104 and the magnetic Prandtl number is
Pm = 1. To give an idea of the intricate structure of the velocity field, we show in figure 3 an illustration
of an instantaneous velocity field. The complex helical structure is clearly visible in this visualisation.
Figure 4 shows the predominance of a magnetic mode with toroidal modenumber n = 7 in
the circular case, which is consistent with what has been observed in the RFX-mod device.
In the elliptical case (a = 1.2) a tendency for mode n = 14 to dominate is observed, while
the magnetic modes n = 3 and n = 4 contain most of the magnetic energy for a = 1.4. This
last case seems to be closer to a multiple-helicity state, where not a single mode contains
most of the energy. Similar spectral differences are observed in the kinetic spectra, where
n = 0 and n = 1 are the dominating kinetic modes in the circular case, n = 14 in the a = 1.2
elliptical case, and n = 8 in the a = 1.4 elliptical case.

The relative influence of the plasma pressure p, compared to the magnetic pressure
B2 is characterized by β ≡ 〈2p〉/〈B2〉, where the brackets denote a volume average. In
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FIG. 4: Axial spectra of magnetic (left) and kinetic (right) energy, normalized respectively by the total
magnetic and kinetic energy, considering three shapes, respectively from top to bottom, a circle with radius
r=1, an ellipse with major semi-axis a=1.2 and one with a=1.4.

our simulations, the values of β for the geometries with a = 1; 1.2; 1.4, are β = 0.29; 0.17; 0.11,
respectively. Further information of the magnetic structure of the plasma is given in Figure
5(a-c), where we display contours of the magnetic flux surfaces in a given cross-section. A
clear difference is observed. In the circular case, concentric circular contours are observed,
whereas in the a = 1.2 case a separatrix appears at the edges of the ellipse. In the most
elongated case, the central flux surfaces are destroyed and magnetic islands appear.

The safety factor is defined as

q(ψ) =
∮
Bz
Bp

dl

2πr , (13)

where ψ is the magnetic flux. Figure 5 shows the profile of the safety factor q for the three
geometries as a function of the normalized flux, defined as (ψ−ψ0)/(ψsep−ψ0), where ψ0 is the
minimum magnetic flux in the core plasma and ψsep is the magnetic flux at the separatrix.

The value of q at the center increases considerably with the increase of the ellipticity.
In Fig 6 axial magnetic fluctuations are shown in various poloidal cross-sections. The
fluctuations of the axial magnetic field are obtained by showing the magnetic field without
the axially invariant (kz = 0) magnetic contribution. Only in a few sections a clear poloidal
mode structure is observed. These graphs, combined with the spectra shown in Figure 4
give a hint about the possible instabilities underlying the dynamics. Tearing modes are
known to appear on places in the plasma where the ratio m/n = q is close to a rational
number. For the circular geometry, where an n = 7 magnetic toroidal mode is dominant,
in one of the cross-sections a clear m = 1 poloidal structure can be identified. The value
q = m/n = 1/7 is not attained in the plasma, but this value is approached in the center of
the domain (see Figure 5(d)). The triggered instability could possibly be associated with
an ideal kink mode. For the elliptical cylinder with a = 1.2, a hint of m = 1 and m = 2
structures is visible in the cross-sections taken at instant t = 9.8 × 103τA, where the n = 14
magnetic mode is dominant. The same analysis at different instants where no magnetic



8

(a) (b) (c)
Normalized flux

0 0.2 0.4 0.6 0.8 1

q

0

0.05

0.1

0.15

0.2
r=1

a=1.2

a=1.4

(d)

FIG. 5: Profile of the safety factor q function of the normalized flux, for the three geometries at t =
9.8× 103τA. Flux surfaces for the three geometries.

mode n dominates, shows the persistance of the poloidal mode m = 2. Thus, both rational
surfaces q = 1/14 and q = 2/14 are within the plasma, so that in this case external tearing
modes are a candidate to explain the underlying dynamics, even though modes near the
axis are generally observed to be more unstable. The conclusion from these observations is that
shaping significantly influences the velocity and magnetic fields, both qualitatively and quantitatively.
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FIG. 6: Poloidal cross-sections of the cylinder for circular (top) and the two elliptical (center, bottom)
geometries, illustrating the axial magnetic fluctuations at t = 9.8.103τA.

3.3 Turbulent diffusion

In order to assess the influence of the velocity field on the confinement, we have compared the radial
diffusion of a passive scalar in the different geometries. By fixing the rate of injection at the same value
for all three geometries, the confinement can be evaluated by the mean scalar profile which establishes
in the statistically stationary state. A difficulty in the comparison is here the fact that for the elliptical
cross section, the scalar profile depends on the angle, and that in any case the maximum scalar does
not need to be exactly in the center. What is important for confinement, is the maximum temperature,
not necessarily its spatial location. In order to overcome all these difficulties, we define a sorted scalar
profile, by sorting all scalar values in the plasma from high to low. By properly normalizing the x-axis, we
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FIG. 7: Cross-section of the scalar field for different shapes, for S ∼ 2.104 and Lz/2πb = 4.

convert this sorted dataset into an effective scalar profile, corresponding to a circular, perfectly centered,
axisymmetric scalar distribution. This procedure is somewhat similar to the introduction of a
magnetic flux function in tokamak studies. However, here the ordering of the spatial points
is carried out as a function of isothermal contours. This type of sorting of temperature
profiles is common in studies of stratified turbulence [31].

In practice, these profiles are obtained by sorting the different points in the fluid domain of each
plane orthogonal to the z-axis, in decreasing order of scalar value, then averaging over the volume. All
geometries have the same number of points in the fluid domain because of the equal cross-sections. The
sorted profiles are shown in Figure 8 left. The x-axis is now a function of the generalized radius r̃. This
generalized radius is defined by

r̃ =
√
n

N
r0 (14)

where N is the total number of measurement points, n the n-th point of the sorted values
and r0 the reference radius, which equals 1 in our case. For non-axisymmetric profiles and
cross-sections this representation will allow a direct comparison between the different scalar
distributions.

Figure 7 and 8 show that the elliptical cases have the highest scalar value in the center of the plasma.
The turbulent diffusion associated to the chaotic-turbulent motion can be directly evaluated from the
average scalar profile by introducing an effective diffusivity DT defined by,

DT = G

r̃ ∂〈T 〉∂r̃

∀ r̃ > r∗ (15)

where G is the total injected heat computed from the scalar source term,

G = −
∫∫ r∗

0
fT rdθdr, with r∗ = 0.1. (16)

A peak in the diffusivity profile in the near-wall region 0.8 < r̃ < 1 is observed, which could
possibly be associated with an enhanced level of turbulence, generated in the shear-layer
between the helical structure and the wall.

A further, more detailed characterization of the transport, probing the stochasticity of
the flow, using for instance Poincaré maps, would be an interesting perspective. Also,
considering directly the Ohmic heating as a source term, would be an elegant way to
investigate the temperature diffusion in a self-consistent manner.

4 On the choice of different characteristic scales
Different physical systems can only be meaningfully compared if the dimensionless parameters of the
system are evaluated. These dimensionless numbers appear in general when the evolution equations
of the system are non-dimensionalized by appropriate length, time, magnetic and other relevant scales.
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Hereby appear, for the case of MHD, dimensionless quantities like the Hartmann and Lundquist number.
For example, the Hartmann number defined as,

Ha = CAL√
ην
, (17)

where η is the magnetic resistivity, L is a characteristic length scale and CA the Alfvén velocity, plays
a major role in describing laminar MHD dynamics [32–34] and the transition from multi-helical states
to single-helical states [22]. On the other hand, the Lundquist number S is generally used in the fusion
community to describe the plasma dynamics in the turbulent regime. For our case, where η = ν, those
two numbers have equal values, Ha = S. An important question is now how to define the length scale L.

In the case of a circular cross-section, the most logical choice of a reference length scale
is the radius of the cylinder. Deforming the cross-section breaks the symmetry of the
problem, and the radius is not longer uniquely defined by a simple number. A rather
logical choice of the reference length is now L =

√
ab, but this choice is not free from some

arbitrariness. Another relevant length scale could be b, the minor axis, since this length
scale is the smallest distance from the center to the wall, and as such it could pilot the
confinement quality of the plasma. The choice of these two different typical length scales leads,
for a given toroidal magnetic field and Lundquist number, to distinct values of the magnetic diffusivity.
We have therefore considered two different choices for L and evaluated their impact onto the dynamics.
The parameters of different cases are summarized in table I.

First, the evolution of the kinetic energy and average scalar value for cases 1 and 2, having the same
characteristic magnetic scale and different lengthscales, are considered and presented in Figure 9. For
L = b, the kinetic energy fluctuates around the same value for the three geometries. For this case, which
we considered in the previous sections, the value of the scalar in the elliptical geometries is larger than
that observed in the circular one. On the other hand, for L =

√
ab, the kinetic energy fluctuates

around the same value in the elliptical cases, and it is slightly larger than the one of the
circular case. While the evolution of kinetic energy is close in cases 1 and 2, the evolution
of the scalar shows a drastic change. Furthermore, the mean of the scalar value for the
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r a b CA L λ

1 - - Bp = 1.4 r 1.4× 10−4

Case 1 - 1.2 0.83 Bp = 1.36 b 1.1× 10−4

- 1.4 0.71 Bp = 1.26 b 9× 10−5

1 - - Bp = 1.4 r 1.4× 10−4

Case 2 - 1.2 0.83 Bp = 1.36
√
ab 1.35× 10−4

- 1.4 0.71 Bp = 1.26
√
ab 1.25× 10−4

TABLE I: Parameters for case 1 where L = b and case 2 where L =
√
ab, for the three geometries.

elliptical cases decreases, to reach the same value of the circular case for a = 1.2, and a
smaller value for a = 1.4.

5 Conclusion
Direct numerical simulations of viscoresistive MHD show that in periodic cylindrical geometry in the
RFP regime, the shape of the cross-section significantly changes the nonlinear dynamics. Moreover,
different helical states can be observed and different energetic modes are excited in different geometries.
Modifying the elliptical elongation leads to different modal behaviors. We quantified the impact on
the confinement properties by considering the radial advection of a passive scalar, injected
in the center of the domain. Indeed, the evaluation of the eddy-diffusivity shows a clear enhancement
of the confinement quality for elliptic cross-sections.

The physical reason why elongation could enhance confinement deserves certainly further investiga-
tion.

One possibility is that changing the geometry, for given current and toroidal magnetic
field, will lead to a self-organized state with a different level of magnetic fluctuations. We
have carried out supplementary computations in which we increased the axial magnetic field
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for the circular geometry, thereby lowering the initial pinch by a factor 1.75. The increased
stability in this case led to a lower level of magnetic fluctuations. However, even in this case
in which the turbulent magnetic activity was of the level of the elliptic case (with a = 1.2)
the safety factor remained roughly unchanged, and so did the diffusion. It seems thus that
a change in the geometry affects the self-organized state with respect to the safety factor
and diffusion, and that this result persists even when the initial pinch ratio is significantly
changed.

Another possibility is that elongation leads to symmetry breaking of the poloidal flow. Indeed in
2D turbulence, changing the flow-geometry from circular to elliptical, leads to the generation of angular
momentum [35]. This effect was shown to persist in 2D MHD turbulence [36] and its investigation is
considered an interesting perspective, since large scale poloidal motion could enhance radial transport
barriers. A preliminary investigation of this effect is shown in Figure 10 where for a given
time-instant the angular momentum associated with the poloidal flow is computed for each
cross-section. Even though the total volume averaged angular momentum might be small,
it is shown that for the case of the circular geometry, locally large values of the poloidal
angular momentum exist.

The most important message of this work is perhaps not the knowledge of a certain value of the
elongation, most efficient to obtain an optimal confinement, but the mere fact that elongation can change
the confinement of RFPs. We would therefore encourage experimentalists to consider the poloidal shape
of the confining magnetic field as an important control parameter for RFP design and operation. If an
experiment allows for a simple modification of the plasma shape, it might give more freedom to obtain a
competitive fusion plasma.

Acknowledgments
The authors acknowledge discussion with D. Bonfiglio, D.F. Escande and M. Veranda and

z-axis

0 100 200 300 400 500

L
u
(z

)

×10
-5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

r=1

a=1.2

a=1.4

FIG. 10: z-dependence of the instantaneous poloidal angular momentum for the three geometries at
t = 11× 103τA.



14

the comments of two anonymous referees. This work was supported by the French Research
Federation for Fusion Studies carried out within the framework of the European Fusion Development
Agreement (EFDA). We acknowledge IDRIS (Project No. 22206), PMCS2I and P2CHPD for the use of
their facilities.

References
[1] D. Biskamp. Nonlinear magnetohydrodynamics. Cambridge University Press, 1993.

[2] D. F. Escande, P. Martin, S. Ortolani, A. Buffa, P. Franz, L. Marrelli, E. Martines, G. Spizzo,
S. Cappello, A. Murari, R. Pasqualotto, and P. Zanca. Quasi-single-helicity reversed-field-pinch
plasmas. Phys. Rev. Lett., 85:1662, (2000).

[3] P. Martin et al. Quasi-single helicity states in the reversed field pinch: Beyond the standard paradigm.
Phys. Plasmas, 24, (2000).

[4] P. Martin et al. Overview of quasi-single helicity experiments in reversed field pinches. Nucl. Fusion,
43, (2003).

[5] L. Frassineti, I. Predebon, H. Koguchi, Y. Yagi, Y. Hirano, H. Sakakita, G. Spizzo, and R.B. White.
Improved particle confinement in transition from multiple-helicity to quasi-single-helicity regimes of
a reversed-field pinch. Phys. Rev. Lett., 97, (2006).

[6] D. Terranova, A. Alfier, F. Bonomo, P. Franz, P. Innocente, and R. Pasqualotto. Enhanced con-
finement and quasi-single-helicity regimes induced by poloidal current drive. Phys. Rev. Lett., 99,
(2007).

[7] M. D. Wyman et al. Plasma behaviour at high β and high density in the Madison Symmetric Torus
RFP. Phys. Plasmas, 15, (2008).

[8] P. Piovesan et al. Magnetic order and confinement improvement in high-current regimes of RFX-mod
with MHD feedback control. Nucl. Fusion, 49, (2009).

[9] P. Piovesan et al. Influence of external 3D magnetic fields on helical equilibrium and plasma flow in
RFX-mod. Plasma Phys. Control. Fusion, 53, (2011).

[10] P. Piovesan et al. RFX-mod: A multi-configuration fusion facility for three-dimensional physics
studies. Phys. Plasmas, 20, (2013).

[11] R. Lorenzini et al. Self-organized helical equilibria as a new paradigm for ohmically heated fusion
plasmas. Nature Phys., 5, (2009).

[12] D Bonfiglio, M Veranda, S Cappello, DF Escande, and L Chacón. Experimental-like helical self-
organization in reversed-field pinch modeling. Physical review letters, 111(8):085002, 2013.

[13] F. Troyon, R. Gruber, H. Saurenmann, S. Semenzato, and S. Succi. MHD-limits to plasma confine-
ment. Plasma Phys. Control. Fusion, 26, (1984).

[14] A.F. Almagri, S. Assadi, R.N. Dexter, S.C. Prager, J.S. Sarff, and J.C. Sprott. Nucl. Fusion, 27,
(1987).

[15] A.A.M. Oomens, H.S. Lassing, and A.F.G. Van Der Meer. Reversed Field Pinch discharges with
elongated minor cross-section. Rijnhuizen report 90-197, (1990).

[16] R. Paccagnella, A. Bondeson, and H. Lütjens. Ideal toroidal stability beta limits and shaping effect
for reversed field pinch configurations. Nucl. Fusion, 31(10), (1991).



15

[17] S.C. Guo, X.Y. Xu, Z.R. Wang, and Y.Q. Liu. Does shaping bring an advantage for reversed field
pinch plasmas? Nucl. Fusion, 53, (2013).

[18] J. A. Morales. Confined magnetohydrodynamics applied to magnetic fusion plasmas. PhD thesis,
Ecole Centrale de Lyon, (2013).

[19] J. A. Morales, W. J.T. Bos, K. Schneider, and D. Montgomery. On the effect of toroidicity on
reversed field pinch dynamics. Plasma Phys. Control. Fusion, 56, (2014).

[20] S. Futatani, J. A. Morales, and W. J.T. Bos. Dynamic equilibria and magnetohydrodynamic insta-
bilities in toroidal plasmas with non-uniform transport coefficients. Phys. Plasmas, 22, (2015).

[21] S Cappello and D Biskamp. Reconnection processes and scaling laws in reversed field pinch magne-
tohydrodynamics. Nucl. Fusion, 36:571, 1996.

[22] S. Cappello and D. F. Escande. Bifurcation in viscoresistive MHD: The hartmann number and the
reversed field pinch. Phys. Rev. Lett., 85, (2000).

[23] John M Finn, Rick Nebel, and Charles Bathke. Single and multiple helicity ohmic states in reversed-
field pinches. Physics of Fluids B: Plasma Physics, 4(5):1262–1279, 1992.

[24] D Bonfiglio, S Cappello, and DF Escande. Impact of a uniform plasma resistivity in mhd modelling
of helical solutions for the reversed field pinch dynamo. arXiv preprint arXiv:1603.03563, 2016.

[25] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang. Spectral Methods in Fluid Dynamics. Springer,
1987.

[26] J. A. Morales, M. Leroy, W. J.T. Bos, and K. Schneider. Simulation of confined magnetohydro-
dynamic flows with Dirichlet boundary conditions using a pseudo-spectral method with volume
penalization. J. Comp. Phys., 274, (2014).

[27] J.B. Taylor. Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev.
Lett., 33, (1974).

[28] A. Reiman. Minimum energy state of a toroidal discharge. Phys. Fluids, 23, (1980).

[29] A. Reiman. Taylor relaxation in a torus of arbitrary aspect ratio and cross section. Phys. Fluids,
24, (1981).

[30] J. B. Taylor. Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys., 58, (1986).

[31] S.A. Thorpe. Turbulence and mixing in a Scottish loch. Phil. Trans. Roy. Soc. London A, 286:125–
181, 1977.

[32] D. Montgomery. Magnetohydrodynamic stability thresholds as a function of Hartmann number and
pinch ratio. Plasma Phys. Control. Fusion, 34, (1992).

[33] D. Montgomery. Hartmann, Lundquist, and Reynolds: the role of dimensionless numbers in nonlinear
magnetofluid behavior. Plasma Phys. Control. Fusion, 35, (1993).

[34] X. Shan and D. Montgomery. On the role of the Hartmann number in magnetohydrodynamic activity.
Plasma Phys. Control. Fusion, 35, (1993).

[35] G. H. Keetels, H. J. H. Clercx, and G. J. F. van Heijst. Spontaneous angular momentum generation
of two-dimensional fluid flow in an elliptic geometry. Phys. Rev. E, 78, (2008).

[36] W. J. T. Bos, S. Neffaa, and K. Schneider. Self-organization and symmetry-breaking in two-
dimensional plasma turbulence. Phys. Plasmas, 17, (2010).


	Introduction
	Equations, numerical methods and parameters
	Visco-resistive MHD equations
	Numerical methods
	Shaping parameters

	Results
	F- stability
	Helical modes and safety factor
	Turbulent diffusion

	On the choice of different characteristic scales
	Conclusion

